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Abstract

This paper focuses on the problem of 3D shape categorization. For a given set of training 3D shapes, a 3D shape recognition
system must be able to predict the class label for a test 3D shape. We introduce a novel discriminative approach for recognizing 3D
shape categories which is based on a 3D Spatial Pyramid (3DSP) decomposition. 3D local descriptors computed on the 3D shapes
have to be extracted, to be then quantized in order to build a 3D visual vocabulary for characterizing the shapes. Our approach
repeatedly subdivides a cube inscribed in the 3D shape, and computes a weighted sum of histogram of visual word occurrences
at increasingly fine sub-volumes. Additionally, we integrate this pyramidal representation with different types of kernels, such as
the Histogram Intersection Kernel and the extended Gaussian Kernel with y? distance. Finally, we perform a thorough evaluation
on different publicly available datasets, defining an elaborate experimental setup to be used for establishing further comparisons

among different 3D shape categorization methods.
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1. Introduction

3D shape classification is a fundamental task to access ex-
isting 3D models on the level of object categories. This is spe-
cially important, if we take into account that the number of
3D models is growing rapidly, due to the fast evolution in both
graphics hardware and software for 3D model acquisition and
manipulation (e.g. [1, 2, 3, 4]).

Recently, a novel approach, the 3D Spatial Pyramid Match-
ing Kernel (3DSPMK) [5], has been introduced for object recog-
nition in point clouds. Inspired by this work, we extend the
original approach to be used in the context of category-level
3D shape recognition. First, we generalize the formulation of
the 3DSPMK to arbitrary kernels, note that in [5] only the His-
togram Intersection Kernel (HIK) is considered. This way, we
propose a holistic representation for 3D shapes defining a gen-
eral 3D Spatial Pyramid (3DSP) decomposition which can be
used with multiple kernels, such as the extended Gaussian Ker-
nel with the y? distance. Note these kernels have shown promis-
ing results in image categorization [6].

We formulate a discriminative approach for recognizing 3D
shape categories which is depicted in Figure 1. We start extract-
ing 3D local descriptors(e.g. 3D SURF [7] descriptors) from
3D shapes. These descriptors are then quantized, e.g. using
K-means, so as to obtain a 3D visual vocabulary. Essentially,
we build a Bag-of-Words (BoW) representation [8, 9], which is
a popular strategy for representing images, within the context
of image categorization. Therefore, this visual vocabulary is
used to represent the shapes following a BoW approach. The
3DSP repeatedly subdivides a cube inscribed in the 3D shape,
and computes a weighted sum of histogram of visual word oc-
currences at increasingly fine sub-volumes. Selective volume
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Figure 1: Proposed approach using a 3D Spatial Pyramid

(3DSP) for 3D shape class recognition. We quantize 3D local
descriptors, extracted from 3D shapes, into 3D visual words.
This codebook is used to represent the shapes in a BoW ap-
proach. The 3DSP repeatedly subdivides a cube inscribed in
the 3D shape, and computes a weighted sum of histogram at
increasingly fine sub-volumes.

decomposition strategies are used, as in [5], which drastically
reduce the volume to consider, while the performance does not
decrease.

In order to offer to the research community a clear bench-
mark for establishing further comparisons among different 3D
shape categorization methods, we also propose an elaborate
experimental setup using different publicly available datasets
(SHREC’12 [10], Princeton Shape Benchmark [11], TOSCA
[12] and Sumner[13]). We perform a thorough evaluation of
our novel approach on this experimental setup.

The rest of the paper is organized as follows. Section 2
describes related work. The 3DSP is detailed in Section 3. The

April 24, 2013



experimental setup and results are presented in Sections 4 and
5, respectively. We conclude in Section 6.

2. Related Work

The problem of 3D shape class recognition has been ex-
tensively explored in the literature, and both local and global
features have been proposed. A considerable variety of global
descriptors have been detailed, such as the shape moments [14]
or the shape histograms [15]. However, neither partial shapes,
nor intra-class variations are successfully handled by global de-
scriptions.

