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Abstract

Context: Astronomy and astrophysics demand rigorous handling of uncer-
tainties to ensure the credibility of outcomes. The growing integration of
artificial intelligence offers a novel avenue to address this necessity. This
convergence presents an opportunity to create advanced models capable of
quantifying diverse sources of uncertainty and automating complex data re-
lationship exploration.
What: We introduce a hierarchical Bayesian architecture whose probabilistic
relationships are modelled by neural networks, designed to forecast stellar
attributes such as mass, radius, and age (our main target). This architecture
handles both observational uncertainties stemming from measurements and
epistemic uncertainties inherent in the predictive model itself. As a result,
our system generates distributions that encapsulate the potential range of
values for our predictions, providing a comprehensive understanding of their
variability and robustness.
Methods: Our focus is on dating main sequence stars using a technique
known as Chemical Clocks, which serves as both our primary astronomical
challenge and a model prototype. In this work, we use hierarchical archi-
tectures to account for correlations between stellar parameters and optimize
information extraction from our dataset. We also employ Bayesian neural
networks for their versatility and flexibility in capturing complex data rela-
tionships.
Results: By integrating our machine learning algorithm into a Bayesian
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framework, we have successfully propagated errors consistently and managed
uncertainty treatment effectively, resulting in predictions characterized by
broader uncertainty margins. This approach facilitates more conservative
estimates in stellar dating. Our architecture achieves age predictions with a
mean absolute error of less than 1 Ga for the stars in the test dataset.
Keywords: Bayesian Neural Networks, Hierarchical modelling, Stellar
dating, Uncertainty, Deep Learning, Chemical Clocks

1. Introduction

Nowadays, in many different fields, we see how Artificial Intelligence (AI)
approaches emerge; new machine learning (ML), deep learning (DL) algo-
rithms, and other statistical models come to the stage to help us automatize
and extract as much information from our datasets as possible. These new
tools are changing our workflow and the way we treat our data, promising to
be a potential solution for many tasks in the near future.

In the dynamic field of AI, a major challenge has been the ability to
clearly express the uncertainties associated with their predictions. Notwith-
standing these limitations, significant efforts have been made to enhance and
elucidate the functioning of these algorithms, with the objective of developing
architectures that can address uncertainties.

Our objective is to apply this capability to stellar dating, with the aim of
improving the accuracy and confidence of stellar age estimates. Employing
varied methods, from traditional isochrone fitting (e.g. Valls-Gabaud, 2014;
Rodrigues et al., 2017) to more modern techniques like gyrochronology (e.g.
Barnes, 2003; Angus et al., 2015; Mathur et al., 2023a), asteroseismology (e.g.
Moya et al., 2010; Silva Aguirre et al., 2015a,b; Mathur et al., 2023b) and
chemical abundance analysis (e.g. da Silva et al., 2012; Nissen, 2015, 2016;
Nissen et al., 2020; Moya et al., 2022), accurate stellar dating in astrophysics
demands rigorous uncertainty treatment for reliable results. When estimat-
ing stellar ages one is confronted with multifaceted challenges in accurately
estimating the parameter. Inherent uncertainties within theoretical models
describing stellar evolution pose a significant hurdle, as these models rely on
assumptions about intricate physical processes, introducing potential inaccu-
racies. Limitations in observational data quality, characterized by incomplete
or sparse data, particularly for distant or faint stars, hinder precise age de-
terminations. Moreover, degeneracies in stellar properties used for obtaining
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ages, along with calibration intricacies, can introduce biases, complicating
age estimates. Furthermore, age dispersions observed within stellar popu-
lations challenge the uniformity of stellar ages within clusters, impeding a
comprehensive understanding of stellar formation and evolution. Addressing
these challenges necessitates refined models, improved observational capa-
bilities, meticulous calibration techniques, and innovative, interdisciplinary
approaches to refine our grasp of stellar ages and cosmic chronologies.

Modern advancements in computational models and observational tech-
niques have substantially enhanced contemporary stellar dating methodolo-
gies. Notably, the advent of missions such as Corot (France, ESA), Kepler,
and TESS (NASA) has revolutionized age estimations through the applica-
tion of asteroseismology (e.g. Moya et al., 2010; Mathur, 2013; Silva Aguirre
et al., 2015a,b; Soderblom, 2015b; Morel et al., 2021; Mathur et al., 2023b;
Goupil et al., 2024). These missions have played a transformative role in
refining our understanding of stellar ages. Moreover, the anticipated contri-
butions of missions like Plato 2.0 (ESA) hold substantial promise for delving
deeper into stellar age determinations, offering the potential for significant
advancements in our comprehension of cosmic chronologies.

Overall, in the field of stellar dating techniques, it’s essential to acknowl-
edge that no single method universally applies to all types of stars, except
for isochrones model fitting. Depending on observations, this approach holds
the potential to yield age predictions with very tight uncertainties. How-
ever, this could represent a limitation in broader applicability, as it might be
deemed unrealistic or overly constrained in certain contexts. Work has been
done in this direction, using Bayesian statistical approaches to manage and
better propagate uncertainties for more realistic age estimates (e.g. Guédé
et al., 2012; Serenelli et al., 2013; Brandt and Huang, 2015; Angus et al.,
2015; von Hippel et al., 2016; Jeffery et al., 2016; Almeida-Fernandes and
Rocha-Pinto, 2018; Lin et al., 2018; Kiman et al., 2020, 2021, 2022; Moya
et al., 2022; Mathur et al., 2023a,b; Lu et al., 2024), some of them use hier-
archical architectures (e.g. Angus et al., 2015; Olivares Romero, 2017; Moya
et al., 2022), and other ones using ML techniques (e.g. Basu, 2020; Bu et al.,
2020; Moya et al., 2021; Van-Lane et al., 2023).

Currently, using clusters for stellar dating (e.g. Viscasillas Vázquez et al.,
2022) and asteroseismology emerge as promising alternatives, each with its
distinct strengths and constraints. Calculating the age of stars through clus-
ter characterization, while effective in certain contexts, often yields quantized
databases, constraining their utility in broader astronomical applications. On
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the other hand, asteroseismology, renowned for its precision and accuracy,
has predominantly been applied to giants and a select few hundred main
sequence (MS) stars of specific spectral types. Despite their advancements,
these methodologies encounter challenges in achieving comprehensive cover-
age across stellar populations.

In this paper, we present a novel approach designed for dating main se-
quence stars by leveraging machine learning and statistical methods. Our
model aims to provide a more accurate and conservative approach to stel-
lar dating by quantifying uncertainties in the predictions. By utilizing ma-
chine learning, we can automatically capture intricate relationships within
the data, thus potentially enhancing the quality of our estimates. Our contri-
butions are rooted in embedding this approach within a Bayesian framework,
known for its robust and well-established methodologies. By employing a hi-
erarchical architecture, our approach not only quantifies uncertainties but
also maximizes the extraction of information from available datasets, leading
to more reliable and comprehensive stellar age determinations.

1.1. Scope & case
In this study, we adopt a hierarchical Bayesian framework in-

tegrated with machine learning algorithms, specifically multilayer
perceptrons, to model the relationships embedded within our dataset
and be able to derive robust distributions of potential stellar ages.
In this work we decided to use the chemical clocks (CCs) tech-
nique for calculating stellar ages, which exploits the unaltered sur-
face chemical compositions of stars as proxies for their formation
epochs. MS stars are particularly well-suited for this approach
because their photospheric abundances remain largely unchanged
throughout their lifetimes (e.g. Delgado Mena et al. 2019b, from
now on DM19, Viscasillas Vázquez et al. 2022; Moya et al. 2022).
Once established at formation, the chemical composition of an MS
star effectively serves as a relic of the interstellar medium (ISM)
or formation cloud at that time. Aside from minor effects such
as atomic diffusion, the surface layers of these stars do not ex-
perience significant alterations, preserving the original chemical
signature. This characteristic stability is central to the chemical
clocks method, as it enables the inference of stellar ages directly
from the observed abundance patterns. The foundation of the CCs
approach lies in the framework of Galactic chemical evolution. The
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ISM is progressively enriched over time by a variety of nucleosyn-
thetic sources that operate on different timescales. By empirically
calibrating the abundance ratios of elements produced on these
disparate timescales (e.g., [Y/Mg] or [Ba/Al]), chemical clocks ef-
fectively timestamp the epoch at which a star’s birth environment
was chemically characterized. Thus, a star’s immutable chemical
signature encodes vital information about the temporal evolution
of the formation cloud. It is important to note that while the ma-
jority of heavy elements in MS stars remain stable, certain species
do undergo evolutionary changes. However, the reliability of the
chemical clock method hinges on the systematic variation of abun-
dance ratios, primarily governed by the nucleosynthetic history of
the ISM rather than by intrinsic stellar evolution. This distinc-
tion is critical, as it ensures that the observed abundance ratios
serve as faithful indicators of stellar age. The applicability of the
chemical clock is one of its main advantages since it does not de-
pend on the evolution and structure of the stars, but the method
varies across different stellar types. The technique is most effec-
tive for low- and intermediate-mass stars, which possess convec-
tive envelopes that do not facilitate extensive mixing during the
MS phase. In contrast, high-mass stars, characterized by radiative
envelopes and rapid evolution may experience convective dredge-
up events that transport nuclear-processed material to the surface,
thereby altering their chemical abundances and compromising the
chemical clock signal. In these cases, either alternative chemical
tracers or additional corrective calibrations are necessary to obtain
reliable age estimates. CCs offer a valuable complement to other
established age-dating methodologies, including gyrochronology,
isochrone fitting, and asteroseismology. Gyrochronology, which
correlates stellar rotation periods with age, is most effective for
cool dwarfs but relies on precise rotational data. Isochrone fitting,
based on luminosity and effective temperature, can suffer from de-
generacies in certain regions of the Hertzsprung–Russell diagram
(e.g. regions where isochrones are tightly packed). Although as-
teroseismology provides highly precise age determinations, it de-
mands observational resources that may not be available for large
samples. In contrast, chemical clocks can be readily applied to ex-
tensive spectroscopic surveys, thereby facilitating robust statistical
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analyses of stellar populations and extending age estimates to stars
that are challenging to date using other techniques.

