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Abstract

Visual Semantic Navigation (VSN) is the ability of a robot to learn visual seman-
tic information for navigating in unseen environments. These VSN models are
typically tested in those virtual environments where they are trained, mainly
using reinforcement learning based approaches. Therefore, we do not yet have an
in-depth analysis of how these models would behave in the real world. In this
work, we propose a new solution to integrate VSN models into real robots, so
that we have true embodied agents. We also release a novel ROS-based frame-
work for VSN, ROS4VSN, so that any VSN-model can be easily deployed in any
ROS-compatible robot and tested in a real setting. Our experiments with two dif-
ferent robots, where we have embedded two state-of-the-art VSN agents, confirm
that there is a noticeable performance difference of these VSN solutions when
tested in real-world and simulation environments. We hope that this research will
endeavor to provide a foundation for addressing this consequential issue, with
the ultimate aim of advancing the performance and efficiency of embodied agents
within authentic real-world scenarios. Code to reproduce all our experiments can
be found at https://github.com/gramuah/ros4vsn.

Keywords: robotics; embodied agents; vision-based navigation; artificial intelligence;
reinforcement learning
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1 Introduction

Can a robotic agent navigate and interact in the real world as seamlessly as humans
do? This is the fundamental question driving research within the embodied AI commu-
nity. The problem is formally known as Visual Semantic Navigation (VSN), e.g [1–3].
However, mimicking human navigation is a challenging task for robots, particularly
in unseen environments, as it requires efficient exploration and a deep understand-
ing of the objects and structures within the space. For unknown scenarios, humans
can leverage prior semantic information achieved from previous scenes to navigate in
new environments, but it is still a challenging task to incorporate that knowledge into
embodied agents, especially in real robotic platforms navigating in the real world. The
potential of autonomous robots with these advanced navigation capabilities is vast,
ranging from assistive robots that can guide individuals with reduced mobility to spe-
cific locations, to platforms that can aid in complex environments such as search and
rescue operations or logistic centers.

Technically, in this work, we focus on embedding VSN models in real robotic
platforms. This is our main objective. We focus on the Object-Goal Navigation
(ObjectNav) [4] problem. As it is seen in figure 1, in ObjectNav task the agent
has to navigate from a random position to certain object goals present in the scene,
mainly using vision-based sensors. In contrast with traditional geometric navigation
approaches, where the navigation problem is solved typically by using a map or gen-
erating it on the fly (e.g. SLAM), VSN models are learning-based approaches that
use no metric map. Therefore, VSN solutions must learn visual representations of the
environment to reduce the exploration time and better generalize to unseen scenes and
object categories. Notably, many of these solutions combine reinforcement learning
(RL) and/or imitation learning (IL) strategies with recent advances in deep learning
models for visual perception to address the navigation problem in virtual environ-
ments, where embodied AI agents are trained and tested. However, we believe it is
crucial to thoroughly investigate how the latest solutions to the VSN problem perform
when deployed with real robots navigating in real-world environments. This is where
our work makes its most significant contribution. Although there are VSN works that
achieve near-human navigation performance, e.g [1], these systems are mainly trained
and tested in virtual environments, so how these models would behave in the real
world is still a question to answer.

In this work, our objective is to build true embodied agents proposing a new
solution for the integration of VSN models into real robots. The main contributions
of our work are as follows:

1. We first provide to the embodied agents community the ROS4VSN development,
a novel Robot Operating System (ROS) [5] based architecture that allows testing
and comparing different VSN models in real robots. Our ROS4VSN development
is model agnostic; thus, any VSN solution can be integrated into it with ease.
Section 3.1 includes all the technical details.

2. We also have embedded two state-of-the-art VSN models in two different robotic
platforms. The selected models have been PIRLNav [1] and VLV [3]. To achieve this
integration, it is necessary to make technical adaptations to the models so that they
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Fig. 1: ObjectNav task is a complex navigation problem. An agent needs to employ
vision-based sensors to navigate from a random starting point to specific object goals
within the scene. Many different hardware and software components need to be fully
integrated to solve it, making it difficult to deploy and test these visual semantic
navigation (VSN) models in real robots. Therefore, the best current solutions are
trained and tested in virtual environments. Our goal is to bridge the gap between
virtual and physical environments by providing a ROS-based framework that simplifies
testing and comparing various VSN models on real robotic platforms.

transition from interacting with observations provided by simulation environments
to observations from the real world. We detail all these technical modifications to
the models in Section 3.2.

3. Finally, we propose an experimental evaluation of the adapted VSN models, using
our ROS4VSN, with two different robots, in a real world scenario (Section 4).
The main question we want to address with the designed experiments is: Are the
state-of-the-art VSN models able to successfully operate with real robots? We have
measured their success rate in real world navigation experiments, which has allowed
us to analyze the difference in performance compared to those tests in simulation
environments, where embodied AI agents are typically tested. Our work shows that
these VSN solutions perform noticeably differently when evaluated in real-world
and simulated situations. With the ultimate goal of improving the performance and
efficiency of VSN systems in real robots, we hope that our work will help to provide
the groundwork for tackling this significant challenge.

2 Related Work

Visual Semantic Navigation. To navigate in unfamiliar environments, traditional
methods use depth sensors [6, 7] and RGB cameras [8, 9] to build geometric maps and
simultaneously determine the robot’s position in relation to the map. This is known
as Simultaneous Localization and Mapping (SLAM) [10–12]). Typically, these SLAM
models use heuristic algorithms to create graph-based representations of the environ-
ment, allowing the robot to visit the different nodes of the graph when navigating
to specific points. Semantic SLAM (e.g [13–15]) expands upon SLAM by integrating
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semantic data from the environment, allowing the robot to identify and store objects
in memory.