In the 2D case, it is well-known that the use of local features
is beneficial for the object recognition problem. In the litera-
ture, there are also 3D shape categorization methods using local
features. Local 3D features can be extracted directly from the
3D volume (voxels) (e.g. [7, 16, 17, 18]) or from 2D surfaces
embedded in the 3D space (3D mesh) (e.g. [19, 20, 21, 22]).
Within the first group, scale-dependent and scale-invariant local
3D shape descriptors are proposed in [16], variants of SIFT [23]
and SURF[24] are introduced in [17] and [7] respectively, and
a localized version of the volumetric feature SHD [25] is pro-
posed in [18]. Mian et al. introduce the use of local tensors
[26]. Additionally, we also find works where the descriptors
are extracted from range data, e.g. [27] where 3D shape con-
text descriptors are extracted in 3D from the point cloud which
emerges from the depth image.

Knopp et al. [7] introduce the 3D SURF descriptors in com-
bination with a probabilistic Hough voting framework for the
purpose of 3D shape class recognition. Our approach signifi-
cantly differs from [7]. First, their model does not introduce any
3D pyramid representation for the shape. Second, instead of
providing a discriminative approach with a SVM framework, a
generative approach inspired by the Implicit Shape Model [28]
is presented.

A BoW for 3D shape categorization can be found in [29].
Toldo et al. [29] describe 3D shapes by splitting them into seg-
ments, which are then described on the basis of their curvature
characteristics. These novel descriptors attached to the regions
are then vector-quantized into multiple visual vocabularies. For
each shape a BoW representation per codebook is build, and
multiple SVMs are used for classification. The main differ-
ences between our approach an [29] are the following. In [29]
a standard BoW characterization approach is used in conjunc-
tion with the HIK for a classification with SVMs. That is, the
approach in [29] does not build any 3D spatial pyramid repre-
sentation which is able to enrich the BoW representation with
coarse-grained geometric cues. Furthermore, instead of using
just a single visual codebook, in [29] up to 108 different visual
vocabularies are needed for the categorization of each particular
3D shape.

The method closest to ours is that of Redondo-Cabrera et al.
[5]. They introduce the 3DSPMK, using only the HIK kernel,
and for the particular problem of recognizing objects in depth
images. However, we proceed to extend this approach to the
problem of 3D shape recognition. Moreover, instead of just
using the HIK kernel, we generalize the formulation to define

Figure 2: Extraction of 3D SURF descriptors from a 3D shape.

a 3D spatial pyramid decomposition which can be integrated
with different type of kernels in a discriminative approach us-
ing a SVM framework. This way, we are able to combine the
3D spatial pyramid with an extended Gaussian kernel using x>
distances. Our results confirm the convenience of this extension
s0 as to increase the shape class recognition performance.

3. Categorizing 3D Shapes

3.1. 3D Shape Class Representation

For the 3DSP, we propose to characterize each 3D shape
using local features. As it is shown in Figure 1, the approach
starts from a 3D shape of the object of interest. Each shape is
characterized by a set of 3D local descriptors, e.g. 3D SURF
descriptors [7]. Figure 2 shows an example of extraction of
3D SUREF descriptors from a 3D shape. In contrast to a ran-
dom or dense coverage of the shape with spin images [19], the
3D SUREF is equipped with a 3D interest point detector, which
picks out a repeatable and salient set of interest points in the
shapes. The local 3D SURF descriptors are computed in these
points via uniformly sampling Haar-wavelet responses. Then,
by following a traditional BoW approach, we quantize these 3D
descriptors, into 3D visual words. Finally, each 3D shape can
be characterized by a histogram of its 3D visual words.

3.2. Categorizing 3D Shapes with the 3D Spatial Pyramid

We proceed to generalize the formulation of the 3DSPMK
introduced in [5]. Let us assume we model a 3D shape S by
an orderless set of 3D visual words. That is, if we define a
visual codebook C of size K, each 3D feature is associated to
a codebook label {1,. .., K}. We could characterize each shape
S with a histogram H(S) quantizing the occurrences of the 3D
visual words.

However, the 3DSP representation should be able to cap-
ture the spatial distribution of such labels at different scales and
locations in a working volume QO Therefore, we define a
pyramid structure by partitioning Q@ into fine sub-cubes (see
Figure 3). For each level / of the pyramid, the volume of the pre-
vious level, QU~V_ is decomposed into eight sub-cubes, hence a
pyramid P(L) of L levels contains D = 8% sub-cubes.