2. Tools & data sample

2.1. Tools
Inside the vast field of AI, neural networks (NNs) stand out from the rest

of the algorithms thanks to their potential versatility to adapt to data, tasks,
or domains. However, the limitations of such networks became evident over
time and it wasn’t until the last decades when we witnessed a remarkable
transformation in NNs, driven by advancements in Gradient-based learning
(Lecun et al., 1998), the availability of powerful hardware such as graphics
processing units (GPUs), and large datasets. This has led to the development
of deep neural networks, including other architectures like deep convolutional
or recurrent neural networks (e.g. Krizhevsky et al., 2012; Silver et al., 2017).

These models have improved a lot in the last few years, but they often
require large amounts of labelled, high-quality data for training, which is not
always available. In addition, NNs lack interpretability, making it challeng-
ing to understand the reasoning behind their predictions, especially when
they make errors or biased decisions (e.g. Dong et al., 2017; Ancona et al.,
2017; Räuker et al., 2022). Furthermore, traditional deep learning models
were not initially designed for quantifying uncertainty and generally focus
on providing point estimates as predictions. Although, there are algorithms
like Bayesian Neural Networks (BNNs) (Tishby et al., 1989), Monte Carlo
Dropout (Gal and Ghahramani, 2015b), Deep Ensembles (Krizhevsky et al.,
2012) or Masksembles (Durasov et al., 2020) that can produce approxima-
tions of uncertainties. In this context, probability theory has become a cor-
nerstone for modeling uncertainty in machine learning, seamlessly integrating
probabilistic modeling with the predictive capabilities of ML algorithms. In
our work, we leverage BNNs, a powerful framework for effectively incorporat-
ing and managing uncertainty in AI. This approach represents a significant
step toward building reliable and interpretable systems.

BNNs offer a powerful approach for incorporating uncertainty
into predictions by modeling their weights and biases as probabil-
ity distributions rather than fixed values. Unlike traditional neural
networks that yield point estimates, BNNs quantify uncertainty in
both model parameters and outputs, which is essential for appli-
cations demanding reliable decision-making and interoperability.
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In particular, by modeling uncertainty, BNNs mitigate overfitting:
they capture epistemic uncertainty and avoid overconfident predic-
tions through implicit regularization. This capability is especially
important in our application, where understanding the confidence
of predictions is critical.

Bayesian statistics underpins this methodology by providing a
formal framework to represent uncertainty in model parameters
and observations through probability distributions. This frame-
work not only enables the calculation of credible intervals and dis-
tributions for parameter estimates, contrasting with the frequentist
approach, which assigns probabilities to data rather than hypothe-
ses, but also allows the integration of prior knowledge. Priors in
the Bayesian framework discourage extreme weight values, while
the posterior distribution naturally favors simpler models when
data is scarce. Moreover, by marginalizing over multiple weight
configurations instead of relying on a single optimized set, BNNs
reduce sensitivity to noise in the training data. As new data is
gathered, Bayesian models update the probability of hypotheses, a
feature that is fundamental for our stellar characterization model,
where handling uncertainties at every step is critical.

In this context, hierarchical models emerge as a particularly valuable tool.
These architectures have the ability to capture and account for variations at
multiple levels, encompassing both within-group and between-group varia-
tions simultaneously. This capability is especially beneficial when dealing
with correlated data or where different levels may exhibit distinct sources
of variability, providing a more nuanced and accurate analysis. Hierarchi-
cal models are often applied within a Bayesian framework because they fa-
cilitate the integration of prior knowledge and enable the quantification of
uncertainty in parameter estimates. By including prior knowledge and data
likelihood, the posterior distribution offers a comprehensive depiction of pa-
rameter information, providing a holistic understanding of the model’s nu-
ances post-data observation (e.g. Gelman and Hill, 2006; Gelman et al., 2015).
They excel in handling situations with limited data, providing stability and
informativeness in parameter estimates by borrowing information from other
levels of the hierarchy (e.g. Davidian, 2003; Gelman et al., 2004; Gelman
and Hill, 2006). Considering these advantages and inspired by the promising
results presented in Moya et al. (2022), we have adapted and extended its
Hierarchical Bayesian Model (HBM) to suit the specific requirements of our
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current experimentation. Technically, in this work, we built upon the HBM
architecture proposed in Moya et al. (2022), which models probabilistic re-
lationships using multi-linear regressions. However, we enhanced the model
by replacing the multi-linear components with a machine learning module,
specifically neural networks (NNs).

In our hierarchical model, we use Markov Chain Monte Carlo (MCMC)
methods for parameter inference, leveraging their ability to estimate pos-
terior distributions in Bayesian frameworks. MCMC methods are a class
of computational algorithms that rely on repeated random sampling to ap-
proximate these distributions, making them particularly suited to complex,
high-dimensional models where traditional methods fall short. The need
for such techniques has driven advances in probabilistic programming, with
languages like Stan, PyMC, and Pyro making MCMC more accessible and
applicable to sophisticated models.

However, MCMC methods are also computationally demanding, which
can limit their scalability, especially in large models or time-sensitive ap-
plications. Addressing these limitations is an active area of research, with
current work in BNNs and deep learning–based approaches focused on mak-
ing these methods more efficient and scalable. These innovations are helping
to broaden the practical use of Bayesian inference for uncertainty quantifica-
tion in machine learning.

2.2. Training sample
The training dataset utilized in our study is thoroughly documented in

(Delgado Mena et al., 2019a). It comprises observations of 1059 stars from
the HARPS-GTO planetary search program. These stars were selected from
a volume-limited area within roughly 70 parsecs of the Sun, with few stars
located at greater distances.

Details about derived effective temperature (Teff), metallicity ([Fe/H]),
surface gravity (log g), and chemical abundances ([X/Fe], where X repre-
sents the different chemical elements) are presented in DM19. Stellar ages
(from now on t) were computed utilizing the PARAM v1.3 tool, employing
PARSEC isochrones (Bressan et al., 2012) in conjunction with a Bayesian
estimation method (da Silva et al., 2006). However, it is pertinent to high-
light that not all age determinations among these 1059 stars are deemed
reliable. DM19 established reliable age estimates as those presenting an age
uncertainty smaller than 1.5 billion years (Ga). Stars with age uncertainties
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below 0.2 Ga were omitted because we regard them as unrealistic for a stan-
dard isochrone fitting process, having the potential to introduce bias into the
final model (Moya et al., 2022). Adopting a uniform threshold was a
practical decision to avoid introducing biases that might arise from
a non-uniform error selection. Consequently, this resulted in a refined
dataset comprising 328 stars extracted from the original set of 1059 stars
for our research. Further elucidation regarding the primary characteristics
of this subset can be found in DM19.

In summary, our investigation was centered on categorizing 244 thin-
disk stars, 14 high-α metal-rich stars, 68 thick-disk stars, and 2 halo stars,
following the classification methodology delineated by Adibekyan et al. (2011,
2012). The effective temperature ranged from 5010 to 6788 K, with 95% of
the values falling between 5271 and 6416 K. The surface gravity spanned
from 3.73 to 4.71 dex, with 95% of the measurements ranging between 3.93
and 4.58 dex. Additionally, the metallicity exhibited variation from -1.15
to 0.55 dex, with 95% of values within the range of -0.81 to 0.33 dex. Each
parameter measurement was accompanied by its corresponding observational
error. We chose to use the chemical abundances of Mg, Al, Si, Zn, Ti, Sr,
and Y for these stars.

2.3. Testing sample
A distinct testing set comprising stars not included in the training was

employed to assess the accuracy of the HBM predictions, produced using
the training dataset detailed in Section 2.2. The specific composition of this
dataset, as referenced in Moya et al. (2022), is twenty-three stars designated
with ’reliable’ age estimates. They are delineated below:

• Twenty stars whose age determination was derived through asteroseis-
mology. Specific characteristics of eighteen Kepler Input Catalog (KIC)
stars, as well as 16 Cygni A and 16 Cygni B, were acquired from Nissen
et al. (2017) and Morel et al. (2021). Their chemical abundances were
acquired via specialized observations. For data sourced from Nissen
et al. (2017), log(g) uncertainties were not explicitly provided; thus, a
standard and conservative uncertainty of 0.05 dex was imposed. The
ages utilized in this context were primarily sourced from Aguirre et al.
(2017).

• Two stars belong to the M67 open cluster (this is one of the best-
characterized clusters). Details about these stars were sourced from

9



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Liu et al. (2016), which are identified as solar twins. The age of the
cluster was obtained from Yadav et al. (2008).

