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Abstract

Simultaneous object detection and pose estimation is a challenging task in computer
vision. In this paper, we tackle the problem using Hough Forests. Unlike most methods
in the literature, we focus on the problem of continuous pose estimation. Moreover, we
aim for a probabilistic output. We first introduce a new pose purity criterion for splitting
a node during the forest training. Second, we propose the concept of Probabilistic Lo-
cally Enhanced Voting (PLEV), a novel regression strategy which consists in modulating
the regression with a kernel density estimation to consolidate the votes in a local region
near the maxima detected in the Hough space. And third, we propose a pose-based back-
projection strategy to improve the bounding box estimation. With these three additions,
we show that our Hough Forest can achieve state-of-the-art results without needing 3D
CAD models. We present a quite versatile method, showing results for different cate-
gories (cars as well as faces) and for different modalities (RGB as well as depth images).

1 Introduction
Object category detection has received a lot of attention over the last decades and a lot of
progress has been realized. Recently, several approaches have gone one step further propos-
ing solutions for the problem of simultaneous object category detection and pose estimation.
That is also the problem we are addressing in this paper.

We start from the observation that current methods suffer a number of shortcomings.
First, most methods still rely on coarse quantizations of the poses for multi-view object
detection [12, 14, 17, 19], while only few approaches take into account that pose estimation
of object categories is ultimately a continuous problem [4, 6, 11, 21]. Second, state-of-the-
art approaches [14, 16, 21] achieve remarkable performance when leveraging existing 3D
CAD models for the object class of interest. However, such models are not always available
or easily constructible. Third, methods usually output a single combined confidence score
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Figure 1: Our approach is able to jointly estimate the localization and the continuous pose
of objects. To this end, we follow a HF regression voting in conjunction with our PLEV
strategy, to integrate votes from a local region in the Hough space near the detected modes.

that reflects both the confidence in detection as well as pose estimation. Ideally, these two
should be decoupled, and for the pose a full probability density function over the continuous
pose space is desirable.

We propose a new approach (see Figure 1) which jointly solves both tasks, providing de-
tection hypotheses and probabilistic estimates of their continuous pose. We draw inspiration
from recent work on Hough Forests (HF) for object detection [7]. Here, we introduce a new
formulation for the regression to be performed with HF, incorporating an uncertainty crite-
rion for the continuous pose of the categories. This uncertainty in pose is decoupled from the
traditional localization uncertainty [7], which allows us to randomly choose between them
during the HF learning. The resulting HF can effectively locate objects and estimate their
pose, by pooling votes from Random Forest (RF) regressors.

However, the extension of the Hough space to cover also the pose regression turns out
to be suboptimal. The main reason is that the pose voting is very noisy, as we have experi-
mentally observed, especially for views with shared appearance. Instead, we propose to first
localize the object, and then estimate its pose. For this second step, a novel regression strat-
egy is introduced, named Probabilistic Locally Enhanced Voting (PLEV), which consists in
modulating the regression with a kernel density estimation (KDE) to consolidate all the votes
in a local Hough region near the maxima detected in the Hough space. With the PLEV, our
HF can cope with the uncertainty of the pose estimation votes. The output of our model is in
the form of a probability density function (PDF) for the pose estimation. This is especially
useful when fusing information from multiple sources. As a case in point, we show how to
exploit the temporal continuity in a video sequence to obtain more accurate pose estimation
by fusing information from multiple frames. Having a PDF also allows to deal with symme-
try in a principled way. We finally propose to integrate a novel pose-based backprojection
(BP) strategy to boost the bounding box (BB) estimation using the pose cues.

The joint location and pose estimator we obtain has several advantages compared to ex-
isting alternatives. Building on HF, our method is quite generic. In section 3, we show results
on cars as well as faces, and using RGB as well as depth images as input. As a HF based
approach with simple features, it is efficient and fast. Being a voting-based scheme, it is in-
trinsically robust to occlusions. While many state-of-the-art approaches achieve remarkable
performance when training data is plentiful (e.g. leveraging existing 3D CAD models for
the object class of interest [14, 21]), our approach is simple in the sense that we are able to
learn the model directly from annotated images. This makes the method suitable for a wide
range of categories. Lastly, thanks to our PLEV strategy, we obtain a probabilistic output
score, allowing easy integration as a building block in a larger probabilistic framework. Our
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extension to video-based pose estimation shows how to leverage the temporal continuity in
video, even though poses may change from frame to frame.