Before building the spatial pyramid representation, and in
order to achieve a spatial distribution of 3D visual words that
occupies the greatest possible proportion of working volume
QO we perform a centering and scaling process of the initial
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Figure 3: Example of a 3DSP of three levels. The working
cube Q© is recursively decomposed into eight sub-cubes. The
dots represent the positions where the local features have been
extracted for a particular 3D shape.
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Figure 4: Example of centering and scaling process of a spa-
tial distribution of codewords extracted from a 3D shape. In the
first Q© cube, the initial spatial distribution of 3D visual words
is represented. Second Q) cube shows a centered spatial dis-
tribution of codewords, this spatial distribution is then scaled to
fit the Q@ cube. The final results can be observed in the third
QO cube.

spatial distribution of 3D visual words. This process is detailed
in Figure 4.

Once a pyramid P(L) is composed, we define the 3DSP rep-
resentation of a particular 3D shape S by a weighted ensemble
of histograms H(S) as follows,

H(S) = |woH(S), w1 H'(S), ... w  HX(S)] , (D

where H'(S) is the histogram of the features in the level [ of
the pyramid. Each H'(S) is obtained by concatenating 8' his-
tograms computed in all of the 8/ sub-cubes for level /. In order
to penalize the future matches (between histogram bins) found
in larger volumes, we define the weight «w; as

=50 (2)

Equation (1) contains the general formulation of the 3DSP
representation for any shape. In order to use the 3DSP represen-
tation in a discriminative approach, we can incorporate different
kernels into the formulation. This way, based on the fundamen-
tal concept of defining similarities between objects, these rep-
resentations allow the integration of the 3DSP in a SVM classi-
fier, for example. In particular, we propose to incorporate two
different kernels: the Histogram Intersection Kernel (HIK) and
the extended Gaussian kernel with y? distances.

The 3DSP-HIK kernel Kspsp_pgix is formulated as follows.
When a pyramid decomposition P(L) is constructed, we are

able to perform a pyramid matching in 3D of two 3DSP H(Sx)
and H(Sy), computed for shapes Sy and Sy. The 3DSP-HIK
kernel is defined as

N
Kspsp-nik (H(Sx), H(Sy)) = ) min(H(Sx)i, H(Sy)) (3)

i=1

where N is the number of components of histograms H(Syx)
and H(Sy), and H(Sy); represents the value of the i-th bin of
the histogram.

Additionally, we can formulate the 3DSP-y? kernel K3 g Py
Starting from a pyramid decomposition P(L) and two 3DSP
representations H(Sx) and H(Sx) for shapes Sy and Sy, we
first define the y? distance between them as

D,2(H(Sx), H(Sy)) = 4)

1 ZN: (H(Sx)i = H(Sy):)?
24 H(Sx)i+H(Sy)i -

and we formulate the ?aDSP—)(2 kernel as follows,
K3ps p—y2(H(Sx), H(Sy)) = eXP(—%DXZ(H(Sx),H(Sy))) NG)

where A is a scalar which normalizes the distances. In the ex-
periments, one can set A to the average y? distance between all
elements of the training set.

Note that the HIK and the extended Gaussian with y? dis-
tances kernels satisfy the Mercer’s conditions, as it has been
proved in [30] and [31] respectively.

3.2.1. Selective 3DSP

The 3DSP has one clear disadvantage: its high computa-
tional cost. For a pyramid of L levels and a vocabulary of size
K, we will obtain a vector of dimensionality K 3'i-, 8/, that is
2! times more bins in each level with respect to to the 2D ver-
sion introduced in [32]. With the aim of jointly increasing the
classification accuracy and the computational efficiency of the
3DSP, we can incorporate to our approach the equivalent se-
lective volume decomposition schemes based on representative
and discriminative (sub-)volume selection processes detailed in
[5]. The main objective of these approaches is to reduce the
large number of uninformative sub-cubes that yield unneces-
sary long histograms, while the performance does not decrease.

We define the 3DSP-K-Repre as the 3DSP with kernel K us-
ing the Representativeness-based selection method in [5]. This
selective pyramid decomposition will incorporate into the pyra-
mid only those (sub-)cubes that are likely to represent shape
classes in our dataset. Let Q© be the working cube for level
zero. We first perform the pyramid decomposition until level
L, so we obtain QEL) sub-volumes, where i = 1,...,8L. We
now define the working volume of level zero as Q(()), where the
decomposition only includes those sub-cubes flgL) in which a
percentage p of the 3D shape models are represented. We con-
sider that a 3D shape is represented in a sub-cube if there is at
least one feature for this shape falling in the sub-cube. Note
that this pyramid volume selection process is performed at the
beginning of the training, once all the 3D features have been



extracted. This way, the new working volume QO can be used
to build all the features to represent the different shapes.