• The Sun, whose general characteristics were taken from Prša et al.
(2016). To minimize biases and facilitate direct comparisons
with previous works, we adopt the same abundance reference
as in prior studies Sousa et al. (2007, 2008).

We consider them more reliable than other selections because they were
obtained through asteroseismology and cluster characterization, which nowa-
days represent two of the most accurate methods for dating MS stars. These
stars exhibit well-determined effective temperature, surface gravity, metallic-
ity, age, and chemical abundances of Mg, Al, Si, Zn, Ti, Sr, and Y relative to
iron, along with their associated uncertainties. It is noteworthy that not all
stars have available data for all chemical abundances, contributing to the re-
alistic nature of our testing dataset. In the case of the Sun, it was treated as
a standard field star within the testing dataset. For doing so we intentionally
adjusted its uncertainties to align with those of the remaining stars.

3. Inference technique: HBM

As it was previously introduced in Section 2.1, in this work we decided
to inherit the HBM architecture used in Moya et al. (2022), whose proba-
bilistic relationships are modeled by multi-linear regressions (from now on
HBM-MLR). Thanks to this decision we are able to stratify information for
hyperprior specification, account for observational uncertainties, and prop-
agate the errors through the model. In this work, we replaced the multi-
dimensional linear models, with a ML module, specifically, NNs (from now
on HBM-NNs). This new approach eliminates the need for manual explo-
ration of internal data relationships, as previously suggested in Delgado Mena
et al. (2019b). The schematic of the architecture is depicted in Figure 1.

3.1. Bayesian Neural Networks
Drawing upon insights from Dotter et al. (2017) and Gavel et al. (2021),

we acknowledge the proposition that all potential predictor variables may
carry pertinent physical information. In pursuit of optimal data treatment,
several strategic decisions were undertaken. Firstly, our methodology aligns
with the principles advocated by Gelman et al. (2004), wherein all available

10



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

N
N

s’
 in

ne
r p

ar
am

et
er

s 
(w

ei
gh

ts
 a

nd
 b

ia
se

s)

Fe
/H

Te
ff

lo
g(

g)
t

Y
/M

g
Y

/A
l

Y
/Z

n
Y

/T
i

Y
/S

i
Sr

/M
g

Fe
/H

t

T
ru

e 
St

el
la

r p
ar

am
et

er
s 

an
d 

CC
s

O
bs

er
ve

d 
St

el
la

r p
ar

am
et

er
s 

an
d 

CC
s

D
Ω

b

To
p 

Le
ve

l: 
T

ru
e 

st
el

la
r +

 N
N

s’
 in

ne
r 

pa
ra

m
et

er
s

B
ot

to
m

 L
ev

el
: 

O
bs

er
va

bl
es

H
yp

er
pa

ra
m

et
er

s

W

H
yp

er
pa

ra
m

et
er

s

Te
ff

lo
g(

g)

Y
/M

g
Y

/A
l

Y
/Z

n
Y

/T
i

Y
/S

i
Sr

/M
g

Figure 1: Structure of the hierarchical Bayesian model used in this work, comprising two
levels: the Top and Bottom. Hyperparameters Ω (correlation matrix) and D (scaling ma-
trix), which are used to define the covariance matrices for the stellar parameters represent
the model’s hyperpriors. Additionally, W and b are the weights matrices and biases vec-
tors, respectively, of the neural networks. Filled circles are the true stellar parameters and
CCs, and empty circles represent the observed ones.
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predictors are incorporated into our BNN model, with priors for the neu-
ral network weights and biases centered at zero. This decision serves as a
regularization mechanism, ensuring that the posterior distributions of neu-
ral network coefficients diverge significantly from zero solely when supported
by empirical evidence (Gelman et al., 2004). Additionally, an arrangement
was imposed on the bias vectors of hidden layers (HLs) in the BNNs. The
reordering of a bias vector b with components bk is done in ascending or-
der (bk < bk+1 for k ∈ {1, . . . , k − 1}). This deliberate ordering aims to
break weight-space symmetries, thereby enhancing general identifiability of
BNNs. The organized bias vectors contribute to the network’s discernment
of relevant patterns and dependencies, reducing the risk of underfitting or
oversimplification. This, in turn, augments the network’s learning capacity,
promoting accurate predictions and improving generalization (Pourzanjani
et al., 2017). Furthermore, the chosen activation function for the BNNs’
HLs, namely the classical sigmoid, is applied within nodes after the linear
combination of the inputs with the weights and biases, effectively constrain-
ing the domain of internal neural network parameters. The output of the
hidden units is defined as

hi = f

(
n∑

j=1

wjixj + bi

)
, (1)

where i indexes neurons in the hidden layer from 1 to m (the number of
neurons in the hidden layer). Index j indexes the input features. It ranges
from 1 to n, where n is the total number of input features. xj denotes the j -th
input feature and wji stands for the weight connecting the j -th input feature
to the i -th neuron in the hidden layer. Each input feature xj is weighted
by wji before being summed up and passed through the activation function
f (sigmoid). bi represents the bias term for the i -th neuron in the HL. The
output value of the neural network, y, is calculated as

y =
m∑

i=1

wihi + b. (2)

In the primary case of a single CC per BNN (Figure 2), in the output
layer the weight wji is represented as a vector, while the bias bi is represented
as a scalar. Our model would then be defined by the inner operations of the
neural networks, in this case, the feed-forward multilayer perceptron.

12
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W (weights matrices)

Input Layer
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Output Layer

X
(Input Stellar 

parameters vector)

b (bias vectors)

Number of nodes (6)

Number of stellar parameters (4)
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Figure 2: An example of a single-output NN architecture with one hidden layer, matching
the best BNN schematics used for single-output configurations during experimentation. W
and b represent the weights matrices and biases vectors, illustrated through the dashed
gray and red lines, respectively, depicting the information flow within the NN. Additionally,
Orange filled circles are the stellar parameters (X) as input, and Blue filled circle is the
single CC output.
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The dimensions of the weights and biases in NN architectures depend
on the number of inputs, nodes, and HLs. To maintain clarity and sim-
plify nomenclature, we define W and b as the sets encompassing all weight
matrices and bias vectors, respectively, used in any given experimental con-
figuration, including all 6 NNs (one for each CC). Specific details will be
provided as necessary for single NN with multi-output experiments.

3.1.1. Posterior sampling techniques
Bayesian inference updates priors using observed data to compute the

posterior distribution, encapsulating the model’s uncertainty (epistemic).
Specifically, within BNNs, approximation techniques such as MCMC or Vari-
ational Inference (VI) (e.g. Gelman et al., 2004; Gelman and Hill, 2006; Liu
and Wang, 2016; Gal and Ghahramani, 2015a) are employed due to the in-
tractable nature of the posterior distribution over neural network parameters
(e.g. Wilson and Izmailov, 2020; Arbel et al., 2023; Wiese et al., 2023; Pa-
pamarkou et al., 2021). In our case, we used PyStan (Gelman et al., 2015),
which is the Python version of the probabilistic work-frame Stan (Carpenter
et al., 2017). Among the different sampling methods offered by this lan-
guage, we used the NUTS version of the Hamiltonian Monte Carlo (HMC)
(e.g. Gelman et al., 2004; Gelman and Hill, 2006; Hoffman and Gelman, 2011)
sampler to obtain the desired samples from the posterior distribution. This
approach better fits our needs in the sense that even if the computing time is
generally longer than typical VI ones, we sample directly from the posterior
distribution and not from an approximation of it.

Our Bayesian model was build using the 2.19.1.1 PyStan version,
which just support CPU. Experiments were launched on Intel® i9-
13905H and Intel® Xeon® E5-2695 v4 processors, both ranging
a clock speed between 2.6-3.3 GHz.

3.2. Hierarchical Architecture
As depicted in Figure 1, our model architecture is defined by two layers

or groups. The first layer in which we can find the true stellar parameters
Θ (log g, Teff , t, and [Fe/H]) and the inner parameters of the NNs used for
predictions (Figure 2), and the final layer, where the observables are. The
latter are characterized as random variables, modelled as a normal distri-
bution centred around the actual values. Their variability is defined by the
uncertainties inherent in the measurements detailed in the datasets section.
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In our context, observed parameters refer to the direct measure-
ments from different techniques such as spectroscopy or photom-
etry, which inherently include uncertainties. True parameters, on
the other hand, correspond to the latent stellar properties inferred
through our hierarchical Bayesian model, which accounts for ob-
servational errors and propagates uncertainties.

Measurement uncertainties of the stellar parameters were introduced in
the model through multivariate Gaussian distributions centered at the mean
value of the observations and constrained by the uncertainties themselves
through a covariance matrix (for deeper insight please refer to Moya et al.,
2022). This way, we were able to take into account the two sources of un-
certainty: random noise due to the measurement process; and the epistemic
uncertainty that affects the parameters of our model.

Our model is hierarchical in the sense that the prior on the stellar pa-
rameters is learned from the data. Figure 1 shows the two information levels
of our hierarchical model, where the hyperparameters Ω and D represent the
correlation and scaling matrices needed to define the covariance matrix of
the distribution of stellar parameters. W and b as the sets of weights ma-
trices and biases vectors. Filled circles are the true stellar parameters and
CCs, and empty circles represent the observed ones. In this representation,
the connection between the stellar parameters and CCs is through multilayer
perceptrons (dashed grey lines). In our case, we used 6 NNs for most experi-
ments, one for each CC (Figure 2). The main reason for this decision was to
avoid multimodality in the NNs parameter space (later explained in Section
4).