The rest of the paper is organized as follows. In the next section, a review of related
work is given. Section 2 introduces the proposed model, i.e. the Regression HF with PLEV.
Section 3 presents the experimental results. We conclude in Section 4.

1.1 Related Works
Pose estimation of object categories is a growing research field. We find two types of strate-
gies: 2D [9, 12, 13, 17, 19] and 3D [14, 21]. Within the 2D group, [17] represents an object
category as a collection of view-invariant regions linked by transformations that capture the
relative change of pose among parts. This model is extended into a generative approach in
[19]. [13] uses a SVM classifier trained for each discrete pose with spatial pyramids of his-
tograms. And in [12], a semi-latent approach is followed to train a Deformable Part Model
[5], where the components correspond to discrete viewpoints.

3D methods have been mostly proposed within the context of continuous pose estimation
of object categories [14, 21]. These works leverage 3D CAD models to generate synthetic
training data. While CAD models may be widely available for some classes (e.g. cars), they
may be less abundant or less realistic for other classes (e.g. faces). Also, these works apply
a coarse to fine quantization of the viewpoints. We believe this dramatically increases the
complexity of the models, which is in contrast to our compact HF based approach.

Other examples of continuous pose estimation are [6, 11, 20]. In [20], a regression
approach is employed on the whole image, projecting all features on a smaller dimensional
manifold. In contrast, we use local patches, as in [6]. While our method is a HF based
strategy, in [6] they propose to learn regression functions from local descriptors of the same
patch collected under different viewpoints. Moreover, we simultaneously detect the object
and estimate the pose, which they don’t. Finally, the method in [11] builds a class model
(for detection and pose estimation) by merging 3D shapes of objects, obtained by applying a
structure from motion reconstruction on the training data. This clearly limits the applicability
of the model to datasets where such reconstruction is possible. Moreover, the model feeds
the detections to a SVM classifier to refine their location and improve their pose estimates.
Ours is a closed solution, fully integrated in the HF framework.

HF based solutions have also been proposed [4, 7, 10]. In [7] a HF is learned using
discrete pose annotations in the training data. The pose estimation is considered as a clas-
sification problem. This is in contrast to our formulation, where: i) the pose estimation is
treated as a regression problem; ii) classification and regression coexist, such that multiple
classes can in principle be integrated. In [10], a HF based approach to predict the pose of
interior body joints, from depth images, is described. The method uses a Gaussian Parzen
density estimator to aggregate the votes for each body joint. Note that our approach is, in
contrast to [10], more compact: i) our PLEV strategy directly uses votes in the Hough space,
neither mean-shift nor depth adjusted weights strategies are needed as in [10]; ii) the PLEV
casts the final pose estimation for the object, so the kinematic tracker used in [10] is not
needed either.

The PLEV is inspired by [16], where regions of the Hough space are optimized to serve
as seed regions for finding an optimal segmentation of an object. However, the idea of our
PLEV is more simple: to capture the uncertainty of the pose estimation votes by considering
a local Hough region. That is, no optimization is needed to define the regions, we simply
gather the votes from the neighborhood of the detected object location in the Hough space
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to feed the PLEV strategy, which is novel and essential for good results, as clearly shown in
the experiments.

Probably most similar to our work is [4], where HF are used to estimate the head pose es-
timation in depth images. In their approach the uncertainty for both the localization and the
pose estimation are integrated in the same regression measure. However, we keep them sep-
arated, defining specific uncertainty measures for each particular task, which are randomly
chosen during the HF learning. We also incorporate the PLEV strategy to the HF framework.
These aspects allow us to go beyond the particular application of head pose estimation from
depth images. Actually, our experimental evaluation shows that we are able to obtain similar
results for the problem of head pose estimation simply from RGB images (i.e., without using
depth), which we consider an important contribution of our work.

