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Abstract: In this work, we propose the first study of a technical validation of an assistive robotic
platform, which has been designed to assist people with neurodevelopmental disorders. The platform
is called LOLA2 and it is equipped with an artificial intelligence-based application to reinforce the
learning of daily life activities in people with neurodevelopmental problems. LOLA2 has been
integrated with an ROS-based navigation system and a user interface for healthcare professionals
and their patients to interact with it. Technically, we have been able to embed all these modules into
an NVIDIA Jetson Xavier board, as well as an artificial intelligence agent for online action detection
(OAD). This OAD approach provides a detailed report on the degree of performance of a set of daily
life activities that are being learned or reinforced by users. All the human–robot interaction process
to work with users with neurodevelopmental disorders has been designed by a multidisciplinary
team. Among its main features are the ability to control the robot with a joystick, a graphical user
interface application that shows video tutorials with the activities to reinforce or learn, and the ability
to monitor the progress of the users as they complete tasks. The main objective of the assistive robotic
platform LOLA2 is to provide a system that allows therapists to track how well the users understand
and perform daily tasks. This paper focuses on the technical validation of the proposed platform and
its application. To do so, we have carried out a set of tests with four users with neurodevelopmental
problems and special physical conditions under the supervision of the corresponding therapeutic
personnel. We present detailed results of all interventions with end users, analyzing the usability,
effectiveness, and limitations of the proposed technology. During its initial technical validation with
real users, LOLA2 was able to detect the actions of users with disabilities with high precision. It
was able to distinguish four assigned daily actions with high accuracy, but some actions were more
challenging due to the physical limitations of the users. Generally, the presence of the robot in the
therapy sessions received excellent feedback from medical professionals as well as patients. Overall,
this study demonstrates that our developed robot is capable of assisting and monitoring people with
neurodevelopmental disorders in performing their daily living tasks.

Keywords: assistive robot; human–robot interaction; neurodevelopmental disorders

1. Introduction

Our lives have become more accommodating and improved as technology advances
rapidly, and these changes affect people from all walks of life. Besides improving general
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aspects of human life, some research teams also focus on improving the quality of life for
people with functional diversity. These advances are intended to benefit these individuals.
In recent years, advances in robotics and artificial intelligence (AI) have allowed social
assistive robots (SARs) to become increasingly capable of helping and assisting humans
in a variety of different environments and conditions. As outlined in [1], SARs are robots
that provide assistance through social mechanisms rather than physical ones. A number of
studies have been conducted on SARs and the interaction between humans and robots in
relation to cognitive and social skills [2–5].

In 1988, the first documented robotic-assisted surgical procedure was performed with
a robotic arm and a computerized tomography (CT) scanner for a CT-guided brain tumor
biopsy [6]. Since then, technological advancements have greatly increased trust in robot
capabilities and they have helped people with both their mental and physical needs [7–10].

Generally, SARs are utilized for the following purposes: caring for humans, performing
domestic duties, carrying out human tasks or assisting in the performance of human tasks,
enhancing education systems, and assisting in the provision of medical care. Based on
Dawe et al.’s [11] analysis, social robots are primarily companions, providing pleasure,
entertainment, role models, buddies for playing and learning, and coaches for providing
information and demonstrating exercises.

As part of the development of SARs, one of the focus areas is the provision of assistance
to people with neurodevelopmental disorders (NDDs) with their activities of daily living
(ADLs). It is estimated that 74% of Spanish citizens, older than 6, with disabilities have
difficulty performing ADLs [12], and prevalence rates of NDDs range from 4 to 13% in
school-age children depending on the country [13–15]. These difficulties often continue
into late adolescence and adulthood [16], so it is important to assist them in overcoming
their limitations and learning or reinforcing their skills in performing ADLs. According to
Pivetti et al. [17], children with NDDs can benefit from interacting with and learning from
robots in a more engaging and social way. It was found that SARs assisted kids in attaining
learning objectives, engaging in learning activities, and interacting with others as a result
of this study.

In this work, we propose the first study of a technical validation for an assistive robotic
platform, which has been designed to assist people with neurodevelopmental disorders
in enhancing ADL learning. This platform is referred to as LOLA2 and it is based on an
artificial intelligence application that is intended to support the learning and reinforcement
of daily living activities by people with disabilities. Figure 1 shows an overview of the
action monitoring process with LOLA2 and users with NDDs. Our robot is equipped with
an online action detection module, which allows real-time monitoring of the actions that
users are performing during interventions with the platform. Those with NDDs of all ages
can benefit from this work in learning or reinforcing their daily living skills. Our robot is
equipped with an intuitive graphical user interface that enables users or their responsible
professionals to choose the ADLs they wish to learn or practice. Upon activating the
AI-based action detection application, they can begin performing the requested action in
front of the robot. A report containing the details of the action monitoring process can
be reviewed by the responsible professional following each session to assess the user’s
progress. The main contributions of this paper are:

• We introduce the novel robotic platform called LOLA2. It is an improved version
of our previous assistive platform LOLA [18]. Section 3 details all the technical
improvements made.

