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Abstract. Topological maps allow to work with simplified diagrams as
an abstraction of the environment. These maps lack scale but the rela-
tionship between points is maintained. In this work we propose a novel
method for robot localization based on the search for the structure of
the environment that the robot has visited during the navigation. From
the information extracted by the sensors on board the mobile platform,
our approach is able to extract information corresponding to the graph
structure of the visited area, such as the types of nodes, the detected
objects and their relative locations. In our proposal an evaluation func-
tion provides the probabilities that a detected path corresponds to the
different edges of the topological map. Experiments are conducted in a
real scenario where the topological map is available. Quantitative evalu-
ations demonstrate that the system is able to locate the robot even with
a non-accurate detection of objects.

Keywords: Assistive Robot · Topological Map · Node Classification ·
Object detection · Robot localization.

1 Introduction

Robot navigation within large-scale, semi-structured environments deals with
various challenges such as location about traversable spaces. This makes it harder
to deal with uncertainties that are present in the context of real-time robotics
applications. A topological graph, as defined by Simhon and Dudek [1], can
be of a great benefit in many robotic navigation-related tasks. This implies an
abstraction of the environment in which the important elements are defined along
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with the transitions among them. In complex real indoor environments, such as
hospitals, elderly care facilities and office buildings, the structure presents high
level of symmetry and usually consists of many corridors in which rooms are
distributed on both sides.

In this paper, we propose to build a topological representation in which key
entities correspond to detected objects and locations with relevant changes of
trajectory. More specifically, we introduce topological nodes for relevant changes
of direction, such as an end of aisle or a bifurcation, where several outlets are
possible. Each entity accessible from another entity is connected using an edge.
However, robot localization require more detailed information about the presence
of objects and their relative locations. Thus, objects are considered as references
in the topological map and we will refer to them as sub-nodes. According to
this structure, a route is specified by an edge or sequence of edges, where each
edge is defined by the classes of its terminal nodes and the relative positions
of certain objects with respect to a reference node. It is worth noting that in
complex, highly symmetric environments, we can find edges with a very similar
structure. Only the class of one of its terminal nodes or the relative positions of
detected objects can be crucial to differentiate similar edges.

In order to give high-level abstraction instructions to the robot, representa-
tions of the environment similar to the human mode of interpretation are needed.
In this context, it is not necessary to handle very precise metric information and
may not even be considered. More specifically, we propose a topological repre-
sentation using relative distances between objects of a complex scenario.

Figure 1 shows a block diagram of the proposed approach. The complete
process is performed automatically using the topological map of the environment
as input and consists of three main modules: 1) node classification based on
depth information, where nodes represent locations that involves a mandatory
or optional change of the robot trajectory, 2) estimation of relative position of
objects in the topological map from visual detection and tracking, and 3) local
evaluation in order to estimate robot localization in the topological map based on
nodes and sub-nodes information from the outputs of the two previous modules.

In summary, the main contributions of this work are as follows:

– We introduce a evaluation function to locate the robot. It allows to evaluate
the degree the similarity between the path followed by the robot and the
possible routes of the topological map. The function takes as inputs the
information extracted from nodes and sub-nodes in the path followed by the
robot and the topological reference map.

– We use the semantic information from the objects found by means of a
trained YOLO-v3 [2] based detector to automatically detect sub-nodes of
the topological map.

– Although numerous tracking algorithms can be found in the literature [3,
4], we introduce a novel approach adapted to our approach. We define a
tracking vector that takes into account both the evolution of coordinates
of the objects in the image plane and the robot movements from encoders.
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(a)

Fig. 1. Overview of the proposed system.

In order to establish the associations of objects, we have implemented an
efficient Support Vector Machine (SVM)[5]-based approach.

This paper is organized as follows. We start by an overview of related work
in Section 2. In Section 3, we describe the details of the modules of the complete
system. Results are presented in Section 4. Finally, Section 5 concludes the paper
and outlines future research.

2 Related Work

Navigation systems are based on metric, topological, and semantic maps, de-
pending on the level of abstraction of the environment representation [6]. In the
literature, a large variety of solutions to this problem is available. One intuitive
way of formulating SLAM is to use a graph whose nodes correspond to the poses
of the robot at different points in time and whose edges represent constraints be-
tween the poses. Regarding topological navigation, since the first developments,
the global conception of the system has attracted the interest of several authors.
Surveys of models for indoor navigation are provided by [7–9] among others.
Comparison of various graph-based models is provided in a very clear way in
Kielar et al. in [10].