2 HF with Probabilistic Locally Enhanced Voting

RF [1] are a powerful tool for classification and regression problems. A typical RF is an
ensemble classifier consisting of a set of randomized decision trees. During training, a binary
weak classifier is learned for each non-leaf node. At runtime, test samples are passed through
the trees, and the output is computed by averaging the distributions learned at the reached
leaf-nodes. Hough Forests (HF) [7] are a generalization of the Hough transform within
the RF framework. The randomized trees are trained to learn a mapping from sampled d-
dimensional features to their corresponding votes in a Hough space H ∈ RH . We build on
the work of Gall et al. [7] and introduce a novel HF formulation for the challenging problem
of simultaneous object detection and continuous pose estimation.

2.1 Training

In our HF F , we aggregate a set of T binary decision trees Tt(Pi) : P → H, where P ⊂
Rd is the d-dimensional feature space and H ⊂ Rh describes the Hough space where the
hypotheses are encoded. This Hough space lets us recover hypotheses for the location and the
continuous pose of the object at multiple scales. Each object hypothesis h∈H can be defined
as h = (xh,yh,θh,sh), where xh and yh encode the position of the object, θh ∈ Rp represents
the continuous pose, and sh identifies the scale. Note that our formulation can integrate
different pose definitions for the objects (e.g. the viewpoint angle θh ∈ R, a combination of
azimuth and zenith θh ∈ R2, etc.).

We learn the HF F from a set of sampled image patches Pi = {(Ii,ci,di,θi)}, of size
R×R. Ii =

{
I1
i , I

2
i , ..., I

C
i
}

encodes the appearance of a training image, with I j
i the appearance

of the jth channel. ci ∈{0,1} is the class label (1 and 0 for features extracted from foreground
and background patches, respectively). di = (xi,yi) encodes the relative 2D location of the
object center to the sampled patch. θi defines the continuous pose of the object. Training
a decision tree involves recursively splitting each node such that the training data in newly
created child nodes is more pure according to the class label (ci), the relative 2D location
(di) or the pose (θi). Each tree is grown until some stopping criterion is reached, e.g. the
maximum tree depth or the minimum number of patches at a node.

Following the original HF formulation, at each node, a split function based on the patch
appearance is learned. Our split function f (Ii;τ1,τ2,{Rr}4

r=1) is characterized by the fol-
lowing parameters: the appearance channel specified by τ1 ∈ {1,2, ...,C}, four asymmetric
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rectangles defined within the patch {Rr}4
r=1, and a threshold τ2 ∈ R for the difference of

average values of the rectangular areas. We then define

f (Ii;τ1,τ2,{Rr}4
r=1) =

{
0 if fa(Ii;τ1,{Rr}4

r=1)< τ2,
1 otherwise.

(1)

with fa(Ii;τ1,{Rr}4
r=1) = |R1|−1

∑
q∈R1

Iτ1
i (q)−

4
∑

r=2

(
|Rr|−1

∑
q∈Rr

Iτ1
i (q)

)
. This is similar to the

binary test used with depth images in [4], except that we use four regions instead of two to
allow more flexibility.

For splitting a set of patches S into {Sle f t ,Sright} at tree node k, we first generate a pool
of tests with random values for {τ1,τ2,{Rr}4

r=1}. Then, we select the test which maximally
reduces uncertainty in the class labels, or in the relative 2D location, or in the pose of the
patches. So, we define three different impurity measures, M∗(S), which are chosen ran-
domly during training. The impurity of the class labels is measured as in [2] by

Mc(S) = H(S)− ∑
child∈(le f t,right)

Schild

S H(Schild), (2)

where H(S) is the entropy given by H(S) = −
1
∑

c=0
p(c|S) log(p(c|S)), and p(c|S) indicates

the empirical distribution extracted from the training points within the set S.
The impurity of the relative 2D location of the patches, as in [7], is defined by

Md(S) = ∑
child∈(le f t,right)

∑
j:c j=1

||d j− 1
|Schild | ∑

k:ck=1
dk||2. (3)

We also introduce a novel regression purity criterion to measure the uncertainty in pose:

Mp(S) = ∑
child∈(le f t,right)

∑
j:c j=1

(
min{(||θ j−θθθ A||),360◦−(||θ j−θθθ A||)}

180◦

)2

, (4)

where θAθAθA is the viewpoint angle average over all foreground patches in the set Schild and it is
computed taking the cyclic nature of viewpoint angles into account.