Following Moya et al. (2022) and Delgado Mena et al. (2019b) we decided
to work with 7 chemical abundances; 5 α-elements (Al, Mg, Si, Ti, Zn)
and 2 s-process ones (Y and Sr) to build our CCs, leading to 10 potential
combinations between the two groups. Among these, 5 ratios were formed
with Y ([Si/Y], [Mg/Y], [Ti/Y], [Zn/Y], and [Al/Y]), while one ratio was
formed with Sr ([Mg/Sr]). This decision was motivated by the fact that Y is
generally easier to obtain and often yields more precise values compared to
Sr. Besides that, the remaining combinations were not independent of the
ones used.

Once the hierarchical Bayesian model is defined we can distinguish two
computational stages: 1) the training phase (this stage runs the bayesian
inference using MCMC algorithms and uses only the training set de-
fined in section 2), where we use labelled data and derive posterior distri-

15



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

butions for the NNs coefficients (W and b), the stellar parameters and the
hyperparameters D and Ω; and 2) the prediction stage, wherein the model
is used to estimate ages for stars not present in the training set.

During the training stage, we sample 4x328 parameters (the 4 stellar vari-
ables of each of the 328 stars present in the training set), the hyperparameters
and the NNs parameters, which in our case are going to be 6 ·NHLs ·NNodes

(where we are assuming an equal number of nodes per HL and in all 6 NNs
used). Even though this was the main NN configuration during our work,
different architectures were tested, and their proper definitions will be intro-
duced in the corresponding sections, 4 and Appendix A. We distinguish θ̂
for the observed stellar parameters and θ for the true or the ones from the
dataset. The same distinction applies to the CC vectors (observed ĉi, true
ci).

The distributions of probabilities of the stellar parameters inferred dur-
ing the sampling of the training phase are used in the NNs (along with the
W and b distributions) to produce the true CCs values. We assume that
stars present a known and independent covariance matrix from each other
and that there is not a direct correlation between stellar parameters and
CCs. This approach lets us construct individual likelihoods for both groups
of parameters (CCs and stellar attributes) in a simpler way by multiplying
the probabilities of each observation. Then we can define the joint likeli-
hood function of CCs and stellar parameters by multiplying the individual
likelihoods as follows,

L =
328∏

i=1

p(ĉi|θi,W , b) · p(θ̂i|θi), (3)

where W and b represent the set of all matrices and vectors used in all 6
NNs used during the experiment, respectively. Applying Bayes’ rule we can
finally express the posterior distributions of parameters as

p(W , b,Θ|ĉ, Θ̂) ∝ L · π(Θ, D,Ω) · π(W ) · π(b), (4)

where

π(Θ, D,Ω) = p(Θ|D,Ω) · π(Ω) · π(D). (5)

Equation (4) represents the posterior distribution of the parameters W ,
b given the observed values of the chemical abundance ratios ĉ and of the

16



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

stellar parameters Θ̂. It is proportional to the product of the likelihood
function L, which captures the probability of the observed data given the
parameters, and the prior distributions: π(Θ, D,Ω), which accounts for the
hierarchical structure of the hyperpriors D and Ω needed to model Θ, along
with π(W ) and π(b), representing the priors for W and b, respectively. In
Equation (5), the joint prior distribution is expressed as the product of the
conditional prior, reflecting Θ’s dependence on D and Ω, and the hyperprior
distributions π(Ω) and π(D), which account for uncertainties in the higher-
level parameters.

In our approach, we firstly opted for utilizing Gaussian distributions with
varying centering for the initialization of the different weight matrices and
bias vectors priors. Through iterative experimentation, we observed that
aligning all BNNs priors to 0 significantly improved the predictive perfor-
mance. Besides that, we decided to use diagonal matrices as their covari-
ances matrices to enforce the independence of parameters for convenience
and flexibility during experimentation. In this context, the standard devia-
tion σ, which serves as a measure of how the distribution spreads around its
mean, is used as a uniform value across all elements of the diagonal covari-
ance matrices applied to both W and b. Then, this parameter σ, emerged
as a critical factor during the training phase (e.g. Fortuin, 2021; Noci et al.,
2021). In our work we didn’t account for correlations between BNNs and as-
sumed their independence. We can summarize the initialization of our inner
BNNs parameters with

π(wji) = N (wji|0, σ2), (6)

π(bi) = N (bi|0, σ2). (7)

In Equations 6 and 7 wji and bi represent any of the elements of W and
b, respectively.

We employed a non-informative multivariate Gaussian prior to incorpo-
rate the correlations between Teff , t, and [Fe/H], whereas we assigned an
independent prior for log g. The rationale behind this choice is that this
parameter showed a low correlation with the other stellar parameters in the
training set. This approach also lets us reduce the dimensionality of the
hyperparameters D and Ω by one, improving our computational times.

In our HBM we did not consider the necessity of defining a joint correla-
tion between the two groups of parameters, the CCs, and stellar ones. The
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relationship between each CC and the stellar variables is the result of the
BNNs.

The multivariate Gaussian distribution used as prior for the stellar pa-
rameters was centred on the mean of the observed values. The covariance
matrix of Teff , t, and [Fe/H] was disassembled into a scale matrix and a cor-
relation matrix, a detailed exposition of which is available in Gelman and
Hill (2006):

Σ = D · Ω ·D, (8)
where D is a diagonal matrix with a scale for each stellar parameter, and
Ω is the correlation matrix. Following Moya et al. (2022) we defined a
Lewandowski-Kurowicka-Joe (LKJ) prior (Lewandowski et al., 2009) with
shape parameter η = 3 for the correlation matrix, representing the equiva-
lent to a uniform distribution on correlations. Finally, we defined a Cauchy
prior on the scales centered at 0 with γ = 2. Once the posterior distributions
of the true stellar parameters, W and b are inferred we can start with the
age prediction stage.

3.3. Prediction stage
Let θ′ be the set of true stellar parameters excluding the age ( log g,

Teff , and [Fe/H]), and θ̂′ the vector of their observed values. The posterior
samples of Σ obtained during the training phase were used to define the prior
stellar parameters. These samples are employed to evaluate the likelihood
term p(ĉ, θ̂′|t, θ′,W , b) to finally produce the distributions of t for the stars
in the test set.

As previously outlined in this paper, our approach is designed to be as
independent as possible from manual modelling. This is the primary reason
for our investigation into the automation capabilities and data adaptability
of ML. Consequently, we decided to employ BNNs, which have the potential
to automatically capture intricate data patterns. In our case, we employed
normal priors centered at 0 for our BNNs W and b parameters. While
these priors depend on some parameter selection and subsequent fine-tuning
experimentation, our model could potentially be used for other MS stars
or even different stellar populations if we follow the same methodology for
parameter adaptation.

In Section 4, we present experiments in which the training
phase, implemented via MCMC sampling, generally required be-
tween 1.5 and 2 days. However, certain configurations, including
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the best-performing one, extended the training duration to as much
as 3.5 days. In contrast, the prediction time is primarily dictated
by the number of samples used. For instance, processing 8,000
samples (organized into four chains of 2,000 samples each) for a
single star typically takes about 20 minutes on the CPUs specified
in subsection 3.1.1 (this time varies significantly on CPU models).

4. Results and discussion

In this section, we present a comprehensive analysis of the outcomes de-
rived from the HBMs employed in our study. The culmination of exten-
sive computations and model training is encapsulated in a series of succinct
and informative tables and graphics presented in the following paragraphs.
Herein, we provide an overview of the experimental setup and the results
from the BNN architecture designs we used.

4.1. Experimental setup
In the following paragraphs, we introduce the distributions of the datasets

(described in Section. 2), examine convergence during the inference stage,
and outline the evaluation metrics for age prediction tasks. This approach
enables a comprehensive evaluation of our architecture efficiency compared
to established methodologies.

• Distributions: Figure 3 presents the distributions of stellar parame-
ters from all stars used in this work (a total of 328 for the training set
and 23 for the test). These figures exhibit remarkable similarities be-
tween the training and test sets, notwithstanding the relatively limited
size of the test set.

• Inference convergence: We assess the convergence of the inference
process using the NUTS-MCMC sampler heuristics (Hoffman and Gel-
man, 2011). This involves analyzing two key parameters: the Gelman-
Rubin statistic (R̂) and the effective sample size (Neff) (Neal, 1993;
Geyer, 1992). The R̂ statistic measures the convergence of multiple
chains, with values close to 1 indicating convergence. Neff represents
the effective number of independent samples and is used to ensure that a
sufficient number of samples are obtained for accurate inference. Then
the target values for these heuristics are a high Neff, which indicates
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Figure 3: Distribution of the stellar parameters from the training and testing sets used
in this work. From Top to Bottom: Age, effective temperature, surface gravity, and
metallicity.
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low autocorrelation and enhances the informativeness of the samples,
and an R̂ value close to one, which signifies well-mixed and converged
samples, suggesting reliable parameter estimates.
In our analysis, we chose a strict convergence criterion, setting the R̂
value threshold at 1.05. Additionally, if the R̂ condition is satisfied,
we also require that the effective sample size, Neff, be at least 20%
of the total number of samples (Gelman and Hill, 2006). Any Neff

below this threshold indicates insufficient effective sampling, leading
to rejection of the results. However, a small subset of experiments
that meet these criteria may still be unreliable. This situation arises
because, in the result tables that follow, we present R̂ as an average
of the individual R̂ values for model parameters. While this approach
provides a general overview, it can obscure instances where specific R̂
values deviate significantly from 1. To ensure quality, each set of results
was carefully reviewed, and instances where this issue occurs are noted
in the relevant sections.