In [11], a topological map based algorithm is described to explore and con-
struct the map of a unknown indoor environment. The features to close loop
are not described but authors state that is possible to localize the robot based
on them. In this case, eight nodes types are considered according to the outlets
in each node. Although panoramic representation is considered in some works
[12], we use standard 640x480 images to obtain features for localization and
navigation.
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Devendra et al. in [13] described a image-goal navigation solution with a
different proposal to ours. In fact, they avoid metric information to reduce the
challenge of precise representation. In this work they combine exploration with-
out an objective and navigating with a goal.

Inspired by the work [16] we detect nodes for the topological map and to
classify them into different categories regarding to the LIDAR signature.

3 Topological localization

The proposed topological localization method adopts a three-stage framework
based on the sensors on board the robot. The sensing part is composed of an Intel
RealSense D435 camera and a LIDAR. First, a node classification is performed on
the LIDAR signature, which provides depth information of the scenario in which
the robot is at any given moment. At the second stage, objects of interest are
detected and tracked to extract their relative positions. Finally, the third state
estimates the probabilities of occurrence of the possible paths of the network
according to the information generated in the previous states. In the following
subsections, we will describe the implementation of the above three modules.

3.1 Node classification

The first stage of the whole system consists of the extraction of nodes in indoor
environments. A previous work [16] is used for this task. Here nodes represent
relevant changes of direction, such as an end of aisle or a bifurcation, where
several outlets are possible. As depth information for node classification, we rely
on LIDAR scanning. Regarding to this criterion, common corridor structures
can be classified into four node categories:

– End node: there is no outlet at the front, neither from the left nor from the
right of the corridor.

– Node ‘T’: there are two outlets for the agent since the corridor presents two
lateral bifurcations.

– Node ‘L’: the path presents an marked change of direction.

– Cross node: the corridor presents three or more outlets.

The LIDAR signature feeds the input of our classifier whose output deter-
mines the node type. Because the efficiency of Support Vector Machines (SVMs),
we used this technique as base of our classification module. Figure 2 shows two
examples, where panoramic views and LIDAR signatures are represented. It is
important to point out that panoramic images are not used in the system and
are only included in the figure as a representation of the environment for a bet-
ter understanding. The green and red boxes show explorable (free space) and
non-explorable directions, respectively.
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(a)

(b)

Fig. 2. Examples of node signatures. (a) End node. (b) Node T.

3.2 Object Pose Estimation

Object pose estimation involves a previous visual detection and tracking of ob-
jects of interest. A YOLO network has been trained to detect the most common
objects in semi-structured indoor environments. In this work, we focused on the
following nine categories: window, door, elevator, fire extinguisher, plant, bench,
light box, firehose and column. Figure 3 summarises part of the process. In de-
tail, Fig. 3(a) represents the outputs of our YOLO network for three consecutive
images (from down to top) captured by the camera mounted on the mobile robot
during its movement (each detection is marked with its label and bounding box),
whereas Fig. 3(b) indicates the association obtained for three objects (a window,
two doors and a fire extinguisher) with the proposed tracking algorithm. As re-
sult of the object pose estimation, Fig.3(c) illustrates the scheme generated. In
this last figure, blue points represent consecutive positions of the robot in the en-
vironment and squares indicates different categories of objects (fire extinguisher
is shown in red, doors in green and window in purple). The grey line represents
the straight movement and the perpendicular black line is the position of the
objects in the topological representation.

The purpose of tracking algorithm is to establish possible correspondences
between objects of each pair of consecutive captures: frames i−th and (i+1)−th.
It is worth noting that tracking is applied independently for each category of
objects. We propose a novel tracking vector which considers both the object
information in the image and the odometry information from the robot encoders
in its motion. Thus, our tracking vector r = (r1, r2, . . . , r8)

T
encompasses the

following eight attributes:

– r1: distance travelled by the robot in cm between two consecutive captures.
– r2: angle rotated by the robot in grades. Since a significant change of di-

rection involves the detection of a new L-node, the movement between two
nodes should be approximately straight. This is the reason why we consider
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(a) (b) (c)

Fig. 3. Generation of the scheme for position estimation. (a) Consecutive input images
with detected objects from down to top. (b) Associated objects by the tracking algo-
rithm. (c) Resulting scheme for position estimation.

that the movement in an edge between two nodes should be approximately
straight and we only take into account those movements with angle lower
than a given threshold equal to 10 degrees.

– r3: coordinate xi of the centroid of the detected object by YOLO in the i−th
frame in pixels.

– r4: coordinate yi of the centroid of the detected object by YOLO in the i−th
frame in pixels.

– r5: difference∆xi of the xi centroid object between i−th frame and (i+1)−th
frame in pixels.