A recent approach, made possible by advances in machine learning and computer
vision, involves designing navigation policies that directly train deep neural networks
to learn semantic information from visual observations in an end-to-end fashion (e.g [3,
16–20]). This approach is termed visual semantic navigation (VSN). These models
often rely on the use of CNNs as visual encoders followed by RNNs; that are in charge
of predicting an action distribution directly from raw input observations. The neural
networks are trained using imitation learning (IL) or reinforcement learning (RL)
approaches.

When IL is applied to the visual navigation problem, navigation policies are learnt
from expert demonstrations (e.g [16, 17]). It can also be used combined with an RL
fine-tuning phase to achieve better performance [1].

Other works focus on the use of an end-to-end RL approach to solve ObjectNav
navigation [18, 19, 21–24] [25, 26] . Some authors have proposed combining the RL
training with different strategies, like auxiliary tasks [27], improved visual representa-
tions via object relation graphs [28], semantic segmentations [29] or combining audio
feedback with the visual inputs [30, 31].

Modular-learning based approaches [3, 20, 32–34] [2, 35–38] decompose the nav-
igation process in separate modules that execute different tasks. It is common for
these methods to be composed of a high-level semantic exploration module trained by
RL that indicates the agent subgoals that have to be reached by a low-level naviga-
tion policy. Modular learning can be also combined with offline RL [39] techniques to
leverage navigation behaviors from fixed datasets, without any additional online data
collection or fine-tuning.

Finally, there are different approaches that try to tackle the problem of rapidly
adapting to unseen environments in visual navigation via meta-learning [40–42]. These
methods are trained on a variety of different environments (usually designated as
tasks) and are able to generalize to unseen environments by learning a policy that can
be quickly adapted to new environments. And the recent progress in large language
models (LLMs) has led to the possibility of using them to solve the visual navigation
problem [43, 44] as well. In this case, the LLMs are used as a reasoning module in
charge of understanding the semantic information present on the environment. They
then share this information with different modules in charge of navigating to the
specified goal.

Our goal in this work is not to develope VSN approaches, but to integrate var-
ious state-of-the-art VSN models into multiple real-world robots by using our novel
ROS4VSN library. Technically, we have chosen to integrate the PIRLNav [1] and
VLV [3] models into two different robots. These integrations required several technical
adaptations, particularly in the areas of sensor data integration and navigation plan-
ning. Overall, we are able to show how ROS4VSN allows easily testing and comparing
different VSN methods in the real world. To the best of our knowledge, our work is the
first to develop a model agnostic ROS package for visual semantic navigation, where
multiple models can be integrated.
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Simulation-to-reality transfer in robotic navigation. Deploying a model
trained in simulation to a real robot is a challenging task. Due to logistical constraints,
training a model in the real world —especially with RL techniques— is often imprac-
tical, prompting the use of alternative methods to address this challenge For example,
Kim et al. [45] propose a monocular vision-based time-to-collision estimation for small
drones by domain adaptation of simulated images. Their method converts simulated
images into real-like synthetic images using a sim-to-real method. This is done with
the aim of minimizing efforts and time invested in the collection of training datasets
within real-world scenarios, while simultaneously maximizing the advantages inherent
in simulated environments.

Overall, it is necessary to develop methods that allow to efficiently transfer the
knowledge learnt in simulation to the real world [46]. Different approaches have
been proposed to solve this problem. For instance, CAD2RL [47] system achieved
remarkable success in training a collision avoidance policy entirely within a simulated
environment. This breakthrough was subsequently tested on real aerial drones, with
promising results. By focusing on simulation refinement [48], the accuracy of simula-
tions can be improved by exploiting the disparities between simulated and real-world
observations. In the field of locomotion, training legged robotic systems in a simu-
lated environment and subsequently transferring the acquired policies to real-world
applications [49, 50] has always been a challenging task.

For the problem of VSN, we have the study by Gervet et al. [51] that shows how
their approaches perform in real-world settings. However, we would like to highlight
the novel contributions that our work offers. First, while [51] focuses mainly on the
comparison of their navigation methods, we here, along with a similar study, release to
the research community the modular ROS4VSN software architecture. Our main goal
is to facilitate the prototyping of new VSN solutions on real robots. So, we offer a ROS-
compatible software architecture, model agnostic, that allows a simple integration of
different VSN approaches in ROS robots. In this way, future VSN solutions will be able
to be tested on real robots in a convenient and straightforward manner. Second, we
include in our study more recent VSN solutions than the ones reported in [51], as the
PIRLNav model [1], which defines the state-of-the-art for the ObjectNav problem.
Third, we also provide, for the first time, a detailed analysis on how a model directly
trained with real videos, such as the VLV [3], performs in real robots. This allows
us to compare, as in [51], how a modular-learning model (i.e VLV [3]), compares
with a typical end-to-end learning approach (i.e PIRLNav). Interestingly, our study
also concludes, like in [51], that modular-learning approaches perform better in the
real world. Fourth, in our study, we employed two different robotic platforms: one
commercially available and widely used by various laboratories, and another custom-
built. This demonstrates the versatility of the proposed solution, showing that it can be
integrated into different robots. And finally, in our work, we propose an experimental
evaluation specifically designed for testing in the real world, which can be employed
in future research studies. Overall, we hope that our ROS-based library will help to
further advance the field of visual semantic navigation in real robots.
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3 Methodology