• For the robot, a user-friendly graphical interface is designed and developed to enable
efficient human–robot interaction (see Section 3.2.2). Its objective is to interact with
individuals with NDDs and to assist in their therapy sessions to reinforce activities of
daily living. Based on artificial intelligence techniques, we have embedded in LOLA2
an online action detection module designed for monitoring ADLs, which is detailed
in Section 3.2.3.
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• This work presents in Section 4 the first technical validation of the technology pro-
posed with a set of four real final users with NDDs. The results confirm that our
developed robot is capable of assisting and monitoring people with NDDs in perform-
ing their daily living tasks.

RGB
C3D

Brushing Teeth

Classification

RGB frames

AI-based Action Detection

Patient LOLA Report Health Professional

Figure 1. An overview of the action monitoring process with LOLA and users with NDDs. The patient
should be placed in front of LOLA, the AI-based monitoring action model should be activated, and a
report with information regarding the patient’s performance during the session will be generated
and sent to the health professional in charge.

This paper is organized as follows—Section 2 reviews the literature on technological
solutions for assistive robots and action detection applications. We present our assistive
robot in Section 3 as well as the system for monitoring action applications based on artificial
intelligence. In Section 4, experimental validation and results are presented and discussed.
Finally, in Section 5, we conclude with some conclusions and suggestions for future lines
of work.

2. Related Work

SARs have gained importance in the last decade and have demonstrated a variety of
benefits and various spheres of life have been influenced by this. A variety of studies have
been carried out in SARs, such as those investigating reductions of pain and anxiety as a
result of hospitalization [19,20], consumption of meals [21], housework [22], monitoring
the user’s health [23,24], teaching language skills [9], and reducing social isolation and
improving well-being through social interaction with the user [1,25,26].

For children with NDDs, it has been proven that they experience difficulties taking
care of themselves, playing, and moving, as well as thinking socially [27–29]. Gelos-
mini et al. [30] have determined that the use of robots will allow them to improve their
quality of life, encourage human–human interaction, and develop social and cognitive skills.

In light of our robot’s ability to assist socially as well as monitoring actions, we have
divided the related work into two parts.

2.1. Social Assistive Robots

A number of assistive robots have been shown to be effective in treating children with
NDDs, according to [31], such as Troy [32,33], FACE [34], IROMEC [35], KASPAR [36–38],
Lego Mindstorm [39,40], and NAO [41]. Designed to evoke one or more specific behaviors
in children, each has a unique look, design element, and interaction technique. In addition,
children with NDDs are particularly drawn to technological devices [42], and the presence
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of SARs in therapy can help them become more interested in getting treated and gain
confidence and independence in their life [17].

The presence of SARs and their benefits in rehabilitation have also been the subject
of several studies focusing on the robotic–human interaction [1,43]. Rehabilitation can be
exhausting, painful, and difficult as its exercises must be performed according to specific
guidelines. Previous works [44,45], which studied interaction with a SAR over short-term
periods of time, suggest that including SARs into a practice that requires repetition may
increase patients’ motivation. In some works [46,47], healthcare professionals have been
surveyed to determine their perceptions of SARs and their use in therapy and rehabilita-
tion, and their results suggest that SARs can be used to increase engagement, motivation,
and compliance. Another study investigating the effectiveness of SAR feedback for rehabil-
itation showed that sessions with users using SARs enhanced task performance [48].

We have developed our robot based on all previous studies to assist in the rehabilita-
tion and therapy process for people of all ages and with varying levels of NDDs so that
healthcare professionals can track their improvement during the process.

While most SARs are expensive commercial platforms adapted for use with assistive
objects, they are not accessible to a wide range of people of varying income levels [41,49–51].
However, our assistive robot is a low-cost model specially designed to assist individuals
with NDDs in learning and reinforcing ADLs, and is integrated with an AI module for
monitoring daily living activities [18].