• Age prediction metrics: For evaluating the performance of our
model in predicting stellar ages in the test set, we use the mean absolute
error (MAE) metric:

MAE =
1

n

n∑

i=1

∣∣ti − t̂i
∣∣ , (9)

where n is the number of stars in the test set, ti is the target value of the
age for star i, and t̂i is the predicted one. Additionally, we report the
results as mean values of the posterior samples along with the standard
deviation, representing the uncertainty in our predictions.

• Baselines: We compare the results obtained from our model with
those reported by Moya et al. (2022) in their multilinear regression
(MLR) approach. We provide an overview of their methodology and
highlight any similarities or differences between their results and ours.
This comparison serves as a benchmark for assessing the effectiveness
of our model in relation to existing state-of-the-art approaches.

The experimentation aims to shed light on several key aspects related
to BNNs applied to stellar characterization. In order to assess which ar-
chitectural configurations yield the most accurate and reliable results, we
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evaluate the performance of different BNN designs, exploring multiple net-
work architectures (other experiments, presented in Appendix A, were run
with single BNN configurations). This exploration offers valuable guidance
on parameter-tuning strategies to enhance model performance and predictive
accuracy.

Furthermore, the experimentation provides an assessment of the poten-
tial of BNNs to compete with classical approaches in this domain (e.g. Moya
et al., 2022). By comparing the performance of BNNs against traditional
methods our study aims to gauge the extent to which BNNs can replicate or
improve upon the predictive capabilities of established techniques. This com-
parative analysis serves to showcase the versatility and effectiveness of BNNs
in capturing complex patterns and relationships within the data, potentially
surpassing the limitations of conventional approaches.

4.2. Multiple BNNs with single output
Our initial approach involved using a single neural network with six out-

puts. However, this approach encountered multimodality issues, illustrated
in Figure A.8 and discussed in Appendix A. To address these issues and im-
prove the generalization capabilities of the architecture, we adopted a more
conservative strategy by using a separate neural network for each CC. This
approach simplifies the relationships the networks need to learn and reduces
the complexity of the parameter space.

The initial phase of model architecture exploration involved a stepwise
progression in complexity, with detailed configurations outlined in Table 1.
This exploration commenced by experimenting with a single hidden layer,
varying the number of nodes (3, 6, 10, 15, 20, 25). For prior specification
of W and b, the investigation began with narrow standard deviations cen-
tered at 0, progressively expanding their value until 1, informed by prior
experimentation.

The effective sample size and R̂ diagnostics are of insufficient quality with
3 nodes but improve significantly starting from 6 nodes onward. Generally in
BNNs the parameter space typically grows in complexity as the model’s archi-
tecture becomes more intricate (e.g. Valentin Jospin et al., 2020). However,
using six neurons smooths the initially multimodal distribution of weights
and biases observed in the three-node configuration, yielding a shape that
more closely resembles a Gaussian distribution. This pattern persists across
all our experiments involving architectures with more than three nodes, sug-
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3 0.25 0.99 1.156 3306
3 0.5 0.95 1.166 2042
3 1 0.87 1.838 1615
6 0.25 0.95 1.001 4960
6 0.5 0.85 1.003 2794
6 1 1.14 1.013 1711
10 0.25 0.92 1.000 8537
10 0.5 0.98 1.001 3942
10 1 1.17 1.001 3433
15 0.25 0.90 1.000 7180
20 0.25 0.89 1.000 5892
25 0.25 0.93 1.000 6955

Fixed parameters: 1 hidden layer NN, priors on data and chains centered on 0 (W
and b), NUTS adapt delta parameter 0.95, NUTS max tree depth 13, 4 chains with 3000
samples (1000 as algorithm burn-in).

Table 1: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters. Third column: age mean absolute
errors. Fourth column: R̂ values for convergence diagnostics. Fifth column: effective
sample sizes.

gesting that this level of complexity is sufficient for the parameters to con-
verge into a monomodal distribution.

Although the exact mechanism behind this behavior is not fully under-
stood, we hypothesize that it could be due to the small age uncertainties of
the dataset. Also, the observed multimodality may re-emerge with signifi-
cantly larger architectures (e.g. Valentin Jospin et al., 2020). In our case, the
6-node configuration appears to represent a threshold of complexity, where
the number of nodes is sufficient to effectively map the parameter space.
At this point, the nodes seem to specialize, focusing on individual modes
to explain the data accurately while avoiding unnecessary complexity (e.g.
Cybenko, 1989; Hornik, 1991; Csáji, 2001).

We used a wider prior of σ = 1 as a weaker prior belief about the values
of the weights and biases, allowing the model to explore a broader range of
parameter values. On the other hand, a narrower prior, like σ = 0.25 imposes
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3 0.25 1.23 1.070 3979
3 0.5 0.89 1.037 2117
3 1 1.22 1.153 1199
6 0.25 1.12 1.009 5316
6 0.5 0.93 1.011 6220
6 1 1.64 1.005 3445
10 0.25 1.12 1.003 7335

Fixed parameters: 2 hidden layers NN, priors on data and chains centered on 0 (W
and b), NUTS adapt delta parameter 0.95, NUTS max tree depth 13, 4 chains with 3000
samples (1000 as algorithm burn-in).

Table 2: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters. Third column: age mean absolute
errors. Fourth column: R̂ values for convergence diagnostics. Fifth column: effective
sample sizes.

stronger constraints on the parameters, effectively acting as a stronger form
of regularisation (e.g. MacKay, 1992; Bishop, 2006) (having also a direct im-
pact on computational times). Constraining BNNs parameters too tightly
through narrow priors may overly restrict the posterior distribution, limiting
its ability to explore meaningful regions of the parameter space. This can re-
sult in underestimating the true posterior uncertainty and missing important
solutions or modes that could otherwise explain the data effectively. Further
investigation into the influence of prior width revealed that restrictive stan-
dard deviations generally yield improved predictions. Using a value of 0.25 in
the standard deviation for the priors yields very good heuristics in 10, 15, 20,
and 25 nodes configurations, all of them with MAE ≈ 0.9. Configurations
like the 6-nodes one, also give comparable predictions, but not that good
heuristics.

Moreover, a prior initialization distant from the posterior can impede
chain convergence, resulting in a diminished count of effective samples. Con-
versely, Table 1 presents the discussed results, predominantly indicating high-
quality heuristics, suggesting that a greater number of nodes with precise and
restrictive priors generally enhance predictive performance.

Subsequent experimentation delved deeper into the architecture of BNNs.
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While deeper networks have the potential to capture more complex relation-
ships in the data, they also introduce higher complexity and challenges re-
lated to inference, such as increased computational cost and difficulties in
sampling from complex posterior distributions (e.g. Blundell et al., 2015).
From these investigations, we observed that an increased number of layers
does not necessarily yield improved outcomes, as shown in Table 2. Contrary
to the insights gained from node variations in earlier experiments, heuristics
deteriorated with higher layer counts, reaching a point where results became
unreliable, being this one of the scenarios where some of the model R̂ param-
eters significantly deviate from 1. Despite launching additional experiments
with varied standard deviations for initialization or larger numbers of nodes,
the errors remained non-comparable to those observed in the single hidden
layer experiments. Moreover, as discussed in previous sections, our train-
ing dataset comprises only 328 stars, presenting an opportunity to leverage
simpler models.

The outcomes derived from systematic experimentation revealed instances
where certain internal parameters of the BNN posterior distribution deviated
significantly from their prior initialization. Consequently, a customized and
better-centered initialization method was devised to address this issue, results
are summarized in Table 3. In this approach, a variational-based technique,
ADVI (Automatic Differentiation Variational Inference) from PyStan, was
employed to obtain an initial approximation of the mean values for our target
parameters (W and b). In a subsequent and independent stage, these values
were input into the MCMC-NUTS sampler as the mean value for the BNN
priors, and a range of models was computed by varying the standard devia-
tion width. The results were comparable to non-informative initializations,
with some cases exhibiting worse performances. The primary advantage of
this approach lay in achieving slightly improved computational times, though
this aspect was not a focal parameter of interest in our study.

Building upon the insights gained from the prior experimental iterations,
we sought to enhance the optimal results obtained with a single hidden layer
comprising 6 nodes and employing restrictive prior initialization (see Table 1).
The subsequent batches of experimentation were devised to systematically
evaluate the impact of the number of samples and the maximum tree depth
(MTD) of the NUTS on model performance.

Doubling the posterior sample size yielded a marginal improvement in the
heuristics of the 6-node architecture, with no discernible adverse effects on
MAEs. To systematically compare these outcomes, additional experiments
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3 0.25, 0.25 1.01 1.167 2347
3 0.5, 0.25 0.99 1.153 1464
6 0.25, 0.1 1.01 1.000 5429
6 0.5, 0.1 1.14 1.004 1919
6 0.25, 0.25 0.88 1.002 3726
6 0.5, 0.25 0.92 1.006 2235
6 0.25, 0.5 0.88 1.003 3256
6 0.5, 0.5 0.95 1.006 1856

Fixed parameters: 1 hidden layer NN, priors on data and ADVI centered on 0 (W and
b), priors on NUTS chains centered on ADVI posteriors (W and b), NUTS adapt delta
parameter 0.95, NUTS max tree depth 13, 4 chains with 3000 samples (1000 as algorithm
burn-in).