In this research work, our main objective has been to efficiently integrate various state-
of-the-art VSN models on multiple robotic platforms. To fulfill our goals, the first
step of the proposed methodology has been to develop a ROS-based solution to ease
the integration of VSN solutions into real robots. It is crucial that the approach is
model-agnostic, allowing the integration of any VSN-designed model. We have named
this development ROS4VSN, and it is detailed in Section 3.1. Once the ROS4VSN
system is available, we need to select some state-of-the-art VSN models that will allow
us to experimentally evaluate them with real robots. In Section 3.2, we justify the
selected VSN models and detail the technical modifications made to integrate them
into ROS4VSN.

3.1 ROS4VSN: ROS for Visual Semantic Navigation

We have designed ROS4VSN library to be modular and flexible, so that it can be eas-
ily adapted to different robots and VSN models. It is built on top of ROS Noetic [5]
open-source robotic middleware, because of its flexibility, support, compatibility and
popularity among the robotics community. ROS provides a collection of useful tools,
libraries, and conventions to simplify the task of creating complex and robust robot
behaviors across a wide variety of robotic platforms, which makes it perfect for our
framework. We design the architecture of the framework, so it has three main capabil-
ities: it can receive and process information from the environment, infer actions using
an AI VSN model, and control the actuators of a platform to reach a specific navi-
gation goal. It makes it easy to integrate different VSN models, since it only needs
to replace the model with which the experiments are to be carried out. The architec-
ture is divided into the following main packages, each of which plays a specific role:
robot api, camera api, discrete move and visual semantic navigation. These packages
are connected to each other through ROS topics and services, and also to external
hardware devices: a camera (RGB + Depth) and a differential drive robotic platform.
Figure 2 shows a visual representation of the global architecture scheme, illustrat-
ing the connections between the different developed ROS packages and the hardware
devices.

3.1.1 Robot API

This package is responsible for controlling the actuators of the robot and sending
odometry information to the discrete move and visual semantic navigation packages
(depicted in figure 2). It is typically designed by the manufacturer of the robot,
so it can be different depending on the employed platform. In our particular case,
the development of the framework and experiments were done using two robots (see
Figure 8). First, a Turtlebot 2 robot, so the standard turtlebot2 [52] package is inte-
grated as robot api. Since the Turtlebot 2 expects the velocity commands in the
/mobile base/commands/velocity topic, we perform a remapping to the /cmd vel topic
from our discrete move package. Our second robot is known as LOLA2 [53]. We have
developed its complete robot api package to guarantee the compatibility with the rest
of ROS4VSN architecture.
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Fig. 2: Architecture scheme of the ROS44VSN framework. It shows the different
packages, topics and connections within them and the hardware devices.

In charge of the communication with the platform, this package is also respon-
sible for publishing the robot’s odometry information through the topic /odom
(odometry topic). This information is crucial for the visual semantic navigation and
discrete move packages. On one hand, the package discrete move uses this informa-
tion to adjust the velocity commands sent to the robot api package, achieving precise
and controlled movements. On the other hand, the visual semantic navigation pack-
age can use the odometry information to help infer the action to be executed by the
robot or to help a planner reach its destination.

3.1.2 Camera API

This package is responsible for capturing RGB and depth images from the camera.
It publishes them through the /camera/color and /camera/depth topics, respectively.
The camera used in our robots is the Orbecc Astra S, an RGB plus depth camera,
based on structured light technology. We have adapted the official ros astra camera
package [54] to be integrated in our ROS4VSN architecture. The modular design of
ROS4VSN allows it to be used with any other type of camera on the robots, simply
by adapting this Camera API package.

3.1.3 Discrete Move package

This package has been developed with the purpose of providing a precise and customiz-
able control of the robotic platform through discrete navigation commands. Note that
this is the way most VSN models interact with their agents (e.g [1, 3]). In embodied
AI, navigation in simulated environments is performed using discrete action commands
that agents execute to reach the specific goals: move forward (25 cm), turn left or
right (30 degrees), or stop. Our ROS4VSN package acts as a server to which clients
can request a set of discrete movements and configure the forward distance or turn-
ing angles. The package communications scheme is shown in detail figure 3. It is in
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charge of executing the actions requested by the visual semantic navigation package
and sending a response when the action is completed.

Set of navigation movements

The set of movements allowed by the package consists of the following actions:
turn left, turn right, move forward, move backward and stop. All the
actions are fully customizable in terms of distance and angle, except for the stop
action, which does not require any additional parameters since it just stops the robot.
This package has been designed as a ROS service, so the communication between
the visual semantic navigation package and the discrete move package is done syn-
chronously and bidirectionally. That way, the visual semantic navigation package can
wait for the response of the discrete move package when the action has been com-
pleted before sending any new action request. The discrete move server is in charge
of sending the right /cmd vel commands to the robot api package, so the robot can
execute the requested action and receive the /odometry topic information from the
robot api package. That way, it can calculate the movement done by the robot, and
stop the action when the requested action has been finished.

Embodied AI navigation environments, such as Habitat [55], are simulation envi-
ronments where there are no movement errors in the agents. However, our scenario
is the real world, with real robots. Therefore, ROS4VSN must integrate error control
strategies. To achieve this, the discrete move package includes two error correction
strategies: one for the turn error ϵturn and one for the move straight error ϵstraight.