– r6: difference∆yi of the yi centroid object between i−th frame and (i+1)−th
frame in pixels.

– r7: increase ∆xi−1 of the previous displacement in pixels.

– r8: increase ∆yi−1 of the previous displacement in pixels.

The last two attributes r7 and r8 are denoted by the vector of displacement
d = (∆xi−1, ∆yi−1)

T , which represents the (x, y) movement in (i-2)-th and (i-
1)-th frames in the case of having a previous association. As a particular case,
the vector of displacement is set to (0, 0)T in case of initialisation of the tracking
object.
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In order to determine the possible correspondences, the system computes
the tracking vector for all pairings of the same class objects. A trained SVM
provides as outputs the correspondences between objects. With the aim of get
similar ranges for each vector component, the tracking vector is normalized.
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�

�
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Fig. 4. Object Pose estimation

The object position in the topological map is given as a relative distance with
respect to a reference node. Figure 4 shows an scheme for object pose estimation
in the topological map where N1 and N2 represent the terminal nodes of the
edge Ed, being N1 the reference node. Here A and B denote the poses of the
robot camera in the movement MAB . In the two consecutive captured frames,
the detected object O is projected in the plane image with angles β1 and β2,
respectively. The parameter α denotes the camera aperture, whereas de and dn
represent, respectively, the distances from the object to the edge and to the
reference node. In this work we only estimate the distance dn to determine the
order of appearance of the objects in the edge.

3.3 Local Evaluation

The purpose of this stage is to provide an automatic location of the robot based
on the node and sub-nodes information extracted at the outputs from previous
modules. Our goal is to find an efficient technique for computing the probabil-
ities of that the path travelled by the robot corresponds with each one of the
possible paths in the topological map, which is used as input. Thus, we propose
a evaluation function that provides the weights in each iteration and the highest
value weight determines the path that best fits the structure detected on the
route.

In this approach we consider the movement from a first to a second node,
where both nodes may not be adjacent as in the case of a route that passes
through P nodes. Taking into account node and sub-nodes information, which
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provides node types and relative pose estimation objects, we propose a weight
associated to the probability that the current movement corresponds in the ref-
erence topological map to the path that connect nodes α1 and αP with the
sequence of nodes {α1, α2, . . . , αP }. Thus, the number of edges in the path is
equal to P − 1. Each pair of consecutive nodes (αi, αi+1) will be evaluated if
the turning is compatible with the real movement with an error lower that ±10
degrees. The estimation of weight is given by:

Wα1,αP
=

1

2P
(f0 +

N2∏
i=N1

fie
−γ1doi ) ·

P−1∏
j=1

(fje
−γ2dαj +

Nj∏
i=1

fie
−γ1doi ), (1)

where Nj is the number of objects in the edge that connects the nodes αj and
αj+1, the terms dαj

represent the absolute distance differences between the anno-
tated nodes and detected nodes distances whereas the terms doi are the absolute
distance differences between the annotated objects and the detected objects. The
distance in the computation of doi is only considered if there is correspondence
between an annotated object and a detected object and both are of the same
category. For objects without correspondence the distance doi considered is zero
and in this case only the parameter fi comes into play. The parameters γ1 and
γ2 are constants to weight the distance differences between objects and nodes,
respectively. Finally, fj and fi represent penalty factors, which will be described
below.

The first part of the Equation (1) considers that the first node in a movement
may be not detected because the movement has begun in the middle of the edge
that connect the initial node α0 with the next α1. In this case, the sequence
N1 to N2 represents the list of objects considered in the first not complete
edge travelled (both the detected and the annotated). The constant 2P ensures
that the weight Wα1,αP

is within the interval [0,1]. The penalization factor f0
quantifies the discrepancy between the detected (Tdi) and annotated node types
(Tai) as:

f0 =

 1 Tdi == Tai
0.5 Tdi! = Tai and Tdi! = EN and Tai! = EN
0 Tdi! = Tai and (Tdi == EN or Tai == EN)

(2)

Here, EN denotes an End-node and this type of node suffers a higher penaliza-
tion because is more difficult to have an error in such node type.

As a particular case, if the first node of the first edge has been detected
(α0 = α1), we have (f0+

∏N2

i=N1
fie

−γ1doi ) = 2 and complete edges are considered
in the second part of equation (1). So, equation (1) is reduced to:

Wα1,αP
=

1

2P−1

P−1∏
j=1

(fje
−γ2dαj +

Nj∏
i=1

fie
−γ1doi ) (3)
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The parameter fj in the second part of Eq.1 and in Eq.3 has a similar purpose
to f0 and its evaluation is given by:

fj =

 1 Tdj == Taj and Tdj+1 == Taj+1

0.125 Tdj ! = Taj and Tdj+1! = Taj+1

0.35 others
, (4)

where Tdj is the detected node type for j − th node and Taj the annotated one.
When both ends have the same type fj = 1 and if both are different fj = 0.125.