We also define the 3DSP-K-Disc as the 3DSP with kernel
K using the Discriminative Feature-based Selection approach
in [5]. Although the representativeness-based selective method
drastically reduces the working volume, it does not exploit the
fact that the sub-volume selected may contain features that are
not discriminative for the classes of interest. The objective of
the Discriminative Feature-based selection scheme is to select
those cubes that are likely to contain discriminative features.
This time, we consider all the training shapes of all the classes
to compute. Given a pyramid P(L), we inspect all the sub-
volumes in level L, i.e. le) fori = 1,...,8%. For each sub-
volume and each 3D shape class, we measure the proportion
of shape models that contain at least one discriminative feature
in each sub-volume. If this ratio is greater than an empirically
fixed threshold, then the sub-volume Ql(.l) is considered as dis-
criminative for the analyzed object class. The final discrimi-
native decomposition is obtained by merging all the discrimi-
native sub-volumes for each category. When do we consider
a feature discriminative? We follow the feature score formu-
lated in Equation (3) of [5]: the ratio between the percentage of
descriptors that belong to a particular feature for a shape class,
and the proportion of descriptors that belong to the same feature
when all the 3D shape categories are considered. That is, we are
able to measure how informative for a particular 3D shape class
a feature is. Subsequently, we select only those sub-volumes
that contain this type of discriminative features.

Note that the proposed approaches are feature selection method-

ologies that do not affect the kernel formulations proposed.

4. Experimental Setup

For the 3D shape categorization problem, we propose an
elaborate experimental setup with different publicly available
datasets. Our aim is to provide to the research community a
clear benchmark so as to establish further comparisons among
different methods. We start describing the databases, and then
how the evaluation of the results is going to be performed.

4.1. The Databases

The following state-of-the-art publicly available databases
are going to be used: SHREC’12 [10], Princeton [11], and
TOSCA + Sumner [12, 13]. All these datasets consists of clean
and segmented 3D shapes (see Figure 5).

The SHREC’ 12 - Generic 3D Shape Retrieval contest dataset
[10] offers 1200 different 3D models distributed across 60 classes.
Specifically, for each class, 10 models are used for training and
10 models for testing. We have done a random distribution of
the 20 models per class in order to obtain the training and test-
ing subsets. This distribution of data results interesting to ana-
lyze the performance of different approaches when only limited
training data is available.

The challenging Princeton Shape Benchmark database [11]
offers 1800 shapes of 7 classes. For the 3D shape classification
experiment, we propose to use the coarse level two, with the

subsets for training and testing proposed in [7]: for each class,
half of the 3D shapes are used for training and half for testing.

Finally, the TOSCA [12] and the Sumner [13] databases are
jointly used. This combination offers 474 shapes for a total of
12 classes. The 3D shapes appear in a variety of poses and
with deformations. 66 randomly selected models are used for
testing, and the rest for training, as in [7].

The proposed datasets define an experimental setup where
more than 3400 3D shapes can be used for the performance
evaluation of the different methods. We publicly distribute ! this
experimental setup, including: the annotations and the training
and testing subsets described; and a set of tools for accessing
and managing the database annotations. Our aim is to estab-
lish a new benchmark for evaluating 3D shape categorization
algorithms. By making this experimental setup available, we
make it effortless for future researchers to perform similar per-
formance analysis of their methods. Furthermore, a reference
implementation of the code for reproducing all the results re-
ported in this paper is also released.

4.2. Evaluation of Results

For each database, we have clearly defined two main sub-
sets: training and testing. Although the ground truth is offered
for both subsets, the testing data must be used strictly for re-
porting of results alone, i.e. it must not be used in any way to
train or tune the proposed approaches. Only the training data
can be used for parameter tuning or feature selection, e.g. using
n-fold cross-validation.

The proposed experimental setup offers a multi-class prob-
lem, and we propose two evaluations measures in order to com-
pare different methods. First, the performance p of the classifier
defined as

TP

. 6
TP+ FP ©

p =
where TP and FP are the number of true positives and false
positives, respectively. Second, we propose to compute the con-
fusion matrix for each method, and to calculate the mean of the
elements on the main diagonal, a measure we refer to as Mean
Correct Classification (MCC).