2.2. AI for Monitoring ADLs

In essence, AI-based monitoring activities systems rely on action detection modules,
which detect and recognize a specific sequence of sub-actions associated with a particular
activity. This can be accomplished in a number of ways, including extraction of descriptive
information from the environment accompanied by estimation of the human posture [52].
Sensor-based recognition is another popular method of detecting actions, which uses an
algorithm to detect defined actions based on sensor information [53–55]. Although these
methods have high accuracy, they are limited in terms of their ability to adapt to new
actions with different objects as a result of the complexity of sensor placement and the
possible requirement for additional sensors.

Alternatively, a vision-based method can be used for action detection, where a cam-
era is used to capture action information. The modules integrated into PHAROS [7],
RoboPhilo [56], NAO [57], and Gymmy [26] robots can be examples of vision-based meth-
ods to monitor activities. The systems mentioned above, however, are designed for the
purpose of exercising and they do not include the daily activities upon which our work
is based.

A number of studies have proposed a system of action monitoring that includes activi-
ties that are more similar to those that are performed on a daily basis [58–60]. As most of the
proposed systems detect actions offline, the entire video must be fed into the action recog-
nition model to determine when and where the specific actions have taken place [61–63].
The concept of early action detection has also been proposed, by which the action label of
an action video is predicted prior to the end of the current action execution [64,65]. Based
on the assumption that there is only one action instance in the video stream, the start and
end frames are determined once the action has ended. Therefore, they are not suitable for
monitoring actions according to our objectives, and we have chosen online action detection
systems that are capable of detecting actions as soon as they occur. In the field of online
action detection, few studies have been conducted [66–69], and the majority of those studies
do not explicitly distinguish action from background [70]. This is why we have returned to
our previous approach that can explicitly distinguish action from background [18].
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3. Human-Robot Interaction Application for the Reinforcement of ADLs
3.1. The Assistive Robotic Platform: LOLA2

LOLA [18] is a low-cost mobile assistive robotic platform, which has been equipped
with several sensors that allow it to navigate autonomously through the environment and
interact with the users.

As we described in our previous work [18], the internal structure of LOLA is con-
structed from wood and metal, and the outer shell is entirely constructed from 3D printing.
The entire mechanical and electrical design of the platform has been conceived by our
research team. For more specific details about the main technical features of this differential
wheeled robot, we refer the reader to [18].

For this research work, we have made some improvements with respect to the previous
version. LOLA2 now integrates a new NVIDIA Jetson Xavier processing card. Contrary
to the previous model, where we integrated a NIVIDA Jetson TX2. The Jetson board acts
as an embedded Linux computer, capable of providing robotic platforms with the same
level of functionality as a desktop computer. The Jetson Xavier, which we use for this
project, is equipped with a Volta GPU with 384 CUDA Cores and 48 Tensor Cores, 8GB
of RAM, and a 64-bit CPU Carmel ARM. This change in the Jetson processing board has
been motivated by the need to increase the computing capacity of the platform. This
has been necessary due to (1) the resources consumed by having a Robotic Operating
System (ROS) [71] embedded in the system for all robot control; (2) the need to implement
faster AI models for action recognition and navigation; and (3) the integration of the novel
human–robot interaction applications specifically designed for the interventions with users
with neurodevelopmental disorders. Other design improvements have been applied to the
platform to obtain this new version: changes in the position of the sensors, elimination of
ultrasonic sensors, and design changes in the casing. LOLA2 integrates a new vision sensor
too. It is an Intel RealSense camera to receive high-quality RGB images, which are fed to
our online action detection module. Figure 2 shows both versions of LOLA.

(a) (b)
Figure 2. Graphical comparison between version 1 (a) and 2 (b) of LOLA. Novel sensors, design
improvements, and a novel NVIDIA Jetson Xavier board have been integrated into LOLA2 (b).

3.2. Human–Robot Interaction Application: Software Description

This paper describes a process of applied science in which our robotic platform
interacts with both the healthcare personnel who must operate it and the end users of the
platform. For this research, therefore, we have had to develop a complex human–machine
interaction system, which is detailed in this section.
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As is shown in Figure 1, the main objective with LOLA2 consists of the development
of an AI application for the reinforcement of ADLs for users with neurodevelopmental
disorders. It has therefore been necessary to provide LOLA2 with an interface to efficiently
control its movement, as well as to develop a graphical user interface that allows efficient
interaction with patients and healthcare professionals.

3.2.1. ROS Integration and Navigation Interface

Robot LOLA2 has been fully integrated with ROS [71] (Melodic version). The whole
robotic platform, including all its sensors, is controlled via ROS. In addition, to provide the
platform with advanced navigation capabilities, it was decided to use the ROS navigation
libraries. Figure 3 shows the complete ROS nodes architecture we have embedded in LOLA,
mainly using Python. Blue nodes represent distributed software ROS packages, and yellow
nodes are those ROS nodes entirely developed by us to integrate ROS into our platform.