The turn error is calculated in degrees as follows,

ϵturn = (αtarget − αcurrent) mod (360) , (1)

where αtarget is the target orientation and αcurrent is the current orientation of the
robot.

The move straight error is computed as:

ϵstraight = d−
√

(x− xinit)2 + (y − yinit)2 , (2)

where d is the displacement distance requested by the system, (x, y) encodes the
current position of the robot and (xinit, yinit) defines the initial position of the robot.
We consider a successful turn when ϵturn is less than 0.1 degrees and a successful
displacement when ϵstraight is less than 5 millimeters. Our ROS4VSN architecture
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Fig. 4: Acceleration and braking control scheme.

continuously measures these errors to adapt the rotation and displacement movements
of the robots, ensuring that they occur with the highest possible precision.

Acceleration and braking control

When developing a navigation system based on discrete commands, it is crucial to
implement appropriate braking and acceleration mechanisms to achieve smooth and
efficient robot navigation.

The package includes an implementation that combines a constant acceleration
until the desired maximum speed is reached, with a deceleration phase to stop the
robot.

The smoothness of the movement and the time needed to complete it depend on the
percentage of the path in which the robot is accelerating and decelerating, as well as on
the initial speed. By properly adjusting these parameters, a smoother movement and
a more efficient navigation time can be achieved. Figure 4 illustrates the total distance
that the robot must travel for a move forward (or move backward) command.
This distance is divided so that the robot performs the following phases: acceleration,
displacement at constant speed and deceleration. The instantaneous speed of the robot
is controlled so that during the first phase, there is a uniformly accelerated motion,
according to the following equation: v =

√
v2init + 2aϵstraight, where a is the desired

acceleration, vinit represents the initial speed of the robot, and ϵstraight encodes the
distance covered by the robot. Note that we must continuously read ϵstraight using our
ROBOT API, in order to dynamically adjust the speed. For the deceleration stage,
we employ an equivalent negative acceleration in the previous equation. With these
equations, we can progressively adjust the linear speed (v) that is sent to the platform
to obtain a smooth navigation.

Configuration parameters

The discrete move package includes the configuration file discrete move.yaml, where
the different parameters used for the execution can be modified. Table 1 shows the
configuration parameters and its default value.
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Parameter Default Value

Linear Velocity 0.3 m/s
Angular Velocity 0.5 rad/s

Acceleration and deceleration distances (move forward distance) / 3

Table 1: Configuration parameters of discrete move package.

3.1.4 Visual Semantic Navigation package

One of the main features of our ROS4VSN software is that it allows to easily integrate
different VSN models independently of the robotic platform used. To achieve this, it
is essential to be agnostic with respect to the software environment needed by the
particular VSN model, as each model may require different dependencies.

The goal of this package is to simplify the deployment of VSN models on real
robots, providing an efficient software structure for the execution of these methods. In
other words, it aims to facilitate the inference tasks of discrete movement actions that
these systems produce, using the state of the robotic platform. The state is defined
by the robot’s position in the real world, the information provided by its sensors, and
the action that was previously taken.

VSN models make decisions using mainly RGB images of the environment. How-
ever, some of them can also use additional information, such as the position and
orientation of the robot, or even depth images. Therefore, this package must be respon-
sible for: a) capturing all the information from the sensors and processing the obtained
data; b) inferring with the VSN models the next navigation action; and c) communi-
cating with the robotic platform to request the corresponding discrete motion. This
process is repeated iteratively, collecting new data, making inferences and executing
actions, until a stop condition is reached or an error occurs.

In our architecture, the package connects to the camera through the /camera
topic published by the camera api module, to receive the necessary RGB and depth
images. It also collects information from the robot’s odometry through the /odome-
try topic published by the robot api package. Furthermore, it acts as a client of the
discrete move package to send the actions determined by the VSN model and receive
confirmations about their execution. This package contains two additional submodules:
image preprocessing and odom processing.

Image Preprocessing submodule

This submodule is in charge of collecting and preprocessing the images from the camera
of the robot. These images are necessary for the VSN model to infer the appropriate
action. The package must be able to communicate with the camera in real time and
receive its information. This communication is done through the /camera/color and
/camera/depth ROS standard topics. Typically, depth images are taken using a time-
of-flight camera. This type of camera can lead to noise problems, including incomplete
data in certain areas of the image, noise on metallic surfaces, and the impact of scene
lighting on distance measurements. To address these problems, a temporal median
filter is implemented, so for a series of N depth images, its noise can be reduced by
discarding outliers.
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Odom Processing submodule

This submodule is in charge of collecting odometry information by subscribing to the
/odom topic (odometry topic), published by the robot api package. This odometry
information consists of two main variables: 1) robot position, that indicates the current
location of the robot with respect to its initial position; and 2) robot orientation, that
defines the current direction in which the robot is oriented in relation to its initial
orientation. Some state-of-the-art VSN models (e.g [1]) need to input these two sources
of information.

Module workflow

Our VSN package uses the image submodule and the odometry submodule to capture
the camera images and the robot odometry data. This information can then be passed
as input to a particular VSN model. Using the VSN model integrated in the package,
the next navigation action that the robot must execute is inferred. Once the action has
been determined, the package sends a message (request) to the discrete move server
to request the execution of the movement by the robot. After sending the request to
the discrete move server, the package waits to receive a confirmation message. This
message indicates whether the requested action has been performed correctly or if
some problem has occurred. If for some reason an action has not been completed
successfully, the server has been programmed to return False, which completely stops
the execution of the workflow. It is important to highlight that the workflow is repeated
until whether the stop action is inferred by the model, the time limit for the episode
is reached or the server responds with a message indicating some problem during the
execution.