5. Results

We evaluate our 3D shape categorization approach on all
the dataset proposed in Section 4. In the experiments, we use
a visual vocabulary of different sizes (K = 200, K = 400 and
K = 1000). The visual vocabulary is obtained performing a
K-means clustering on a subset of the 3D SURF [7] descriptors
extracted from the training 3D shapes. We represent each 3D
shape by a 3D spatial pyramid. Typical pyramid level values
for our experiments are L = {0, 1,2}. Note that when L = 0, we
simply have a standard BoW, but in our case in 3D. We report
the performance of the 3DSP using the full volume of pyramid

IThe experimental setup described can be downloaded from

http://agamenon.tsc.uah.es/Personales/rlopez/data/3dsr
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Figure 5: Samples of 3D shapes from the datasets Princeton [11], TOSCA + Sumner [12, 13] and SHREC’12 [10].

and also following the selective algorithms described in Section
3.2.12.

For the extraction of 3D SURF descriptors we use the origi-
nal implementation provided in [7]3. Specifically, we start scal-
ing each 3D shape to fit a cube with a side of length 256. Then,
each shape is voxelized into the cube grid using the intersection
of faces with the grid-bins. With the aim of covering the full
3D shape with local descriptors, we have experimentally cho-
sen the following parameters for the 3D SURF descriptors: the
distance between triangle mesh and the border of the cube is
fixed to 30, and the threshold is fixed to 1078.

For classification we use Support Vector Machines (SVMs).
We explore how different kernel functions perform categorizing
shapes. Specifically, we combine the 3DSP pyramid decompo-
sition with HIK (3DSP-HIK) and y? (3DSP-y?) kernels, which
have shown promising results in image categorization [6]. The
multi-class classification problem is solved training the SVM
using the one-against-one strategy. We follow the approach
in [33], and train N(N — 1)/2 classifiers (being N the number
of classes) where each one is trained on data from only two
classes. For testing, we follow the Max Wins voting strategy
[33]: if one of the classifiers votes for the class i, then the vote
for the i-th class is added by one. The class with the highest
number of votes is selected for each image. In case that two
classes have identical votes, we select the one with smaller in-
dex. Specifically, we use libSVM [34] for training and testing
the classifiers. A 5-fold cross-validation on the training set to
tune SVM parameters is conducted.

2For the representativeness method, we fix the parameter p to 0.1. For the
Discriminative Feature-based selection method, we fix 7 and 3 to 0.7 and 0.5
respectively.

3The binaries for computing 3D SURF descriptors can be downloaded from
http://homes.esat.kuleuven.be/~jknopp/codes/index_codes.
html

5.1. SHREC’12

The results obtained by our method for the SHREC’12 data
are show in Table 1. The best result is obtained for the 3DSP-y?,
with a vocabulary size of 1000 and L = 0. These results reveal
that, for vocabularies of size 200 or 400, the higher the level of
the 3DSP, the better the results. Both the -Disc and -Repre ap-
proaches significantly reduce the computation time, while, gen-
erally, the performance does not decrease. In this experiment
we can observe that the SHREC’ 12 is a challenging dataset due
to the high number of classes and the low number of training
3D shape examples (only 10 per class). In the winner configu-
ration, only for two classes, Plier and Non Flying Insect,
we obtain a classification accuracy of 100%, and for the classes,
Door and Truck Non Container the classification rate is 0%.
Interestingly, when the vocabulary size is fixed to 1000, an in-
crement in the pyramid level does not improve the classification
results. Actually, the best results have been obtained by a 3DSP
with L = 0, i.e. a standard BoW approach. As we shall see in
the experimental validation with the rest of datasets, this behav-
ior is only observed with the SHREC’ 12 database. We believe
this may have been caused by the following reasons: first, this
dataset offers a high variability in terms of rotation and changes
of viewpoint of the different models, a fact that definitely does
not benefit our 3DSP approach when L > 0 (we provide more
details in Section 5.5.2); and second, the experimental setup de-
signed for the SHREC’ 12 dataset is very challenging, offering
just 10 examples to train each of the 60 classes.

5.2. Princeton

The results obtained by our method for the Princeton Shape
Benchmark data are show in Table 2. The best result is obtained
for the 3DSP-y?, with a vocabulary size of 1000 and L = 1.
Again, we observe that the y? kernel is obtaining the best re-
sults. Systematically, the -Repre approach is also casting better
results than the -Disc based version.