Hardware
 Interface

Arduino

Motors

Diff_drive_
controller

Vel commands

Actual encoders and 
real velocity

Move_base

Odometry and 
transform information

Global Costmap Local Costmap

Global Planner Local Planner
Wheel Vel 
commands

ACML

Estimated
 position

RPLIDAR

Initial Position
(RVIZ)

MAP 
SERVER

Map

Desired Goal 
Position
(RVIZ)

RGB 
CAMERA

Online 
Action

 Detection

Image

Figure 3. ROS Melodic architecture embedded in LOLA2 platform. Blue nodes represent distributed
software ROS packages and yellow nodes are those ROS nodes entirely developed by us to integrate
ROS in our platform.

Recall that the ROS system is fully embedded in the NVIDIA Jetson board of LOLA2,
communicating with an Arduino board that is in charge of the control of the motors and
wheels. The ROS Navigation Stack, which is the backbone of the navigation system, receives
input from the following sources: a map from the map server, odometry from the wheels,
LIDAR data, and an estimated position, in this case provided by the Adaptive Monte
Carlo Localization (AMCL) package. RVIZ can be used as the user interface. The visual
environment provided by this ROS package shows the map and the estimated robot
position. The user can direct the robot to move to a specific place while defining yaw
rotation, as well as give it an initial position to assist it localize itself. The move_base
core package (see Figure 3), which creates the linear and angular velocity commands
required to move the robot to the appropriate place, will receive ROS messages from
RVIZ. The information about any new potential obstacles, the odometry, and the projected
localization are all continuously updated for all these commands and their parameters.
We created the Hardware Interface package to fully integrate ROS into our robotic platform.
It translates ROS commands to the Arduino board and provides signals back to the ROS
system in the precise format required to complete the communication loop with the Arduino.
The developed libraries for establishing serial port-based communication between the
platform’s engines and ROS are included in the Arduino package in Figure 3. We have
specifically created a communication protocol with commands that enable us to read the
data from the encoders and to produce a series of speed directives to be sent to each wheel.

Finally, for enhancing the robot’s movement, as well as the usability of the platform,
we have incorporated a joystick (Logitech gamepad F710) to enable professionals and users
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to more precisely control the robot’s displacement. With a Directional Pad or Thumbstick,
the joystick can be used to navigate the robot in four different directions, depending upon
the user’s position.

3.2.2. Graphical User Interfaces

Our assistive robot application was developed with a user-friendly graphical interface
that includes distinct sections; see Figure 4. It is the responsibility of healthcare professionals
to manage the interface shown, but it can also be managed by users who are cognitively
capable of making their own decisions and taking control over the application. Any process
of reinforcement of an activity of daily living requires the following steps:

1. Configuration step: The healthcare professional selects a user (identified by an ID)
and particular action for the monitoring.

2. Activity observation: The user watches a video of the chosen action.
3. Activity monitoring: The user is encouraged to replicate the observed action, and the

AI online action detection module starts the automatic monitoring of the performance.
The software also provides the option to generate a report of the performance of the
user during therapy sessions.

The user ID, as well as the action that we want the user to perform, can be selected
from the main menu of the application (see Figure 4a). Once the configuration step has been
completed, the final users must watch an example video of the chosen action. This phase is
started with the button in Figure 4b. For this research work, our team had to record for each
of the actions of interest, up to four videos, along with step-by-step sub-action instructions
for achieving the final objective of that action. Figure 5 shows some examples of two actors
performing some of the actions of interest. All this dataset of videos is integrated into
LOLA2 along with the application. When the professional selects an action to work with,
one of these sample videos is randomly presented to the user. This option illustrates and
instructs the user on the steps involved in taking a daily action. Then, the user may begin
performing the chosen action in accordance with the observed video. Once the user is
ready to carry out the requested action, the activity monitoring step will be activated by
professionals. An AI-based online action detection (OAD) system is integrated to monitor
the user’s actions, as detailed in the following section. The developed application allows
the generation of a report containing a detailed log of the entire work session with the
patient. In particular, the log file can be used to obtain the following statistics: How much
time has the user spent on certain tasks or actions? What actions are carried out in certain
time slots? Have been the actions correctly performed?