A configuration file is provided (vsn.yaml) containing default values for the param-
eters of our VSN package. By modifying this file, one can easily change the navigation
target, the parameters associated with the median filter, or even the maximum number
of steps allowed to be executed during a navigation exercise.

3.2 VSN models

For this research work, we have decided to adapt and integrate into our robots two
state-of-the-art VSN models: PIRLNav [1] and VLV [3]. The first model, known as
PIRLNav [1], is a VSN approach that has been trained with a combination of imitation
learning and a RL fine-tuning. As of today, this model reports the best results in the
ObjectNav [4] task in Habitat [55]. The second model is the VLV approach [3], which
is a VSN model directly trained from YouTube videos. The VLV model makes use
of such videos to learn semantic cues for an effective navigation to semantic targets
in indoor scenarios. VLV is a modular learning solution that combines low-level and
high-level navigation policies.

These models are complementary in the sense that they are based on two
paradigms: a) imitation learning plus RL; and b) modular learning. This aspect will
allow us to study, in the experimental evaluation, which type of approach yields better
results in the real world. Note that we do not intend to retrain these models but rather
subject them to evaluation in the real world. We aim to analyze their generalization
ability for navigation outside simulation environments. It is precisely thanks to our
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ROS4VSN system that this can be done, as the technical modifications made to the
models will be oriented towards embedding them in a ROS-based system. Next, we pro-
vide a detailed description of the modifications and adaptations made to these models
so that they can be integrated into ROS4VSN and tested on real robotic platforms.

3.2.1 VLV

The first approach is known as Value Learning from Videos (VLV), developed by
Chang et al. [3]. VLV is a modular-learning based VSN model directly trained from
videos of real state agencies, taken from YouTube. In this type of video, a human
records, camera in hand, the properties for sale, showcasing all the rooms they have,
to generate a sort of virtual tour of the houses. Note that the videos used do not
have any type of information about the navigation actions that take place during the
recording, nor in what kind of rooms or what type of objects appear.

The VLV model leverages such YouTube videos to learn semantic cues for an
effective navigation to semantic targets in indoor home environments. This way, the
VLV model is trained to find in these videos a set of object categories. Technically,
the model uses pseudo action labels obtained by running an inverse model on the
navigation sequences. This inverse model is able to recognize the discrete movements
that each of the transitions of the different video frames involve. Then, the navigation
policies are learned following a reinforcement learning (RL) approach. VLV employs
Q-learning to learn from the video sequences that have been pseudo-labeled with the
actions. The learned Q-function, and the associated value function, implicitly learn
semantic cues for navigation. In other words, the model learns what images lead to
the desired category and what do not.

For our experiments, we had to embed the VLV model in our ROS4VSN archi-
tecture. See Figure 5a. Technically, we integrated the two navigation policies detailed
in the experiments in [3] that were tested in the virtual environment Habitat [55].
However, now, our goal is to implement them in a real robot in the real world.

This integration into our robots, using our ROS4VSN architecture, has consisted
of the following steps. First, a high-level policy that stores 12 images for each node in a
topological graph (obtained by rotating 12 times by 30 degrees each) is used. This high-
level policy uses the learned value function score over these 12 images, and samples
the most promising direction for seeking objects of a particular object category. VLV
needs an object detector output to produce the final score for these images. This way,
the high-level policy is equipped with a mechanism to seek the object once it has been
detected. Specifically, the detector we employ is the Mask R-CNN [56], which we had
to embed in our architecture as well. To navigate, this policy will use the following
discrete movements/actions: move forward 25cm, turn right 30◦ or turn left
30◦.

These movements are compatible with the developed discrete move package of
our ROS4VSN architecture. Once a main direction has been chosen, our approach
converts it into a short-term goal by sampling a location at an offset of 1.5 meters
from the chosen node's location, in the chosen view's direction. This is done using the
depth-camera and a low-level navigation policy that uses occupancy maps with a fast
marching planning [57] to execute robot actions to reach the short-term goal. These
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Fig. 5: VSN models integrated into our VSN-ROS.

two policies have been integrated into our ROS4VSN nodes, and with them, we get
the robot to explore the environment.

3.2.2 PIRLNav

The second model selected for our experimental evaluation is known as PIRLNav [1].
As of today, this model reports the best performance in the ObjectNav [4] task in
Habitat [55].

PILRNav is a VSN approach that has been trained with a combination of imitation
learning and a RL fine-tuning. The model uses behavior cloning (BC) to pre-train the
ObjectNav policy on a dataset of 77k human demonstrations, amounting more than
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Fig. 6: One of the 3D reconstructions of the HM3D-Semantics v0.1 dataset [58], used
to train PILRNav.

2370 human annotation hours, in the HM3D-Semantics v0.1 dataset [58]. This dataset
provides up to 120 different 3D reconstructions of houses all around the world (see
Figure 6 for an example of one of them). Once this BC is finished, a RL fine-tuning
is used following the DD-PPO approach [59]. The policy architecture used is a simple
CNN plus an RNN from [17].