2.2 HF Regression with PLEV
During testing, patches sampled from the test image traverse the trees and cast votes to the
Hough space H ∈RH based on the location and pose distributions stored in the leaves. The
forest-based estimate is then computed by aggregating votes from different patches. Follow-
ing a standard HF regression approach [7], votes are accumulated in an additive way into the
Hough space. Then, local maxima are found, e.g. using mean-shift. Here we introduce an
alternative procedure, the PLEV (see Figure 1).

The PLEV starts, as in a standard HF voting strategy, by collecting the votes in our
multidimensional Hough space H ⊂ R2+p, where p is the number of angles that defined
the continuous pose. We then resize the test image by a set of scale factors {s1,s2, . . . ,sS},
and compute the corresponding Hough voting spaces {H1,H2, . . . ,HS}, where Hi ∈R2+p.
Then, these Hough spaces are stacked and scaled, so the maxima can be jointly localized at
multiple scales.

For a particular scale si, we first project all votes on the (x,y) subspace ofHi, and recover
the object center hypothesis ĥd = (x̂, ŷ) where the maximum is (see Fig. 1). The continuous
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pose θ̂ might be estimated recovering the maximum along the pose dimension of Hi. How-
ever, while for the object center the estimation based on the maximum works reasonably
well, the pose needs to be refined. This is because Hough voting spaces are noisy, especially
along the pose dimensions. So, inspired by [16], the idea of PLEV is to cope with this un-
certainty by considering a local Hough region, rather than a single Hough maximum, for the
regression of the pose.

We first build a local Hough region H ĥd
r ⊂ Hi for each detection hypothesis ĥd. We

consider to be in the defined local region only those voting positions vi ∈ H ĥd
r which receive

at least one vote and are spatially close to the detected maximum. Then, PLEV aggregates
all pose votes received within H ĥd

r , obtaining the distribution of the poses gĥd
r in the Hough

region, which can be computed as,

gĥd
r = ∑

vi∈H
ĥd
r

(
∑

L j→vi

p(c=1|L j)

|L j | p(θ |L j,vi)

)
, (5)

where p(c = 1|L j) and |L j| encode the foreground likelihood and the number of patches in
leaf L j, respectively, and p(θ |L j,vi) is the distribution of poses associated to the patches

in leaf L j which cast a vote in H ĥd
r , which we denote as L j → vi. Then, a Gaussian KDE

is performed on gĥd
r in order to obtain a smooth probability density function for the pose

estimation,

f
g

ĥd
r
(θ) = 1

|gĥd
r |

∑

∀gĥd
r (i)

1√
2π

exp( (θ−g
ĥd
r (i))2

2h2 ) , (6)

with h the bandwidth and |gĥd
r | the total number of voting positions considered. The final

estimation for the pose θ̂ is obtained as argmax
θ̂
= f

g
ĥd
r
(θ). Therefore, the final object

hypotheses can be defined as ĥ = (ĥd, θ̂ ,si).

2.3 Pose-based backprojection for BB estimation

For the BB estimation, we follow a modified backprojection (BP) strategy inspired by [8].
For each object hypothesis ĥ, we start by backprojecting to the image the largest BB of the
training images. Within this initial BB, image patches are densely collected and passed again
through the trees. To compute the BP mask, every time a patch at position y, i.e. P(y), votes
for ĥ, we compute its contribution weight ω(P(y), ĥ) as follows,

ω(P(y), ĥ) = 1
T

T
∑

t=1

(
p(c=1|Lt (P(y)))
|Lt (P(y),c=1)| ∑

Lt (P(y),c=1)
K(ĥ,d,θ ,y)

)
, (7)

where Lt(P(y)) is the leaf reached by patch P(y), and, p(c= 1|Lt(P(y))) and |Lt(P(y),c= 1)|
encode the foreground likelihood and the number of foreground patches in leaf Lt(P(y)),
respectively. In the second term, we propose to modify the contribution weight, using the
relative 2D locations d and poses θ of the patches in leaf Lt(P(y)). We penalize patches that
vote not only for different object locations, as in [8], but also for different poses. For doing
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so, we define K(ĥ,d,θ ,y) as follows,