Start Configuration Exit

(a)

Activity Observation

Start Monitoring

Exit

(b)
Figure 4. Different options in the developed graphical user interface for action monitoring. (a) gives
options to specify the user ID and the actions to be monitored. There are options to choose from for
observing and monitoring the action in (b). (a) Main menu. (b) Action monitoring options.
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(a) (b)
Figure 5. For this work, we have built a database with videos containing actors that execute, step
by step, a set of actions of daily life that we want to work with patients. These images contain some
captures where we can observe two actors performing two different actions. (a) The actor is showing
the action of writing on the board. (b) The actor is showing the action of mopping the floor.

3.2.3. AI for Online Action Monitoring of ADLs

Considering the need to monitor the activity of users, the inclusion of an action
detection system in our robot was a no-brainer. As an standard action detection system
would require that an entire video of the action be fed into the neural network to recognize
the action correctly, we believe that these models are ineligible for monitoring actions in
this project. They work offline, in the sense that the action of interest must be completely
covered by the video. Instead, for our robotic application, we need an action recognition
system that is able to work with partial observations of the actions, or, in other words: to
address the problem of localizing actions in untrimmed videos as soon as they happen,
which was coined as Online Action Detection (OAD). Therefore, action detections in
an OAD technique must be made over video streams, requiring the use of incomplete
observations in which the action segments may be more likely to be the exception than the
rule relative to the background. Furthermore, this online setting includes a crucial element:
the anticipation of the action. For an OAD model, the objective is to anticipate the action
even before the action is fully completed, an aspect that is fundamental to attaining an
efficient human–robot interaction in the monitoring application designed for this project:
LOLA must be able to recognize the actions the users are performing in an online fashion,
so as to provide a real-time response.

For our robotic platform, we propose a Pytorch implementation of the 3D CNN model
described in [72]. See Figure 6 for details of the deep learning architecture deployed
on the NVIDIA Jetson Xavier board. Our approach uses a 3D Convolutional Neural
Network (CNN) that is trained on the UCF-101 dataset containing 101 distinct categories of
actions [73]. As input, our OAD model is given a 16 frame clip. The model is able to cast
an action prediction for every clip, classifying the actions as soon as they appear. Using
the Jetson board and a live video stream received from the robot’s camera, this method
produces action estimations at a rate of more than 5 frames per second.
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Figure 6. This figure illustrates the OAD-3D-CNN model that is used to monitor patients’ daily
living activities. The AI model is fed with the video stream captured by the camera installed on the
LOLA platform. In particular, clips of 16 contiguous video frames are passed to the model. Eight 3D
convolutions are included in the deep learning architecture, followed by five max-pooling layers and
three fully connected layers. A final softmax layer is responsible for producing the classification of
the action for every video clip.

Considering that the robot’s camera is pointing at users, a recommended distance
between users and the robot, in this case, is 1.5–2 m. The actions have been split into two
groups according to whether the face needs to be viewed or whether the body needs to
be viewed, as it is shown in Table 1. The option of detecting the face and zooming on it is
activated or not based on the requested action by the professionals. Whenever the face is
required, we have implemented a traditional face detection model [74] with python and the
OpenCV library [75]. Technically, our solution performs tracking of the user’s face over the
captured 16 frames, creates a specific clip with the face only, and feeds it to the OAD model
for the recognition of the action category. Figure 7 graphically shows how the implemented
pipeline works. In the case of actions that are performed via body movements, the original
video frames are prepared for feeding the OAD model.

Face detection

& Zoom

RGB
C3D

Figure 7. Upon detecting the face of the user, the model zooms in on it to create the video clip that is
passed to the OAD model.

Table 1. The four categories of actions and their status regarding zooming.

Action Category With Zoom/ Without Zoom

Blow Dry Hair With zoom
Brushing Teeth With zoom
Writing On Board Without zoom
Mopping Floor Without zoom
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Our OAD-3D-CNN is a heavy model containing a large number of parameters.
The choice to implement this complex OAD model on the Jetson Xavier board slows
down the GUI-integrated displays. The users were unable to see themselves with a mirror-
like effect on the robot’s touch screen and were viewing the output of the camera with
a delay. This aspect might provide a poor human–machine interaction experience. We,
therefore, decided to implement a multi-threading application to solve this issue. Using dif-
ferent threads for the AI model and the visualizations in the GUI, we were able to provide a
mirror-like effect to the users when they are performing the actions and seeing themselves
on the screen of LOLA. All these improvements to the application were developed to make
the human–robot interaction satisfactory.

Finally, we have recorded a video in which we show how the complete application
described for the LOLA robot works https://youtu.be/JJUhtwISZaU (accessed on 19
April 2022).