Table 3: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters (D: Data and ADVI initialization,
C: Chains). Third column: age mean absolute errors. Fourth column: R̂ values for
convergence diagnostics. Fifth column: effective sample sizes.

were conducted with a shallower tree depth (for NUTS), results are summa-
rized in Table 4, to analyze the impact of the MTD. With an MTD set to 10,
the sampler reached 100% sample saturation, indicating that while achieving
favorable heuristics and results, the sampler faced more stringent require-
ments for realistic parameter space exploration. Altering this parameter to
12 partially resolved the saturation issue (some of the inner parameters of our
architecture need deeper MTD), but the results exhibited a decline in quality.
This set of experiments suggests that a shallower MTD may be employed in
tandem with extended training to alleviate the impact of less accurate explo-
ration. Even though time is not the most significant constraint in our study,
this could represent a strong limitation for larger datasets. Conversely, ele-
vating the MTD did not lead to a direct enhancement in MAEs but positively
influenced heuristics by increasing the count of effective samples. Higher tree
depths improve posterior exploration, particularly for complex distributions,
but exponentially increase the computational cost per iteration.

Increasing sample sizes is useful if the correct MTD ensures the sampler
can properly explore the posterior. However, once the posterior is well-
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3000 (1000) 10 0.92 1.010 827
3000 (1000) 12 1.65 1.011 2334
6000 (2000) 10 1.08 1.014 1130
6000 (2000) 12 1.02 1.001 5474
6000 (2000) 13 0.88 1.005 3487
6000 (2000) 14 1.04 1.004 6741

Fixed parameters: 1 hidden layer with 6 nodes NN, priors on data and chains centered
on 0 (W and b), NUTS adapt delta parameter 0.95, 4 chains with 3000 samples (1000
as algorithm burn-in), Gaussian priors for inner NN parameters are fixed to µ = 0 and
σ = 0.5.

Table 4: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: Max tree depth NUTS algo-
rithm parameter. Third column: age mean absolute errors. Fourth column: R̂ values for
convergence diagnostics. Fifth column: effective sample sizes.

sampled and diagnostics indicate convergence, additional samples may lead to
little improvement or could even worsen the results. Based on this insight, we
chose to extend our investigation of the MTD. We focused on configurations
with the most promising heuristics from Table 1 and expanded the MTD to
14. Our analysis reveals an overall enhancement in heuristics, particularly
beneficial for configurations comprising only 6 nodes. These findings are
summarized in Table 5, where it is evident that the majority of MAE values
approximate 0.9. This underscores the potential for achieving a balance
between architectural complexity, outcomes, and computational efficiency
with simpler architectures.

As concluding experiments we systematically investigate the impact of the
parameter adapt delta (AD) of the NUTS-HMC algorithm, a critical variable
influencing the acceptance ratio of target samples. A higher AD results in a
more conservative step size in the sampler, thereby reducing the likelihood of
numerical errors during the integration process. Consequently, the sampler
takes smaller steps, potentially enhancing the robustness and accuracy of the
samples at the expense of increased computational requirements per effective
sample. The data depicted in Table 6 closely align with those observed in
Table 5. Also, the quality of our heuristics improved due to the adoption of
a more restrictive sampling approach, ensuring a balanced acceptance rate

27



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofNodes π [ σ ] MAE Age R̂ Neff

6 0.25 0.90 1.000 5916
6 0.5 0.93 1.003 2940
8 0.25 0.96 1.002 5709
8 0.5 0.91 1.002 3119
10 0.25 0.98 1.001 7260
15 0.25 0.96 1.000 9300
20 0.25 0.91 1.000 6618
25 0.25 0.93 1.000 7575

Fixed parameters: 1 hidden layer NN, priors on data and chains centered on 0 (W
and b), NUTS adapt delta parameter 0.95, NUTS max tree depth 14, 4 chains with 3000
samples (1000 as algorithm burn-in).

Table 5: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters. Third column: age mean absolute
errors. Fourth column: R̂ values for convergence diagnostics. Fifth column: effective
sample sizes.

that enhances both efficiency and reliability in posterior exploration.
In Table 7, we amalgamated the insights garnered from the current ex-

perimentation, incorporating longer sampling durations, deeper MTD explo-
ration, and more restrictive AD settings, particularly targeting configurations
comprising 6 nodes with varying prior ranges. This batch yielded some of the
most promising heuristics. As a succinct conclusion drawn from our current
experimentation, we present the following observations:

• Architectures and nodes : Higher layers didn’t always improve outcomes
due to increased complexity and inference challenges. Single-layer ar-
chitectures with a higher count of neurons can simplify the parameter
space and still capture complex patterns for our problem.

• Impact of prior width: Wider priors allowed broader exploration, while
narrower priors acted as stronger regularization. Restrictive standard
deviations generally improve predictions but seem to increase sensitiv-
ity in heuristics.

• Initialization: Distant initialization hindered convergence, while pre-
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6 0.25 0.83 1.000 6411
6 0.5 0.92 1.002 3104
10 0.25 1.05 1.000 7527
15 0.25 1.00 1.000 7931
20 0.25 0.86 1.000 7623

Fixed parameters: 1 hidden layer NN, priors on data and chains centered on 0 (W and b),
NUTS adapt delta parameter 0.99, NUTS max tree depth 13, 4 chains with 3000 samples
(1000 as algorithm burn-in).

Table 6: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters. Third column: age mean absolute
errors. Fourth column: R̂ values for convergence diagnostics. Fifth column: effective
sample sizes.

cise priors enhanced performance. A VI-based initialization technique,
meaning a better centering for our case, slightly reduced computational
times during our experimentation.

• Sample size and MTD : Doubling samples slightly improved heuristics,
while higher tree depth increased effective samples.

• Acceptance Denial parameter : Higher values restricted acceptance, af-
fecting sample acceptance ratio and the robustness of the sampling, at
the cost of increased computational times.

4.3. Best architecture and comparison with the state of the art
In this section, we compare the performance of our best model architec-

ture with the results reported in Moya et al. (2022), providing a rationale
for our design choices. Based on insights from prior experiments and the
outcomes summarized in Table 7, we identified σ = 0.25 and σ = 0.5 as
potential optimal parameters. To ensure robust statistical validation, we
conducted the prediction stage 10 independent times, allowing us to evaluate
the consistency and reliability of the results.

In summary, the optimal architecture identified consists of a single HL
with six nodes (utilizing six BNNs, each corresponding to a specific CC). The
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6 0.1 1.25 1.000 24061
6 0.25 1.05 1.001 8802
6 0.5 0.90 1.002 5873

Fixed parameters: 1 hidden layer NN, priors on data and chains centered on 0 (W and b),
NUTS adapt delta parameter 0.99, NUTS max tree depth 14, 4 chains with 6000 samples
(2000 as algorithm burn-in).

Table 7: Summary of experimental results and parameter configuration. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters. Third column: age mean absolute
errors. Fourth column: R̂ values for convergence diagnostics. Fifth column: effective
sample sizes.

parameters yielding the best results are presented in Table 8 and illustrated
in Figure 5. Even though σ = 0.25 tended to achieve better results during our
experimentation, we selected σ = 0.5 as the prior initialization width for the
winning architecture, as it provides the best balance among computational
cost, robustness, simplicity, heuristics, and performance outcomes. This was
achieved by using 6000 samples per chain, where 2000 samples were allocated
for burn-in and preconditioning of the sampler (with a total of 4 chains for
parameter space exploration). The parameters MTD and AD, which are
crucial for sampling, were set to 14 and 0.99, respectively. The winning
configuration parameters are summarized in Table 9.

This configuration achieved a MAE of 0.92 after ten training runs. The
heuristics ( Neff and R̂) for this architecture are plotted in Figure 5, showing
an average R̂ value of 1.003 with approximately 6500 effective samples per
parameter. The final predictions of this architecture are shown in Figure
4, which compares our results with the state-of-the-art HBM-MLR detailed
in Moya et al. (2022) for the same test set. Our results are comparable to
theirs, and our predictions align closely with their findings. Notably, for
most predictions, we achieved small uncertainties compared to their mean
value, with only one of the 23 stars exhibiting a larger uncertainty. This
discrepancy could be due to the chemical peculiarities of that star or poor
representation in the training set, which may have biased our prediction.

It is important to note that comparable results were achievable with
less restrictive parameters and the use of wider neural networks, which also
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6 0.25 0.91 1.005 6927
6 0.5 0.92 1.003 6531

Fixed parameters: 1 hidden layer NN, priors on data and chains centered on 0 (W and b),
NUTS adapt delta parameter 0.99, NUTS max tree depth 14, 4 chains with 6000 samples
(2000 as algorithm burn-in).

Table 8: Summary of final experimental results and parameter configuration. Best designs
from Table 7 (second and third row) [Average of 10 prediction cicles]. First column:
number of nodes of the NN architecture. Second column: standard deviations used to
define the Gaussian priors for inner NN parameters. Third column: age mean absolute
errors. Fourth column: R̂ values for convergence diagnostics. Fifth column: effective
sample sizes.