K(ĥ,d,θ ,y) = exp

−√ 1
λ
||d− u(y−ĥd)

si
||2 +

(
min{||θ̂−θ ||,360◦−(||θ̂−θ ||)}

180◦

)2
 , (8)

where λ is a normalized parameter equal to (u−R)2, u is the normalized training size of
the BBs, and R is the patch size. The first and second terms of Eq. 8 consider the object
localization and pose estimation errors, respectively. To obtain the bounding box, the mask
is thresholded to estimate the tightest bounding box encompassing the binary mask. As in
[8], the threshold is defined by 1

2 maxy(ω(P(y), ĥ)).

3 Experiments

3.1 Experimental Setup
We build our approach starting from our own implementation of [7]. Positive examples are
cropped and rescaled to the same size, chosen so that the largest BB dimension is u = 100
pixels. Negative examples are extracted from PASCAL VOC 2007 [3], except for the Biwi
Kinect Head Pose dataset (see details below). Patch size R is fixed to 30× 30 pixels. The
trees are trained with 20 positive and 20 negative patches randomly extracted from each
training example. In each node 20.000 binary tests are considered. Forests have 15 trees
with a maximum depth of 20. For RGB images, we use the same features as in [7], while for
depth images simply the depth values are used (following [4]). For the PLEV we consider
a neighborhood of 11× 11 pixels. We follow the KDE implemented in [18], and tune the
smoothing parameters and bandwidths following a leave-one-out strategy, where a single
training object model is used for validation.

We evaluate the object detection performance using Average Precision (AP) as in [3]. For
continuous pose estimation, we use, the Median Angular Error [11], and the Mean Absolute
Error [13]. For discrete viewpoint classification, the Pose Estimation Average Precision
(PEAP) and the Mean Precision of Pose Estimation (MPPE) proposed in [12] are used.

We first evaluate our approach on the Weizmann Cars Viewpoint (WCV) dataset [11]. It
contains 1539 images of 22 different cars divided into 3 sets. Following the setup described
in [11], we use one set for testing and the other two for training. At test time, 12 scales (from
1.25 to 2.35) are used. Next, we present results using the EPFL Multi-view car dataset
(EPFL) [13]. It contains around 2000 images, belonging to 20 different car models. We
follow the experimental setups proposed in [13] and [21] using 8 scales (from 1.1 to 2.5) at
test time. We also report results on the Biwi Kinect Head Pose Database (Biwi) [4]. This
dataset contains over 15K images of 20 people. We use the same setup as in [4] employing
4 scales (from 0.8 to 1.1) at runtime. We finally evaluate our approach on the discrete pose
estimation problem, using the cars of the 3D Object categories dataset [17] and the setup
presented in [17]. At test time, 16 scales (from 1.35 to 2.85) are used.

3.2 Effect of our contributions on pose estimation
We first evaluate the impact of each of our contributions using the WCV dataset. We start
from a baseline system where a standard HF is trained, and then gradually add our contribu-
tions one-by-one. For the baseline system, we follow our approach in Section 2 and train a
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Table 1: Analysis on WCV dataset.
Method Median Mean

Angular Error Absolute Error
Baseline 18◦ 58.6◦

Baseline + pose uncertainty 12◦ 42.4◦

Baseline + PLEV 7◦ 33.4◦

Baseline + pose uncertainty + PLEV 7◦ 27.5◦

Baseline + pose uncertainty + PLEV + BP 7◦ 25.8◦

Table 2: Results on WCV dataset.
Glasner et al. [11] Our approach

azimuth elevation azimuth elevation
Mean 36.44◦ 8.66◦ 25.8◦ 3.2◦

Median 12.25◦ 5.41◦ 7◦ 3◦
Std 55.32◦ 8.18◦ 52.5◦ 3◦
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Figure 2: (a), (b) and (c) Analysis on WCV dataset. (a) Detection results. HF trained with
(red curve) and without (blue curve) the pose uncertainty, and our full model (green curve).
(b) Azimuth Error Histogram. (c) Azimuth mean error vs recall for different PASCAL VOC
overlap criteria. (d) and (e) Analysis on EPFL dataset. (d) Precision-recall curve. (e) Angular
Error Histograms.