4. Experiments
4.1. Experimental Validation
4.1.1. Sample of Final Users

The main objective of this work is to perform a technical validation of the robotic
platform LOLA and of the application described. For doing so, a fundamental step consists
in the selection of a sample of final users so that LOLA and the developed application can
be experimentally validated.

This technical validation we propose includes four different patients. They were
selected following the principles described in the protocol detailed in [76]. According to
this study, all participants should be classified as having disabilities resulting from diseases
or permanent health conditions (with the appropriate certificate, according to Spanish
law [77]). Their functional independence level should be moderate-low, their functional
skills-mobility level should be moderate-low, and they must be registered at one of the
collaboration centers. Each of the patients we selected met these requisites. They ranged in
age from 7 to 23 and all had physical limitations and cognitive deficits.

The first patient is a 7-year-old female diagnosed with idiopathic ataxia. She is level III
in the Gross Motor Function Classification System Extended and Revised (GMFCS E&R),
level III on Manual Ability Classification System (MACS), and level III in the Communi-
cation Function Classification System (CFCS). The nature of her condition required her to
use a walker for short distances and a wheelchair for longer distances. She manipulates
objects with difficulty and needs assistance in preparing or modifying her activities. She
offers a challenging scenario where the AI models will be technically validated when the
users need a walker and direct support from the healthcare professionals.

The second patient is a female 14-year-old who is diagnosed with Cerebral Palsy—
Spastic Diparesis. She is level II on GMFCS E&R, level II on MACS, and level III on CFCS.
Consequently, she can walk under most conditions and manipulate most objects, but with
some reduction in quality or speed.

The third patient is a 15-year-old female who has Cerebral Palsy—Spastic Triparesis
with the predominance on the right side. She is level II on GMFCS E&R, level III on MACS in
the right upper limb, and level II on CFCS. She is capable of walking in most conditions, ma-
nipulating objects with difficulty, and needs assistance preparing and/or modifying activities.

A female 23-year-old, the fourth participant in this technical validation study, is diag-
nosed with metabolic syndrome due to GLUT 1 deficiency. She is level II in GMFCS E&R,
level II in MACS, and level II in CFCS. Thus, she is capable of walking under most conditions
and manipulating most objects, though with a corresponding reduction in quality or speed.

In light of the fact that the level of autonomy regarding movement varies from patient
1 to patient 4, our proposed SAR will be validated in all these different situations with a
certain granularity.

https://youtu.be/JJUhtwISZaU
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4.1.2. Design of the Interventions

Before starting interventions with end users, health professionals in the therapy center
were given a manual on how to operate and use the LOLA platform. A briefing session was
held with the personnel to answer any questions they may have. In therapy, the patient’s
physiotherapist is responsible for all evaluation processes involving the assistive robot. We
aim that they can autonomously work with the platform and the applications designed.
In the context of this technical validation, this is an important aspect, as it is crucial for us
to identify what users actually think about the implemented application: is the proposed
graphical user interface easy to use? Does the LOLA platform move and interact with the
users in an effective way?

Once the health personnel were trained, we were able to start the interventions with
the 4 users that made up the study sample.

Each patient is expected to take part in the therapy sessions with the robot for a
maximum period of one month (four weeks) to study the results of the system. Only
patients 1 and 2 could complete the 4 sessions. Patients 3 and 4 participated for two weeks
and one week, respectively.

In each week of the trial, the patients had a 30 min session with LOLA during which
they interacted with it and were monitored while performing ADLs. Almost five minutes
were required to complete each action, divided into two parts that lasted around two
minutes each. For this technical validation, the healthcare professionals selected 4 particular
ADLs to be used during the interventions. They are the following: Blow Dry Hair; Brushing
Teeth; Writing On Board; and Mopping Floor. All these 4 actions can be recognized by the
AI OAD model integrated in LOLA.

Before each session of action monitoring with the robot, all the processes were ex-
plained to the patients. After selecting the patient user’s ID and the requested action by
the professionals, one of the sample videos is shown to the patients with all sub-actions
included. After that, the patients were asked to wait some moments for the AI-based model
to be loaded and then start performing the action that they had watched in the videos.
When the patients performed certain actions, such as blowing dry hair and brushing their
teeth, it was not necessary for them to stand to accomplish the task. Instead, they sat in front
of the robot, watching the action and trying to mimic what had been demonstrated. These
actions were implemented with the aid of face detection, so the patients were instructed
to remove their masks, which were mandatory due to the COVID-19 restrictions. In the
remainder of the actions, it was necessary for the patients to stand up and perform the
actions so that they maintained an appropriate distance from the robot. Figure 8 shows
some patients developing some of the ADLs during the intervention sessions.