In order to integrate PIRLNav into our ROS4VSN architecture, we had to perform
the following actions. See figure 5b. The original PIRLNav needs to receive as inputs
the RGB image that the agent observes, as well as the noiseless GPS and compass
information offered by Habitat simulator. GPS and compass Habitat sensor provide the
agent's current location and orientation information relative to the start of the episode.
In our case, because PIRLNav has to be integrated in a real robot, navigating in the
real world, we proceed to feed the model with the RGB images that are acquired by the
cameras in our robotic platforms. GPS information is obtained through the odometry
information provided by the robot. For the compass, we recover the relative orientation
analyzing all the robot’s turning movements. Note that these are not anymore noiseless
sensors, as the ones used in the simulated world in which the PIRLNav model was
trained. Fortunately, we did not observe any important impact on the performance of
the model, due to this loss of precision for these sensors.

PIRLNav is therefore integrated in the ROS4VSN architecture to control de nav-
igation of the robot as it has been detailed. For every captured image, as well as the
GPS+compass data, the model is able to determine the next discrete movement action
to be executed by our robotic platforms. The action space used for our experiments
with this model is: move forward 25 cm, move backward 25 cm, turn right
30◦, turn left 30◦ and stop. The original PIRLNav was also trained to produce
the discrete action look up and look down, since the simulated agent could tilt
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Fig. 7: Floor plan where the experiments were performed, indicating the 15 starting
positions used.

its camera. However, as it is observed in Figure 8, in our platforms these actions are
not possible. We decided to replace look up with a move backward action, and
look down movement with the move forward action. This choice is based on the
reasoning that, by raising the camera, more of the scene is captured; moving the robot
backward serves this purpose. Also, since lowering the camera provides a greater level
of scene detail, moving forward is considered the most appropriate choice to replace
the look down action. Finally, to prevent collisions between the robot and objects in
the scene, a procedure was developed that uses information from the depth image to
detect obstacles at a given distance. Note that PIRLNav does not need any low-level
policy as in the VLV model. The robot is controlled and navigates using only the set
of discrete actions provided by the ROS4VSN model.

4 Experiments

This section describes the experimental evaluation designed for testing our develop-
ments in the real world. The goal of our experimental evaluation is to answer the
following question: Are the state-of-the-art VSN models able to successfully operate
with real robots? We start with a detailed description of the experimental setup, where
the experimental conditions and the evaluation metric are explained. We then follow
with an analysis of the results obtained in the real world.

4.1 Experimental setup

One of the primary objectives of our work is to provide a comprehensive and clear
protocol for the experimental evaluation of state-of-the-art VSN models in real-world
scenarios using real robots. Our goal is for other researchers to carry out similar
experimental evaluations, using the same evaluation metrics, to facilitate comparisons
of how different VSN models perform in real-world navigation tasks. For doing so, we
propose the following experimental setup.

In a 75 m2 apartment, we define up to 15 random starting positions (see Fig. 7).
The apartment can be divided into three main areas: a bedroom, a bathroom, and
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a larger space that includes the kitchen, living room, and study area. This setting
contains all the object categories used to train the VSN models in the experiments,
such as chair, bed, plant, bathroom, monitor, table, and sofa. We encourage other
researchers to conduct their experiments in real-world settings that are similar in size
and characteristics, allowing the robot to navigate from at least 15 different starting
positions across multiple instances.

From these positions, the robot is tasked with navigating to various object cat-
egories. Consequently, one must conduct 15 navigation experiments for each target
category and measure the success of the episodes based on whether the robot reaches
the designated object category in fewer than 150 discrete actions and without any
collisions. This limit of 150 steps was chosen to establish a balance between the aver-
age size of the houses typically used in Habitat [55] and the apartment used in our
experiments.

For the evaluation metric, we propose reporting the success rate (SR) of the VSN
models as the percentage of episodes in which navigation is deemed successful. An
experiment is considered successful if the robot halts (when the VSN model samples
the action stop) and the Euclidean distance to the target object is less than one meter.

Note that our navigation experiment mimics the evaluation performed in the
ObjectNav [4] task, with the same metric. This is the standard experiment on which
most VSN models are compared and which currently defines the state of the art.

We have used two different robots for our experiments: a Turtlebot 2, and the
LOLA2 [53] platform. To do so, we had to embed our ROS4VSN in both of these
platforms. This can be easily done by adapting the robot api module described
in Section 3.1.1. Figure 8 shows the family picture of the robots invited to our
experiments. We mainly used the Turtlebot 2 for the navigation experiments in the
apartment described. The robot LOLA2 was also used in navigation experiments, but
in a different location, to test the stability of the developed system and to provide a
study that contains more hours of navigation, and on different platforms. Our intention
in using two different platforms has been to provide evidence of the generalizability of
our architecture, demonstrating that it can be tested on different robots.

When collecting information during the experiments, we developed a procedure
to record relevant data for each trial. This procedure stores the unique identifier for
each episode, the sequence of actions performed, and the category of object searched.
In addition, during the tests, qualitative information about the trajectory followed by
the robot was recorded. In particular, all the images observed by the robot during its
trajectories have been saved.

For the experiments, the following hardware-software setup has been used, as it
is shown in Figure 9. The modular architecture of the developed ROS4VSN system
was used to deploy it in a distributed manner. This architecture allows separating the
execution of ROS packages on different devices, as long as they are connected to the
same network. The robotic platforms were equipped with a laptop. This device was
used to establish the communication with the robotic platform and the camera by
executing the robot api and camera api packages. At the same time, the discrete move
package was executed to receive the actions to be executed by the robot. On the other
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(a) Turtlebot 2. (b) LOLA2 platform.