Parameter Value

HLs 1
Nodes 6
MTD 14
AD 0.99

µ and σ priors [0, 0.5]
Samples 6000 (2000)
Chains 4

R̂ 1.003
MAE Age 0.92

Table 9: Summary of the parameter configuration for the best BNN architecture obtained
during the experimentation.
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yielded good outcomes. However, we demonstrated that with appropriate
fine-tuning, good results could be achieved using simpler architectures.

In this work, we present an approach for stellar dating that achieves re-
sults comparable to those reported in previous studies (Moya et al., 2022).
The primary contribution of our approach lies in its ability to leverage neural
networks to model complex relationships within the dataset without the need
for manually designed empirical relations. This flexibility not only simplifies
the modeling process but also reduces the risk of oversimplification inherent
in manual modeling, which could otherwise lead to suboptimal models and
unreliable uncertainty estimates. Furthermore, our model demonstrates ver-
satility and adaptability, making it suitable for application to a wide range
of stellar types and astrophysical problems. For instance, it can be employed
to deepen our understanding of the evolution of stellar ages as a function
of galactocentric radius within the Milky Way (Viscasillas Vázquez et al.,
2022). Additionally, the model could be used for advancing our knowledge
of the intricate relationships between stellar parameters in the context of
magneto-gyrochronology, potentially refining the methods used to estimate
stellar ages based on rotational and magnetic properties (e.g. Mathur et al.,
2023b). This applicability underscores the model’s potential as a powerful
tool for addressing fundamental questions in stellar astrophysics.

5. Summary and conclusions

The outcomes presented in this paper affirm the successful formulation of
an effective and robust methodology for uncertainty quantification, specifi-
cally applied in the context of stellar dating. Optimal results were attained
through the adoption of single-layer architectures. While it is feasible to
achieve comparable outcomes using an HBM employing a solitary BNN with
six outputs (corresponding to each CC), such models often necessitate the
utilization of deeper and wider neural networks, thereby having the poten-
tial to exhibit pronounced multi-modality. While the incorporation of multi-
modal samplers could potentially address this challenge, our choice was to
focus on the reliability and versatility of the well-established Stan language,
which provides robust sampling techniques while allowing for customization
and adaptability.

As illustrated in Figure 6, the posterior distributions of our BNNs consis-
tently exhibit Gaussian-like shapes, suggesting the potential utilization of VI
samplers, such as ADVI, in scenarios prioritizing computational speed. While

32



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

0 2 4 6 8 10 12
Age (Ga)

0

2

4

6

8

10

12

P
re

d
ic

te
d

A
ge

(G
a) HBM-MLRs

HBM-NNs NUTS 1HL 6N

0 5 10 15 20
Stars

−2

0

2

4

A
ge

E
rr

or
s

(G
a)

HBM-MLRs

HBM-NNs NUTS 1HL 6N

Figure 4: Hierarchical Bayesian model result comparison. (HBM-MLRs:) architecture
whose probability relationships are modeled by multi-linear regressions, from Moya et al.
(2022). (HBM-NNs NUTS 1HL 6N:) [Best] architecture whose probability relationships
are modeled by NNs. The architecture consists of 1 Hidden Layer with 6 nodes and single-
output (x6 NNs), sampled with MCMC-NUTS algorithm. (Top:) Age prediction for the
23 test stars. (Bottom:) Age errors for the 23 test stars.
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Figure 5: From the best experiment configuration of the work, Table 9. Top: Distribution
of the probabilities of the MCMC-NUTS sampling heuristic of convergence Neff (Number
of effective samples). Bottom: Distribution of the probabilities of the MCMC-NUTS
sampling heuristic of convergence R̂ (Gelman-Rubin statistic).
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Figure 6: Example of posterior distributions for a weight matrix in one hidden layer, six
nodes neural network applied to a model with a single output, single CC (in this case
[Mg/Y]) prediction, (for better illustration, see figure 2). The figure shows the distribu-
tions of each weight (Wji) in the initial weight matrix, which represents the connections
between the input data and the hidden layer for the best experiment configuration (second
row of Table 8). Each distribution includes its mean and the 94% Highest Density Interval
(HDI). The distributions are organized from left to right and top to bottom, corresponding
to each of the four stellar parameters and their connections to the six nodes in the hidden
layer.
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the results obtained with VI algorithms are comparable during experimenta-
tion (mainly in multi-output NN) and, in some architectures, improvement,
we deliberately chose MCMC approaches in this study to prioritize a more
conservative approach. This preference is reflected in the selection of an MTD
sufficiently high to avoid chain saturation and restrictive ADs (e.g. 0.95 or
0.99). Conversely, the number of samples, set at 3000, proved to be adequate,
with a marginal enhancement in heuristics observed with additional samples,
particularly advantageous with a lower node count.

Our experimental findings underscore the effectiveness of employing generic
initializations for BNN parameters in our context. Assumptions such as
Gaussian distributions and centering priors at zero were made during the
selection process. These assumptions facilitated the exploration of optimal
standard deviations. Generally, initializing priors with small standard devi-
ations (0.25 or less), close to zero, yielded improved heuristics. This effect
was more pronounced with a higher node count.

In summary, single hidden layer architectures (with single output) with a
node count ranging between 6-25 (optimal heuristics/results ratio at 6 nodes,
superior heuristics with higher counts), coupled with stringent restrictions on
the prior initialization of weights and biases (standard deviation 0.25-0.5),
MTD set at 13-14, and AD at 0.99, led to our most successful outcomes.
This configuration enabled the presentation of a statistical-machine learning
hybrid model that achieved a MAE of less than 1 Ga in our testing sample.
We present a machine learning-based tool for stellar dating that achieves
results comparable to prior studies while eliminating the need for manually
designed empirical relationships. This approach streamlines modelling, re-
duces oversimplification risks, and ensures robust predictions with reliable
uncertainty estimates. Its versatility also allows us to apply this approach
to various datasets, including different stellar types, opening an opportunity
for improvement in this, and potentially other fields.

6. Future lines

Future work will focus on leveraging the developed algorithms to inves-
tigate the distribution of stellar ages as a function of galactocentric radius.
This analysis holds the promise of providing valuable insights into fundamen-
tal processes of galactic evolution, such as the Milky Way’s formation history
and the role of radial migration (e.g. Viscasillas Vázquez et al., 2022). By
integrating precise stellar age estimates with spatial distribution data, this
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extension aims to deliver a comprehensive characterization of age variation
across the galaxy.

Furthermore, we plan to explore the integration of gyrochronology and
magnetic activity indices for stellar age determination. Building on recent
work (Mathur et al., 2023b), which first combined these indices through lin-
ear relationships. While this approach demonstrated promise, it may also
introduce errors and biases due to its reliance on simplistic models. By em-
ploying our more flexible framework, we aim to mitigate these limitations and
develop a robust methodology for combining gyrochronology and magnetic
activity indices in a unified age estimation model.

This approach will not only refine stellar age determinations but also
create a versatile toolkit for stellar dating, encompassing a range of comple-
mentary techniques. Such advancements are expected to enhance our under-
standing of the evolution of stellar populations and the dynamic history of
the Milky Way.

On the other hand, future research in BNNs and uncertainty quantifica-
tion remains focused on addressing the persistent challenge of multimodality
(Wiese et al., 2023). Enhancing inference methods to better capture and
navigate multimodal distributions is a crucial aspect of this ongoing inves-
tigation. The current target aims to develop innovative algorithms that can
efficiently handle the complex parameter spaces inherent in neural networks,
seeking a balance between computational efficiency and the accurate rep-
resentation of uncertainty (e.g. Liu and Wang, 2016; Wilson and Izmailov,
2020; Durasov et al., 2020). Furthermore, there is a notable emphasis on
integrating domain knowledge and expert insights into the Bayesian frame-
work, providing more informed priors that can contribute to robust and inter-
pretable uncertainty estimates (e.g. Fortuin, 2021). Besides that, extending
the application of BNNs to diverse domains is a key frontier.

In addition, establishing standardized benchmarks and improving current
evaluation metrics will be crucial for evaluating the performance of BNNs
across different applications, to ensure that progress in the field is measurable
and reproducible. In summary, the dynamic landscape of BNN research
still revolves around tackling multimodality, refining inference methods for
better scalability, and broadening the applicability of these models to address
complex real-world challenges.
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Appendix A. Appendix Title

Appendix A.1. Single BNN with multiple output
This subsection focuses on the performance and behavior of a single BNN

with multiple output dimensions. By leveraging the inherent capacity of
BNNs to model uncertainty, we analyze the outcomes derived from our exper-
iments. The results highlight key observations regarding prediction accuracy,
uncertainty quantification, and the network’s ability to handle multi-output
scenarios effectively.

Teff

b

Log(g)

t

[Fe/H]

b

Mg/Y

Si/Y

Ti/Y

Zn/Y

Al/Y

Mg/Sr

W (weights matrices)

Input Layer

X
(Input Stellar 

parameters vector)

Number of stellar parameters (4)
Number of nodes (6)

Hidden Layers

b (bias vectors)

Output Layer

Node

Figure A.7: An example of a multiple-output architecture with two hidden layers, matching
the best BNN schematics used for multiple-output configurations during experimentation
(single NN for all 6 CCs). W and b represent the weight matrices and bias vectors, Orange
filled circles are the stellar parameters, (X) as input, and Blue filled circle are the CCs
output. The Dashed gray and Red lines illustrate the information flow within the NN
(representing the W matrices and b vectors).