Since the main purpose of LOLA is to assist and monitor users, activating the OAD
model will generate a report to inform professionals of the progress. The report contains
information about the details provided by the AI model for action recognition. For every
action recognition by the AI model, the report includes its starting and ending times,
as well as an image of the user performing the action. The system also specifies whether
the users performed the correct actions or not. All these details included in the report are a
fundamental part that will allow the healthcare professionals to follow the protocol in [76].
Specifically, all the variables included in the reports will allow one to validate the level of
matching between user and technology, the psychosocial impact of the assistive device on
the user’s life, the level of satisfaction in different domains, and the level of independence
in the performance for activities of daily living. After each session, these variables can be
evaluated alongside the robot’s report to follow the patient’s progress.
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Figure 8. This figure includes images of several participants during the interventions performing the
four study actions: blow-drying hair (first row); brushing teeth (second row); writing on a blackboard
(third row); and mopping (fourth row).

4.2. Results

An overview of the progress and results for each of the four patients during this
technical validation is presented in Table 2. The average accuracy of each action in each
session for all patients are reported in the table. As we previously mentioned, each action
was carried out in two separate attempts to better understand the precision of the OAD
model with respect to patients with NDDs. Due to the fact that the OAD model is trained
with videos with healthy subjects, depending on the physical limitations of the patients,
certain actions were harder for the model to recognize.
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Table 2. This table details the results of the entire process of technical validation of the platform.
We report the average accuracy of the AI model when recognizing the actions during the different
sessions. Our OAD model has detected the actions of brushing teeth and mopping the floor with the
highest accuracy during the sessions. Considering the patients’ physical limitations, blow drying
hair, and writing on board were challenging activities for them to undertake.

User ID Actions Session 1 Session 2 Session 3 Session 4

UAH-1

Blow Dry Hair 0% 0% 50% 50%
Brushing Teeth 100% 0% 100% 100%
Writing On Board 0% 0% 0% 50%
Mopping Floor 0% 0% 100% 100%

UAH-2

Blow Dry Hair 50% 50% 50% 50%
Brushing Teeth 100% 100% 100% 100%
Writing On Board 100% 0% 0% 100%
Mopping Floor 100% 100% 100% 100%

UAH-3

Blow Dry Hair 100% 50% — —
Brushing Teeth 100% 100% — —
Writing On Board 0% 0% — —
Mopping Floor 100% 100% — —

UAH-4

Blow Dry Hair 50% — — —
Brushing Teeth 100% — — —
Writing On Board 0% — — —
Mopping Floor 100% — — —

With respect to the first patient, here are our conclusions. Due to her condition, she can
not walk without a walker and is unable to control her movements. For the first two weeks,
she assisted the sessions with her walker. Since she was using the walker, the system was
not able to correctly recognize those actions which required an image of her entire body.
This is a clear limitation of our OAD model, which would need an update to deal with such
situations to attend to all possible patients. Overall, the accuracy of most of the actions she
performed was 0% in the first two weeks. In terms of the actions which were implemented
with face detection and zooming, the system was able to detect that she was brushing
her teeth in one session despite all of her movement limitations. Another two sessions
were conducted without her walker, but with a direct assistance of her physiotherapist in
holding her. Under these circumstances, Table 2 shows how the accuracy of the AI model
increases for all the actions. When the patient brushed her teeth and mopped the floor,
LOLA recognized the activity with 100% accuracy. Due to her inability to write or hold
the hair dryer in her hand, the system had difficulty detecting these two actions, which
resulted in mainly 50% error rates. Figure 9 shows the average accuracy for all detected
actions over all sessions for the first patient.
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Figure 9. Results for patient UAH-1 based on LOLA’s actions monitoring system.

The second case of study is a patient that is capable of walking, although she expe-
riences some difficulty with her balance and has mostly cognitive impairment. Her first
encounter with LOLA was pleasant. The experience of seeing herself on the screen while
performing an action in front of the camera of the robot appeared enjoyable to her. Table 2
shows the following numbers. There were no errors while the patient was brushing her
teeth, and the Al-based module was 100% accurate in detecting this activity. During blow
drying hair, there were sometimes conflicts between brushing teeth and blow drying hair
because the patient was moving the mouth while performing other activities, and the
results were only 50% accurate. When writing on the board, the patient, due to her balance
difficulties, relied on the board and covered what she was writing. Several times she was
advised to write something visible for the robot’s camera, and LOLA was able to detect
her action with an accuracy of 50% over the course of four sessions. A perfect performance
was achieved by the patient and the system detected the mopping of the floor with a high
accuracy. An average accuracy for each action is shown in Figure 10 based on the detection
of actions in all sessions.
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Figure 10. Results for patient UAH-2 based on LOLA’s actions monitoring system.