Finally, the parameter fi quantifies the discrepancy between the detected
(Cdi) and annotated (Cai) object classes. For each non correspondence of class
we set a penalty equal to 0.8, so 0.8NC where NC is the number of objects with
no correspondence.

fi =

{
1 Cdi == Cai
0.8 other

(5)

In the implementation, the reference node must be taken into account for the
annotated object because in the detected path the reference node is always the
node where the robot came.

4 Results

In this section, the evaluation of the entire framework is presented. We have
worked in a structured building distributed over four floors, which in turn are
subdivided into four departments or areas. Figure 5(a) represents the occupancy
map of the considered scenario, which corresponds to one of the four departments
and covers an area of approximately 25×25 meters. The information included in
the occupancy map of Fig.5(a) is only presented for clarification. Objects here
are depicted with a certain colour according to their category. In addition, nodes
of the topological map are referenced by an index and represented by red square
points. The corresponding topological map is shown in Fig.5(b), where sub-nodes
corresponding to objects are omitted. As zoom of the edge between nodes 2 and
3, Fig.5(c) represents the topological map with the annotated positions of the
objects as sub-nodes of the edge.

In order to construct the reference topological map as input to the localiza-
tion algorithm, only the distance from objects to reference nodes and distance
between nodes are annotated. As as example of annotation of our test scenario,
Table 1 includes the corresponding information for the edge connecting nodes
4−→5 according to the nodes defined in 5(a). Each edge needs store its length,
the node types that it connects and the objects that can be seen while travelling
it. This information is encompassed in the following fields:

– Edge index: identifies the edge.
– Visualization flag: indicates if the object is visible when travelling from ref-

erence node to second one (’1’) or viceversa (’-1’), and ’0’ indicates that the
object is visible in both ways.

– Sub-node type: references the category of the object (’door’, ’window’, ...)
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(a)

(b) (c)

Fig. 5. Maps of the test scenario. (a) Occupancy map. (b) Topological representation.
(c) Objects associated on the Edge between Nodes 2-3.
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– Reference node: this information is included in order to get the distances to
the reference node.

– Distance dn: distance from the reference node to the normal projection of
the object onto the edge line (see Fig.4). If the object is before (in the way
back after the reference node) the distance is negative.

– Distance de: perpendicular distance from the object to the edge line (see
Fig.4). This value is positive when the object is on the left with respect to
the robot movement from the reference node and negative in the other case.
This parameter has not been used so far in this work.

Edge Visual. Sub-node Reference Distance Distance Detected Detected
index flag type node dn (m) de (m) class dn (m)

2 0 ’door’ 4 3 1.87 ’door’ 15.70

2 0 ’door’ 4 3 -1.87 – –

2 1 ’window’ 4 4.77 1.22 ’window’ 2.26

2 1 ’window’ 4 5.22 -0.19 ’window’ 4.66

2 1 ’window’ 4 4.77 -0.67 ’window’ 4.51

2 1 ’plant’ 4 4.4 -0.19 ’plant’ 2.71

2 1 – 4 – – ’plant’ 2.40

2 1 – 4 – – ’plant’ 15.70

2 -1 ’door’ 4 -0.55 -0.22 – –

Table 1. Example of annotation/detection of edge objects to build the topological
map regarding to the Fig.5(a).

By inspection Table 1, we can observe that according to the annotation there
are two doors visible in both directions, three windows and one plant that are
only visible from reference node to second node and a door that is only visible
in the direction from second node to reference node. In the last two columns we
report the objects detected by the system with respect to the annotation and
their estimated distance dn when the robot has followed the path 4−→5. Note
that perpendicular distance from objects to edges has not been considered in
this work and will be estimated in future works. As we can observe, the second
door is not detected by YOLO and the plant is detected as three different objects
due to certain disengagements of the tracking algorithm. Despite some errors in
the detection and tracking algorithms, as we will see later, the algorithm is still
able to locate the robot.

In order to validate the process of estimating the pose of objects, we consider
the triangulation of each pair of consecutive detected objects projected onto the
ground plane. The x-coordinates of both image points of the centroids of each
object detected by YOLO (x and x

′
) allows to determine easily the angles β1

and β2 (see Fig.4) from the camera’s angle of aperture α. The intersection of
coplanar rays back-projected from (x and x

′
) intersect at the object position O.