Fig. 8: Pictures of the robots used in our experiments.
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Fig. 9: Hardware-software architecture for the development of experiments.

hand, we used a workstation to run the VSN nodes, which was equipped with an i7-
1165G7 processor and an NVIDIA GeForce RTX 2060 graphics card. We provide code
to reproduce all our experiments at https://github.com/gramuah/ros4vsn.
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Models SR (Real World) SR (Virtual Environment)

VLV [3] 29.33% 39%
PIRLNav [1] 21.11% 65%

Table 2: Real world success rate against simulation.

4.2 VSN navigation results

We detail in this section the main results obtained during the navigation experiments
with our robots, including both quantitative and qualitative results.

Following the experimental setup detailed in Section 4.1, we have obtained the
following results. Remember that we provide in this study an analysis of the SR for
two state-of-the-art VSN models, running in a Turtlebot 2 platform. For every VSN
model, i.e VLV, and PIRLNav, we have measured their SR for the different object
categories they can navigate to.

Table 2 compares the performance obtained by VLV and PIRLNav approaches
when they are tested in the real world (i.e our experiments) and in a virtual envi-
ronment (i.e the experiments reported in their respective papers). The first thing we
observe is the difference in terms of SR. The SR for the PIRLNav model drops from
65% to 21%, while the VLV model loses ∼ 10 percentage points in this metric. One
of the conclusions of our study is that there is a considerable gap between the behav-
ior of these models in the real world and in the simulation environments in which
they are trained. This indicates that further research in this direction is needed. Inter-
estingly, the results obtained in our real-world experiments are not consistent with
the performance difference that already existed between the models in the simulation
environments: VLV is the winner in the real world! As we analyze in the discussion
section below (See section 4.4), we believe that this behavior is due to the impact of
the object detector that VLV integrates, but PIRLNav does not. While the difference
between VLV and PIRLNav SR in the virtual environments is of 26 percentage points,
in the real world this gap becomes of just 8 percentage points.

In the following, we analyze in detail the results reported by each of the models.
We start with the VLV model. Table 3 reports the SR for every of the target categories
used in our experiments. Chairs, tables, and sofas are the categories that are easiest
to navigate to. In analyzing various trials with the robot using the VLV model with
ROS4VSN, there were no successful outcomes from starting positions 10 and 12 (see
Figure 7). Additionally, only one success was observed from positions 1, 2, and 13.
Notably, our VLV implementation can reach most targets in under 60 steps.

Figure 10 shows qualitative results for four navigation experiments with the VLV
model. We provide five representative images of the navigation experiments. Two
successful and two unsuccessful cases are presented. In the first experiment (first row),
the robot quickly reached the Table, as the detector easily identified it in the images.
In the second experiment, the robot took a detour to the Chair because the detector
failed to detect it initially. The model predicted a point near the chair but out of view,
causing the robot to move closer only after it became visible. In the third and fourth
experiments, the robot started in a challenging position in front of a refrigerator. Due
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Object Goal Successful episodes SR Avg. number of actions

Chair 6/15 40% 30
Sofa 6/15 40% 65
Table 6/15 40% 42
Bed 3/15 20% 39
Toilet 1/15 6,67% 42

Table 3: VLV VSN experiment. We report the number or successful
episodes over 15, the corresponding SR per-object goal, and the
average number of actions taken to reach the target.

Fig. 10: VLV qualitative navigation results. The first two rows show two successful
cases, where the robot reached the target, while the last two rows show two situations
where the navigation experiment failed.

to noise in the depth image, the target point calculation was inaccurate, leading to
collisions with the wall in both cases.

We analyze now in detail the results reported by PIRLNav model. Table 4 shows
the SR obtained for the PIRLNav model integrated into our ROS4VSN architecture.
We detail the SR reported for every object category. The agent was able to more easily
locate the most common objects in the house, such as the chair and the monitor. The
abundant and well-distributed presence of these objects facilitated the agent’s work.
The model inferred the action stop on both objects a total of five times. Large objects,
such as the sofa and bed, showed slightly lower results. Although easily visible from
multiple locations in the dwelling, the presence of only one of these objects made it
difficult for the robotic agent to spot them. The number of times the stop action
was sampled for these categories was substantially reduced. With the toilet, we have
one of the most complex challenges in navigating the robot in this home. The robot
did not have full visibility of the toilet until it managed to fully enter the bathroom,
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Object Goal Successful episodes SR Avg. number of actions

Chair 5/15 33,33% 49
Monitor 5/15 33,33% 91
Sofa 5/15 33,33% 70
Bed 3/15 20,00% 97
Toilet 1/15 6,67% 61
Plant 0/15 0,00% 82

Table 4: PIRLNav VSN experiment. We report the number or suc-
cessful episodes over 15, the corresponding SR per-object goal, and
the average number of actions taken to reach the target.

having to pass through the narrow door without colliding. Finally, for the category
plant, the robot was not able to locate this category in any of the 15 attempts. Even
though the plant was visible on multiple occasions during navigation, the agent did
not manage to head towards this object. Overall, considering all the categories, the
SR for the PIRLNav model is of 21.11%.

To conclude our analysis of the PIRLNav model, we provide some qualitative
results. Figure 11 shows the navigation trajectories for four different experiments. We
provide five representative images of the navigation experiments. Two successful and
two unsuccessful cases are presented.