HF where only the class-labels and the offset uncertainties (Eq. 2 and 3) are used. Neither the
pose uncertainty (Eq. 4) nor PLEV and nor pose-based BP masks are used. The estimated
hypotheses are recovered directly from the maxima of the Hough voting space and the BBs
are estimated by taking the average BB of the training examples. Table 1 shows the results.

Pose uncertainty. Results in Figure 2(a) compare the precision recall curves for object
detection with and without the pose uncertainty. Both curves are very similar. This reveals
that incorporating the representation of the pose into the model does not overly impact the
detection, while the pose estimation results (Table 1) improve drastically: more than 15◦ for
the mean and 6◦ for the median.

PLEV. Next we evaluate the performance of our HF combined only with the PLEV.
Note that the pose uncertainty is not used in this experiment. Results in Table 1 confirm
the adequateness of the proposed Hough region based strategy for regression. Introducing
PLEV reduces the mean error by more than 25◦.

Pose uncertainty & PLEV. When both the pose uncertainty and the PLEV are integrated
into our HF, the mean decreases to 27.5◦, while the median is reduced from 18◦ to 7◦.

All together now. Integrating the proposed pose-based BP with the rest of contributions
into our HF, the mean decreases to 25.8◦, while the detection slightly improves (see also Fig.
2(a)), showing that the right pose estimation helps the object detection.

3.3 Detection and continuous viewpoint estimation results
WCV dataset. We achieve an AP of 79% (see Fig. 2(a) green curve). We are the first
ones reporting detection results on this dataset. Table 2 shows that our model outperforms
the state-of-the-art in pose estimation. Figure 2(b) shows a histogram of the azimuth error.
The small peak around 180 degrees is caused by the similarity of opposite views. Figure
2(c) shows the trade-off between azimuth mean error and recall. We generate these curves
using the confidence of the pose estimation as the score to rank the predictions, and vary the
recall for different PASCAL VOC overlap criteria. The higher the confidence of our pose
estimation, the lower the mean error. If we relax the overlap criterion (from 0.7 to 0.2), the
pose estimation performance also decreases. This reveals a nice property of our system: the
more precise the object localization, the better the pose estimation. Qualitative results for
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Table 3: Results on Biwi Kinect Head Pose Database.
Our approach

Images Position Direction Yaw (◦) Pitch (◦) Roll (◦) missed
Error (mm) Error (◦) frames (%)

RGB – 9.8±6.8 5.8◦±5.9◦ 5.8◦±4.8◦ 3.5◦±3.4◦ 2.4
Depth 7.18±12.1±12.1±12.1 7.3±5.9 4.1◦±6.9◦ 3.9◦±4◦ 3.2◦±3◦ 5

Early Fusion – 7.1±4.9 4±4.9 3.7±4.2 3.1±2.9 5.2
Late Fusion – 7.0±4.7 3.7±43.7±43.7±4 4.1±3.4 2.6±2.62.6±2.62.6±2.6 5.2

Fanelli et al. [4]
Depth 12.2±22.8 5.9±8.15.9±8.15.9±8.1 3.8±6.5◦ 3.5±5.8◦3.5±5.8◦3.5±5.8◦ 5.4±6.0◦ 6.6

Table 4: Temporal continuity.
WCV EPFL

Mean Error Median Error Mean Error Median Error
With 22.5◦ 7◦ 29.7◦ 8◦

Without 25.8◦ 7◦ 39.8◦ 7◦

Table 5: Results on EPFL.
[13] [20] [6] Our

model
Mean Error 46.48◦ 33.98◦ 31.27◦31.27◦31.27◦ 39.8◦

[11] [14] Lin [14] Exp Our
model

Median Error 7◦

8 bins 24.8◦ 11.1◦ 9.6◦

16 bins 6.9◦ 7.5◦

36 bins 4.7◦4.7◦4.7◦ 4.7◦4.7◦4.7◦

Table 6: Car results on [17].
2D Models AP/MPPE 3D Models AP/MPPE

[12] 96.0 / 89.0 [11] 99.2 / 85.3
[15] 99.9 / 97.5 [14] 99.6 / 95.8

Our model 89.0 / 90.2 [21] 99.9 / 97.1

this dataset are shown in Figure 3(a).
EPFL dataset. Our model yields an AP of 87% (see Fig. 2(d)), while median and mean