In this model, we assume the validity of the pin-hole model. As an example, Fig.6
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shows two consecutive captured images, where the x-coordinates of the detected
fire extinguisher have been translated to their corresponding angles. According
to the encoder readings, the pose estimation for the extinguisher relative to the
first robot pose is: x = 3.95 m and y = 0.62 m, whereas reference estimation by
manual measurements is: 3.98 m and 0.63 m. Unfortunately, pose estimation is
not always so accurate due to several factors such as the detection provided by
YOLO does not always match the bounding box of the object and noise in the
measurement of encoders.

Fig. 6. Example images for fire extinguisher pose estimation (0.5 m ahead).

Table 2 describes the process of evaluation of the location function, which
is defined by Eq.3 for the case in which the first node of the edge has been
detected. Specifically, the reported example corresponds to the path 4−→5, whose
annotation and detection data are summarized in Table 1 considering the value
of visualization flag equal to 1 according to the edge direction. For this example,
we have P = 2, since there is only one edge with two terminal nodes, and
the number of objects (annoted and/or detected) is N = 8, where 5 of them
showed a correspondence between annotated and detected objects. Here, the
classification of both terminal nodes (node 4 as Node-T and node 5 as an End-
node) is correctly performed and, in consequence, fj=1 = 1. Contributions of
each object with correspondence are summarized in columns 2 to 6 and the last
column includes the contribution of unmatched objects. Based on results of the
different sequences, we have adjusted the values of the parameters γ1 and γ2 in
Eq.3, respectively, to 0.005 and 0.1. On the basis of these contributions, the final
weight obtained for the analyzed edge is W4→5 = 0.72.

Nodes Object 1 Object 2 Object 3 Object 4 Object 5 Nc = 3

fj=1 = 1 fi=1 = 1 fi=2 = 1 fi=3 = 1 fi=4 = 1 fi=5=1 –

dnj=1 = 0.21 doj=1 = 12.70 doj=2 = 2.51 doj=3 = 0.56 doj=4 = 0.26 doj=4 = 1.69 0.83

Table 2. Example of evaluation of the location function for the edge 4→ 5.
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To test the behaviour of the proposed model, several sequences in our scenario
have been analysed, where each one of them correspond to a single edge in the
reference topological map. Each edge is defined from the path that goes from
the source node to the destination node. Thus, we have the following sequences:
sequences 2 −→ 3, 3 −→ 2 and 4 −→ 5. Each capture encompasses the frame
captured by the camera and encoder information considering that the increase
in distance between two consecutive catches is approximately 0.5 m. Images
are processed by YOLO detector and as examples we can see in Figs.7(a), 7(b)
and 7(c) the resulting detections for the first images of the three mentioned
sequences. The tracking algorithm is run to associate multiple detections of the
same object throughout the sequence. In Figs.7(d), 7(e) and 7(f) we can observe
the object tracking flow in blue for the last image of each sequence. Here, each
point represents the coordinates of the object in the sequential images during
the sequence.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Examples of results in the test scenario for the following sequences: 2 −→ 3, 3
−→ 2 and 4 −→ 5. (a,b,c) Visual object detection at the output of YOLO network for
the first images of the sequences. (d,e,f) Tracking flow of detected objects in the last
images of the sequences.

Table 3 summarizes the results for the three captures above mentioned. Each
one of them is defined by the edge from source node to destination node. In
addition, we report the edge corresponding to the highest weight that the system
provides in the evaluation of location function and the edge with the second
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highest score. Despite some losses in object tracking, we can conclude that the
algorithm is able to correctly estimate the robot location in all cases.

Detected Highest Closest to the Second Highest
Edge Edge Weight Detected Edge Weight

2 −→ 3 2−→ 3 0.69 4 −→5 0.61

3 −→ 2 3 −→ 2 0.40 4 −→ 6 0.38

4 −→ 5 4 −→ 5 0.72 2 −→ 3 0.53
Table 3. Results of evaluation with the location function.

5 Conclusions

A model has been proposed in this work for automatic robot localisation based
on the structure of the topological map of indoor environments. The evaluation
of the environment is based on a localisation function that compares the relative
position of objects and terminal node types detected by the system with respect
to the reference map annotation. The results of the experiments show that the
present method constitutes an efficient and accuracy system as a first approach
despite certain limitations of the object detection and tracking algorithms.

For future works, the system should integrate depth information from RGB-D
images to place objects in the topological map. Thus, the perpendicular distance
from objects to edges will considered in the location function in order to give
more accuracy results. In addition, other tracking algorithms will be tested in
order to improve the robustness of the system. Finally, the complete system will
be tested over longer routes in larger spaces.
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