Table 1: Comparison of different approaches of the 3DSP using different shape representations and different kernels on the

SHREC’ 12 dataset, measured as MCC (%).

K L 3DSP-HIK 3DSP-HIK-Repre 3DSP-HIK-Disc 3DSP-y?> 3DSP-y?-Repre  3DSP-y?-Disc
200 O 63 n/a n/a 63.33 n/a n/a
200 1 63.7 63.7 63.7 64.33 64.33 64.33
200 2 64.7 64.7 64.7 65 65.17 64.83
400 O 62.7 n/a n/a 64.83 n/a n/a
400 1 62.5 62.5 62.5 63.33 63.33 63.33
400 2 63.7 64.17 63.83 64.83 61.17 61.33
1000 O 65 n/a n/a 65.67 n/a n/a
1000 1 63.83 63.83 63.83 63.83 63.83 63.83
1000 2 63.33 63.33 63.33 62.83 62.17 62

Table 2: Comparison of different approaches of the 3DSP using different shape representations and different kernels on the Princeton

Shape Benchmark dataset, measured as MCC (%).

K L 3DSP-HIK 3DSP-HIK-Repre 3DSP-HIK-Disc 3DSP-y> 3DSP-y?-Repre  3DSP-y2-Disc

200 O 60.11 n/a n/a 61.43 n/a n/a

200 1 64.11 64.11 64.11 63.30 63.30 63.30
200 2 64.22 64.22 62.13 63.17 63.17 60.62
400 O 61.92 n/a n/a 63.35 n/a n/a

400 1 66.01 66.01 66.01 65.74 65.74 65.74
400 2 65.65 65.65 63.19 64.57 64.57 61.50
1000 O 63.91 n/a n/a 64.67 n/a n/a

1000 1 65.79 65.79 65.79 66.31 66.31 66.31
1000 2 66.29 66.29 63.50 64.80 64.80 59.76

plant
furniture
animal
vehicle

household

building

miscellaneous

0 20 40 60 80 100

Figure 6: Classification accuracy for each class in the Princeton
database. Results for the 3DSP-y? with K = 1000 and L = 1.

Figures 6 and 7 show the classification accuracy and the
confusion matrix, respectively, for the best approach, i.e. 3DSP-
x* for L = 1 and K = 1000. For the Miscellaneous class is
where our approach incurs the maximum confusion, and this is
due to its high variability. The best recognition performance is
achieved for the classes Plant and Furniture.

The confusion matrices and graph bars for all the approaches
included in Table 2 can be inspected in the Experiment Code

Item 1 in the Collage Platform.

5.3. TOSCA and Sumner

The results obtained by our method for the TOSCA and
Sumner databases are show in Table 3. Our best result is 95.7%,
which is obtained by several parameters configurations of our
method. Figures 8 and 9 show the results per class for the
3DSP-HIK with K = 1000 and L = 1. First, one can ob-
serve that for 9 classes, our method obtains a classification rate
of 100%. Furthermore, for all the classes, this percentage is
above 80%. The confusion matrices and graph bars for all the
approaches included in Table 3 can be inspected in the Experi-
ment Code Item 1 in the Collage Platform.

5.4. A comparison with the state-of-the-art

In Table 4 we compare our results with the results reported
in [7] for 3D shape classification. The 3DSP based approach
improves the state-of-the-art for the Princeton database. It is
worth to mention that this dataset is very challenging, not only
due to the number of shapes, but because it presents a very high
variation amongst the classes (e.g. within the class Animal, the
dataset provides models for ants and fishes).

For the TOSCA+Sumner dataset, our best 3DSP based ap-
proach, i.e. the 3DSP-HIK with K = 1000 and L = 1, is able
to retrieve 63 shapes (of 66) correctly. Note that in [7], authors



Table 3: Comparison of different approaches of the 3DSP using different shape representations and different kernels on the TOSCA

and Sumner dataset, measured as MCC (%).