error are 7◦ and 39.8◦, respectively. Figure 2(e) shows how the PLEV improves the perfor-
mance of the pose estimation (green bars), increasing the number of estimations with an error
lower than 10◦. Table 5 shows the comparison with the state-of-the-art. In terms of Mean
Absolute Error, our model outperforms [13] but is not as good as [6, 20]. In terms of Median
Angular Error, our model achieves 7◦, which is 17◦ lower than [11]. In [14], 16 or more
components are needed in their DPM to outperform our method. Note that [14], leverages
existing 3D CAD models for the object class of interest. Also, their continuous pose estima-
tion implies a coarse to fine quantization of the viewpoints. Our approach, just from images,
jointly provides detection and continuous pose estimation in a regression framework.

Biwi dataset. We train our model using as positives, the training patches extracted from
the head, and as negatives, patches from other body parts. A detection is considered correct
if the estimation is within 20 mm from the ground truth location when using depth images,
or within the equivalent to 20 mm in pixels when RGB images are used. We report results
in Table 3. For depth images, our errors for yaw and pitch are comparable to [4], while our
estimation for the roll reduces the error by 2.2◦. We report better results for the nose local-
ization, and our missed frames ratio is lower than in [4]. When we remove the detections
with lower confidence in pose, up to a missed frame ratio of 6.6% (same ratio as in [4]),
we obtain an error for the pitch, yaw and roll of 3.7◦, 3.7◦ and 3◦, which outperforms the
state-of-the-art. Using RGB images, the difference of the three angle errors, when compared
to the results with depth images is lower than 2◦. This RGB version reports better detection,
reducing the missed frames ratio to 2.4%. That is, our model is able to obtain similar re-
sults for head pose estimation problem but simply from RGB images, which we consider an
important contribution. Qualitative results for this dataset are shown in Figure 3(b).

We also propose two ways to fuse our RGB and depth HFs. An early fusion, where
the votes are cast into the same Hough space, and PLEV uses the information of both RGB
and depth votes, simultaneously. And the late fusion version, where the votes are cast into
different Hough spaces. Then the estimated pose is obtained by averaging the PDFs given by
the two separate PLEVs. Table 3 shows that the error can be further reduced by combining
the RGB and depth forest. Results manifest that the late fusion works slightly better than the
early fusion version.

3.4 Discrete viewpoint classification results

We show results for the car class using the 3D Object categories dataset [17]. The MPPE
achieved by our approach is 90.2% (see Table 6), which is on par with several previous
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(b) Biwi
Figure 3: Qualitative results. GT in blue, estimations in green and wrong detections in red.

works. Although our model is a continuous viewpoint model, it achieves also good perfor-
mance even when it is evaluated on a discrete viewpoint benchmark.

3.5 Exploiting temporal continuity
We end with an extension to video-based pose estimation. Our model casts PDFs as out-
put for pose estimation. This is useful when fusing information from multiple consecutive
frames in a video. WCV and the EPFL datasets offer a set of images for cars, which can be
considered as video sequences. Given a video, we first estimate the pose for each frame. We
define a temporal window of W frames. For a frame j, we aggregate the PDFs of the previous
W frames. This aggregated PDF is smoothed to model the change in pose over time, which
is assumed to be small in a video. This is fused with the PDF for frame j using a product
based ensemble model [2]. This corrected PDF for frame j is incorporated in the temporal
window for frame j+ 1. Two parameters are used: the window size W and the smoothing
parameter. We do parameter tuning on a validation car instance in each dataset. Results for
temporal window sizes of 1 for [11] and 10 for [13] are shown in Table 4. The mean error
decreases more than 3◦ and 10◦ respectively.

4 Conclusion
We have proposed a new object detection and continuous pose estimation solution using HF.
It can successfully detect objects, using depth or RGB images, while the pose is estimated
with a probabilistic output using the PLEV. The method reports state-of-the-art results on 4
different datasets, while not relying on the availability of CAD models for training.
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