The initial version of our HBM-NNs featured a single neural network that
outputs six values, each corresponding to an individual CC, Figure A.7).
This picture depicts the best schematic in multiple output configurations for
our problem. Parameters W and b represent the weights matrices and bias
vectors, respectively. In Figure A.7 the dashed gray and red lines depict
the information flow within the NN. Additionally, orange-filled circles are
the stellar parameters (X ) as input, and the blue-filled circles are the CC

52



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

outputs. This design choice aimed to streamline the architecture and reduce
the number of parameters entering the Bayesian model.

Increasing the number of HLs and nodes in BNNs enhances their capac-
ity to model intricate and complex patterns in data. However, this increased
expressiveness comes at the cost of significantly heightened complexity in
the parameter space. A higher number of nodes introduces additional sym-
metries in how the weights can be arranged, as multiple configurations of
weights may represent latent features in the data equally well. This sym-
metry further compounds the challenge, as the posterior distribution may
encompass multiple plausible explanations of the data. Consequently, new
modes emerge in the parameter space, contributing to multimodality in the
posterior distribution.

The proliferation of modes leads to a parameter space characterized by
numerous local optima, complicating the inference process. Such landscapes
make posterior exploration more difficult for traditional optimization and
sampling methods, as they can become trapped in suboptimal regions. This
increased complexity and multimodality result in greater uncertainty in pre-
dictions, making them more variable and less stable.

The inherently multimodal and high-dimensional nature of the param-
eter space in BNNs (e.g., Müller and Insua, 1998; Bishop, 2006; Izmailov
et al., 2021; Arbel et al., 2023) poses significant challenges for sampling from
their posterior distributions. This complexity arises from the interplay of the
non-linearities in neural network architectures and the prior assumptions, of-
ten resulting in posterior distributions with multiple isolated modes. While
MCMC methods are commonly employed for posterior inference, these algo-
rithms can struggle to adequately explore the parameter space. Specifically,
MCMC samplers may become trapped in a single mode, failing to traverse
energy barriers to explore other regions of the posterior. This limitation can
lead to incomplete mixing, slow convergence, and posterior estimates that are
biased or unrepresentative of the true distribution. Such inadequacies can
compromise the reliability of downstream analyses, producing heuristics or
predictions that fail to capture the full uncertainty encoded in the Bayesian
framework. Addressing these challenges requires either developing advanced
sampling methods tailored to the unique characteristics of BNN posteriors
or leveraging variational inference techniques as an alternative.

This issue represented a crucial point during our experimentation. Fig-
ures A.8 and 6 show an example of the posterior distributions of weights
matrices in BNNs used in this work, each illustrating different parameter
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spaces influenced by the complexity of the network. Both figures depict the
posteriors of each element in the first weight matrix, which represents the
connections between the input vector and the first HL nodes. Considering
the reasons outlined during this work, we aim to have parameter spaces as
monomodal as possible in order to have the information concentrated, im-
proving computational times and uncertainty. Even though our first iteration
presented complex parameter spaces with multimodality, due to the deeper
architecture (Figure A.7 ), we first opted for these approaches to avoid a
higher number of parameters in our Bayesian model.

Initially, to address this multimodality challenge, we implemented various
strategies, principally involving the imposition of narrower and centered pri-
ors, with a focus on the primary mode of the distributions for the weights and
biases. To achieve this, we trained an identical NN architecture as the one
in the Bayesian model multiple times, aiming to attain a configuration of W
and b with lower loss. Subsequently, these configurations were introduced as
homonyms priors in PyStan.

We determined that the optimal balance between prediction accuracy and
computational efficiency was achieved with a setup comprising two hidden
layers, each consisting of 6 nodes (Figure A.7) for the MCMC-NUTS sam-
pler and 10 for the VI-ADVI-based one. Leveraging the expressive capacity
of NNs, we successfully captured intricate relationships among stellar param-
eters, yielding results comparable to Moya et al. (2022) (for the same 23 test
set stars they achieve a MAE=0.86) while benefitting from automated learn-
ing. In Figure A.9 we present a comparison of the results obtained by these
two configurations. Both architectures achieve similar results, a MAE=0.88
for the NUTS case and 0.87 for the ADVI one.

While this approach yielded reliable results and heuristics, the constrained
nature of the priors has the potential to hinder the sampling of other modes,
particularly posing risks when encountering distant or disconnected modes
in this or other datasets. Moreover, this restrictive approach has a potential
adverse impact on computational times.

To achieve more reproducible and stable results we decided to start new
experimentation, this time focusing on monomodal distributions that let us
concentrate the information. This was the main reason we built a new ar-
chitecture based on 6 simpler NNs, one for each CC (Figure 2). Illustrating
this, Figure 6 shows a parameter space with very little multimodality. The
posterior distribution in this case is much less complex, suggesting a more
deterministic relationship between inputs and output. The near-unimodal
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Figure A.8: Example of posterior distributions for a weight matrix in a two hidden layer,
six nodes per hidden layer neural network applied to a model with six outputs, 6 CCs
prediction at once (for better illustration, see figure A.7). The figure shows the distribu-
tions of each weight (Wji) in the initial weight matrix, which represents the connections
between the input data and the first hidden layer. Each distribution includes its mean
and the 94% Highest Density Interval (HDI). The distributions are organized from left to
right and top to bottom, corresponding to each of the four stellar parameters and their
connections to the six nodes in the first hidden layer.
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Figure A.9: Hierarchical Bayesian model results comparison. (HBM-MLRs:) architec-
ture whose probability relationships are modeled by multi-linear regressions, from Moya
et al. (2022). (HBM-NN NUTS 2HL 6N:) architecture whose probability relationships are
modeled by one NN. The architecture consists of 2 Hidden Layers with 6 nodes per layer
and multiple outputs (6 CCs), sampled with the MCMC-NUTS algorithm. (HBM-NN
ADVI 2HL 10N:) architecture whose probability relationships are modeled by one NN.
The architecture consists of 2 hidden layers with 10 nodes per layer and multiple outputs
(6 CCs), sampled with the VI-ADVI algorithm.(Top:) Age prediction for the 23 test stars.
(Bottom:) Age errors for the 23 test stars.

landscape indicates a concentrated posterior distribution, meaning that there
are fewer alternative hypotheses about the best weight configurations. This
simplicity reduces the uncertainty in parameter estimation, leading to a po-
tentially more reproducible solution.
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 (Adapt Delta Parameters): A parameter in the MCMC-NUTS algorithm th

usts the step size dynamically to improve sampling efficiency. 

I (Automatic Differentiation Variational Inference): A computational

hod for approximating posterior distributions in Bayesian inference 

ng automatic differentiation to optimize variational objectives 

iciently. 

(Artificial Intelligence): A broad field of computer science focused

creating systems capable of performing tasks that typically require 

an intelligence, such as learning, reasoning, and decision-making. 

 (Bayesian Neural Network): A type of neural network that incorporat

esian principles to estimate uncertainty in predictions by learning 

bability distributions over model parameters. 

(Chemical Clock): A method used in astrophysics to estimate stellar 

s by analyzing the chemical abundances in a star's spectrum. 

(Deep Learning): A subset of machine learning that uses neural 

works with multiple hidden layers to model and solve complex pattern

 relationships in data. 

 (Graphical Processing Unit): A specialized hardware device original

igned for rendering graphics but now widely used in parallel computi

ks, including training neural networks and deep learning models. 

 (Hierarchical Bayesian Model): A statistical model that uses Bayesi

erence to represent relationships across multiple levels of 

ameters, often capturing dependencies in complex systems. 

 (Highest Density Interval): A Bayesian measure used to describe the

ge within which a parameter is most likely to lie, given the posteri

tribution. 

(Hidden Layer): A layer of neurons in a neural network that processe

uts received from preceding layers, extracting and transforming 

tures to be passed to subsequent layers. 

 (Interstellar medium): is the matter and radiation that exists in t

ce between the star systems in a galaxy. 

 (Mean Absolute Error): A metric used to measure the average magnitu

errors in predictions without considering their direction, often use

evaluate regression models. 

(Machine Learning): A subset of artificial intelligence focused on 

eloping algorithms that enable systems to learn from data and improv

formance without being explicitly programmed. 

 (Multiple Linear Regression): A statistical technique used to model

 relationship between a dependent variable and multiple independent 

iables through a linear equation. 
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(Main Sequence Star): A star that is in the longest stable phase of 

 lifecycle, where it generates energy through the fusion of hydrogen

o helium in its core. 

 (Maximum Tree Depth Parameters): A parameter in the MCMC-NUTS 

orithm that controls the maximum depth of the tree in Hamiltonian 

te Carlo sampling to avoid excessive computational cost. 

C (Markov Chain Monte Carlo): A class of algorithms used for samplin

m complex probability distributions, often employed in Bayesian 

tistics. 

F (Number of Effective Samples): A metric in MCMC that quantifies th

ective number of independent samples from the posterior distribution

ounting for autocorrelation. 

(Neural Network): A computational model inspired by the structure an

ction of biological neural networks, consisting of interconnected 

ers of nodes (neurons) used to approximate complex functions. 

S (No-U-Turn Sampler): A variant of the Hamiltonian Monte Carlo 

orithm that dynamically adjusts its trajectory to improve sampling 

iciency and avoid retracing steps. 

(Variational Inference): A method in Bayesian inference that 

roximates posterior distributions through optimization, offering a 

putationally efficient alternative to MCMC. 
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