K L 3DSP-HIK 3DSP-HIK-Repre 3DSP-HIK-Disc 3DSP-y?> 3DSP-y?-Repre  3DSP-y?-Disc
200 O 92.3 n/a n/a 92.3 n/a n/a
200 1 94.4 94.4 94.4 94.4 94.4 94.4
200 2 93 93 91.6 93 93 91.6
400 O 95.7 n/a n/a 95.7 n/a n/a
400 1 94.4 94.4 94.4 94.4 94.4 94.4
400 2 90.2 90.2 90.2 90.2 90.2 90.2
1000 O 95.7 n/a n/a 95.7 n/a n/a
1000 1 95.7 95.7 95.7 94.4 94.4 94.4
1000 2 93 92.4 94.4 91.6 91.6 91.6
animal .05 .07 .01 .15
building .34 13
furniture .01 .02
household | .03 .08 .10 .08 .05
miscellaneous | .09 .06 .02 | .35 .40 .08
plant | .02 .02 .07 .02 s
vehicle | .04 .03 .21 .03 .68 0 2‘0 4‘0 6‘0 8‘0 100
S, b, iy, D Oy ey
0/076/ 0//%9 fo’fo,eol’é‘ebo//soe//e:”f e/”0/@ Figure 8: Classification accuracy for each class in the

O(/s

Figure 7: Confusion matrix for the 7 categories in the Princeton
database. Average classification rates for individual categories
are listed along the main diagonal. Results for the 3DSP-y?
with K = 1000 and L = 2.

claim they use 66 shapes for testing, but they only report results
for 57, so the results for this dataset are not comparable.

In the novel SHREC’12 dataset, and to the best of our knowl-
edge, we are the first reporting results for generic 3D shape
categorization. We achieve a performance of 63.83% for the
following configuration of our approach: 3DSP-y?, K = 1000
and L = 1. This dataset offers a high number of classes, and
the experimental setup designed provides very few shapes for
training and testing, 10 per class. This makes the problem of
training a SVM based approach, such as the 3DSP, really hard.

5.5. Discussion

After this thorough performance evaluation, let us discuss
the most relevant aspects of the 3DSP approach within the con-
text of 3D shape categorization.

5.5.1. Influence of the model parameters
This paper introduces a novel and holistic approach for 3D
shape categorization. The 3DSP approach has shown promis-

TOSCA+SUMNER database. Results for the 3DSP-HIK with
K =1000and L = 1.

ing results on three diverse datasets. Apart from the parameters
of the feature extraction stage and the kernels, two are the pa-
rameters that completely characterize the 3DSP approach: the
pyramid levels (L) and the size of the vocabulary (K).

First, let us examine the behavior of the 3DSP when L in-
creases. For all the kernels used, and when the vocabulary is
small (e.g. 200), the categorization results improve as we go
from L = 0 to a multi-level pyramid structure (L = 1), in all
the datasets. If we continue increasing the pyramid levels to
L = 2, the results do not generally improve. Actually, for the
three datasets, one can observe how the performance of the en-
tire 3DSP remains essentially identical or even decreases. This
means that the highest level of the 3DSP if too finely subdivided
in subcubes (for L = 2 the number of subcubes is 64), which
yield too few matches between the features within them. It is
worth to mention that a similar behavior was observed in [32]
but for the 2D spatial pyramids. To summarize, when using the
3DSP a good choice is to use L = 1, because: a) higher values
do not always guarantee better results, and b) the computational
cost for 3DSP with L > 2 increases.

In any BoW based approach the size of the visual vocabu-
lary matters, and the 3DSP is no exception. In the experiments,



Table 4: A comparison of the performance of our approach with the state-of-the-art methods, measured as precision p.

Princeton TOSCA + Sumner SHREC’12
Method #TP | #FP p #TP | #FP p #TP | #FP p
ISM [7] 529 | 378 58.3% 56 1 98% n/a n/a n/a
BOF-knn [7] 491 | 416 | 54.1% 56 1 98% n/a | n/a n/a
BOF-SVM [7] | 472 | 435 52.0% 41 16 72% n/a n/a n/a
3DSP 601 | 306 | 66.26% 63 3 95.8% | 383 | 217 | 63.83 %
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woman Figure 10: Examples correctly recognized for the class horse

Cs,. Cox %, Y. %on 5,90, 56 B0, Yoy, s Wy
Uy, U 00 " RC Ry, 701, /S [0+ sy %3, 0,
K Py iy My S0 S g,

Figure 9: Confusion matrix for the 12 categories in the
TOSCA+SUMNER database. Average classification rates for
individual categories are listed along the main diagonal. Re-
sults for the 3DSP-HIK with K = 1000 and L = 1.