The third patient in this evaluation trial had physical and cognitive disabilities, and as
a consequence, she had difficulty maintaining an object in her hand. She could only
participate in the study for two weeks, covering two complete sessions for the technical
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validation. She was able to brush her teeth despite all of her limitations, and the system
detected this action category with a 100% of accuracy. It was difficult for her to hold a blow
dryer and perform the corresponding action, but nevertheless, she was able to perform the
action in less quality, and the system was able to recognize it with an average accuracy of
75%. Her difficulty in manipulating the whiteboard marker also made writing on the board
a challenging process. Despite her best efforts, she was unable to hold the marker and
write on the board at the same time, resulting in the system not recognizing that she had
performed the action. Mopping the floor was not a particularly difficult task for her and
the system consistently detected her actions correctly with 100% accuracy. Based on the
detection of actions in all sessions, Figure 11 shows the average accuracy for each action.
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Figure 11. Results for patient UAH-3 based on LOLA’s actions monitoring system.

Our last patient was able to grasp and hold objects in her hand but she primarily
suffered from cognitive impairments. In addition to only participating in one session, she
was not able to focus on her actions and did not show any interest in participating in other
sessions. In Table 2, it can be seen that blow drying hair was a challenging task for her as
she had short hair and the system was only capable of recognizing the action with 50%
accuracy. In terms of brushing teeth and mopping the floor, she was able to perform them
perfectly, and the system was able to correctly detect them 100% of the time (see Figure 12
for an example of user 4 performing an action). As she was tall, writing on the whiteboard
proved to be the most complicated action, as we had to put a greater distance between
the robot and the whiteboard to ensure that she was in the field of view of the camera.
The patient was asked to write on the whiteboard in a larger size so that the robot could
see the action, but she ignored the instructions. The system, therefore, could not correctly
detect this action.
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Figure 12. Mopping floor action performed by the patient 4.

All of the results discussed above were extracted from detailed reports generated by
the platform following each session. These reports are primarily intended to be distributed
to health professionals at the conclusion of each session to allow them to monitor the
progress of their patients during their treatment. With these reports, they will have access
to all relevant information such as the action requested, the action detected by the system,
the duration of performing the action, and an image of the patient while the action is
being performed. From these reports, the health professionals can determine whether the
patient understood the process of action correctly, whether he or she performed the action
independently in a manner that the robot could detect, and how long the patient remained
focused on the action. Additionally, it is also an opportunity for them to observe the
progress of the patient’s independence and their ability to interact with new technologies
as time progresses [76].

Our general observation is that all patients were interested in interacting with the
robot and enjoyed seeing themselves on the screen. In most cases, LOLA is able to correctly
detect all of the actions, but we note that there are some actions that need to be refined
for the system to detect them with greater accuracy. These are Blow dry hair and Writing
on Board. It is important to note that all these trials were performed on individuals with
disabilities and impairments. Despite all these issues, LOLA received positive feedback
from healthcare professionals and patients and demonstrated promising results during its
first technical validation with real users. We can therefore conclude that LOLA and the
developed application have successfully passed the technical validation proposed.

5. Conclusions

A study of the first technical validation of a low-cost robotic platform designed to
monitor and assist people with neurodevelopmental disorders in their learning of daily
living activities is presented in this paper. Our developed robot includes a user-friendly
graphical interface, coupled with an online action detection module that helps users learn or
reinforce daily living activities and lets health professionals observe their progress through
reports of each session.

The evaluation trial included four users performing four daily routine activities in each
session. As these users had varying degrees of physical and cognitive impairment, we were
able to assess the functionality of our proposed platform in the context of real users with
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disabilities. In this trial period, we achieved acceptable results which demonstrated that our
developed robot is capable of assisting and monitoring people with neurodevelopmental
disorders in performing their daily living tasks.

Our future work consists of two different lines. The first line will be to deliver the
assistive robot to a care center for people with NDDs for a long-term clinical study with
a greater number of participants. In the second line, improvements will be made to the
robot’s technical aspects. This will entail enriching the robot’s ability to recognize actions
to accommodate a broader range of daily living actions appropriate for people with NDDs.
A second improvement will be the incorporation of vocal commands into the graphical
user interface for users with high cognitive skills and physical limitations to facilitate a
more independent use of the platform.
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