In the first experiment, the robot starts from the refrigerator and navigates through
the house until it reaches the sofa. This episode is carried out in 69 actions and ends
when the model infers the action stop in front of the sofa. The second experiment is
also a success story, but this time the robot starts navigating from the kitchen. The
robot leaves the kitchen and navigates to the nearest chair. This episode is performed
in 36 actions and ends with the stop action determined by the model. The third
experiment shows a case of navigation failure, where the robot targeting the plant hits
an obstacle. In this episode, the robot navigates for 61 actions until it hits the couch.
Despite visualizing the plant from far away, when trying to approach it, the robot ends
up crashing. In the last episode, another case of navigation failure is shown while the
robot was trying to make its way to the bed. As it can be seen in this episode, the
model had difficulty getting through the bathroom door without hitting itself.

We provide a video (see https://youtu.be/nD0JBWNCMGg) with more qualitative
results for both of the VSN models used in our experiments.

4.3 Stability analysis

In this section, we analyze the stability of the navigation solution proposed, showing
how it can robustly navigate a considerable distance, in two different robots and over
two different scenarios. The robots successfully navigated over more than 5 kilometers
in less than 38 hours in two dynamic environments. The robots operated without
direct assistance throughout the experiments, being automatically operated by the
VSN models integrated into our ROS4VSN software architecture.
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Fig. 11: PIRLNav qualitative navigation results. The first two rows show two suc-
cessful cases, where the robot reached the target, while the last two rows show two
situations where the navigation experiment failed.

Robot Time (Hours) Distance (km)

LOLA2 8 1.12
Turtlebot 2 30 4.10

Total 38 5.22

Table 5: Time spent and traveled distance
for both robots during the experiments.

4.4 Discussion

The main question we wanted to address with the designed experiment has been: are
the state-of-the-art VSN models able to successfully operate with real robots? This
implies knowing the SR that these models are capable of delivering when tested in the
real world, and not in the virtual environments where they were trained. Note that we
selected two VSN models that were originally trained with images of the real world.
Our intention was to reduce as much as possible the influence of domain shift, which
we know affects artificial intelligence systems. Our study confirms that there is still
room for improvement so that these models can achieve the same SR in real robots.
We expect, therefore, that our ROS4VSN library plays a fundamental role in this line
of research.

Analyzing the particular behavior of the models, we can provide the following
interesting discussion. The integration of the VLV and PIRLNav models within our
ROS4VSN architecture has proven to be successful. It has resulted in a mobile agent
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Fig. 12: Histogram of navigation actions sampled by PIRLNav model.

capable of navigating in closed environments autonomously, obtaining many experi-
ments where the robotic platforms reach the target class without complications and
following logical and direct trajectories. This navigation is comparable to that observed
within simulated environments. For the VLV model that integrates an object detec-
tor, we have observed that this fact has a significant impact on the agent’s navigation,
especially when it is close to the target class. Although the object detector does not sig-
nificantly affect the general exploration, its impact becomes crucial when the robot is
in the vicinity of the target. At this crucial stage of navigation, the object detector pro-
vides a significant advantage by guiding the robot to the target more effectively. This
explains the difference of performance we have observed between VLV and PIRLNav
in the real world.

In terms of qualitative aspects of navigation, we believe that the PIRLNav model
is better than the VLV model. Note that VLV, every time the high-level policy has
to make a decision, needs the robot to turn completely on itself, taking 12 captures
on which it will decide which direction to move forward. This can be observed in the
provided video. This feature slows down navigation, although it could be solved with
some specific hardware. In contrast, PIRLNav offers a more direct navigation experi-
ence. It is interesting to observe the type of action sampling that PIRLNav performs
while being executed on our robots. Figure 12 shows a histogram corresponding to
the distribution of navigation actions performed by PIRLNav. First, one can observe
that the look up and look down actions have hardly been selected. This allows us
to affirm that the impact of the adaptations we have made to replace these actions by
backward and forward movements, respectively, could hardly have had a considerable
impact on the final results. Second, the most popular actions, as they are the ones
that motivate the exploration of the environment, are those of advances and turns.
The stop action was sampled 31 times. This is a 0.2% as it is reflected in the histogram
provided. We believe that work should be done on solutions to increase the number of
times the stop action is selected, but to do so reliably.
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Finally, our study confirms some of the conclusions reported in recent works,
e.g [51]. Modular-learning models, such as VLV, perform better than end-to-end
learning approaches, e.g PIRLNav, when tested in the real world.

5 Conclusions

To conclude, we have presented a ROS-based framework for visual semantic navigation
named ROS4VSN that allows to easily test and compare different VSN models in
real robots. Using ROS4VSN, we have been able to embed two cutting-edge VSN
models into two distinct real robotic platforms. The chosen models are PIRLNav [1]
and VLV [3]. To seamlessly integrate these models, technical modifications have been
needed. These adaptations ensure a smooth transition for the models, enabling them to
shift from interacting with observations generated in simulation environments to those
obtained from the real world. We have also offered a thorough experimental evaluation
to showcase how these VSN approaches behave when navigating in the real world. Our
novel framework shows a robust stability, being able to run for a considerable distance,
in two different robots, without any human intervention. Our study and results show
that the performance of state-of-the-art VSN models is significantly lower in the real
world than in the virtual environments where they were trained. We expect that our
efforts will lay the foundation for addressing this significant challenge.
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[53] Nasri, N., López-Sastre, R.J., Pacheco-da-Costa, S., Fernández-Munilla, I.,
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