we have increased the size of the vocabulary from K = 200 to
K =400 and K = 1000. It is interesting to observe that increas-
ing the size of the codebook for L = 0 results in a small per-
formance increase, if we compare it with the results obtained
by smaller vocabularies used with a 3DSP structure of higher
levels. For instance, in the Princeton dataset, we observe that a
3DSP with L = 2 and K = 200 obtains a higher performance
(64,22%) than a simple BoW (i.e. 3DSP with L = 0) with a
vocabulary of size 400 (61,92%) or 1000 (63,91%). In gen-
eral, the geometric cues provided by the 3DSP have a similar
or even greater discriminative power than an enlarged visual
vocabulary. For all the datasets the best results have been ob-
tained by the biggest vocabularies. It is worth to recall that the
dimensionality of the histogram-based feature of the 3DSP in-
creases with K and L, so the smaller these parameters, the less
the computational cost of the approach.

With respect to the feature extraction and kernel parame-
ters, we can conclude that: a) in general, the performance of the
X2 version of the kernel is better, although the runtime for the
computation of the HIK is the lowest; b) the performance of the
3DSP-K-Repre approaches is slightly better than for 3DSP-K-
Disc versions. Note that these two selective approaches signifi-
cantly reduce the dimensionality of the histogram-based repre-
sentation, while the performance does not worsen.

in the test set for the TOSCA+SUMNER dataset. Observe the
deformations and changes of orientation of the different models.
The 3DSP is able to correctly classify all of them correctly, even
with a pyramid structure with L = 2.

5.5.2. Invariance to rotation and deformation

Definitely, one of the limitations of the 3DSP representa-
tion is its ability to deal with isometric transformations and de-
formations of the 3D shapes. It is important to analyze these
aspects, because, when dealing with 3D data, the objects are
rarely observed in a canonical frame of reference with respect
to orientation. This is specially relevant to 3D categorization
systems, where the test 3D shapes are generally given in arbi-
trary scale, position and orientation in 3D-space. Furthermore,
these arbitrary orientations do not necessarily correspond to the
orientations of the training samples.

In this section, we analyze the influence of the different
parameters of the 3DSP approach on the recognition perfor-
mance under rotations and deformations of the 3D shapes. For
this analysis, we have decided to use the TOSCA+SUMNER
dataset (this database presents a high variability in terms of both
deformations and changes of orientation of the 3D models).

First, note that in the pipeline proposed for the 3DSP, we
do not control the orientation of the 3D shapes given, i.e. the
scaling and centering process shown in Figure 4 does not mod-
ify the original orientation of the shape. The 3DSP is able to
capture the spatial distribution of the local features extracted
from the training 3D shapes at different scales and locations
in a predefined working volume. Because the 3DSP only learns
the geometric cues from the training data, it has some rotational
variability.

If we inspect the 3D shape categorization results in the TOSCA

+ SUMNER dataset we observe that the 3DSP is able to deal



Figure 11: All the testing 3D shape models are rotated incre-
mentally, in steps of Fradians. This figure shows an example of
these rotations for a camel shape.

quite well with the deformations and rotations of the models.
For instance, as it can be seen in the confusion matrix provided
in Figure 9, for the class horse all the testing 3D shapes are
correctly recognized. Figure 10 shows all the test 3D shape for
the class horse, note the changes of orientation and deforma-
tions. We explain this performance as follows.

The variance of the 3DSP to rotation will specially depend
on the number of levels of the pyramid structure. Essentially,
when L = 0, our 3DSP is a standard BoW approach. Such an
approach is invariant to rotation, if the local features extracted
are also invariant under rotation and scale, which is the case
for the 3D SUREF features used. When L > 0 the variance to
rotation can augment. First, we have to recall that the 3DSP
representation is a weighted ensemble of the histograms at each
of the levels of the pyramid, including L = 0 (see Equation
1). This means that, even for a 3DSP of L > 0, the represen-
tation includes the invariant to rotation histogram for level 0.
Additionally, it might happen that the rotation (or deformation)
is so slight that the features involved do not move to different
sub-volumes within the pyramid. Furthermore, the training data
might provide similar rotation and deformation configurations
to the ones observed during testing. These reasons explain the
results of the 3DSP model in the TOSCA+SUMNER dataset.

In order to thoroughly evaluate the rotational variability of
our approach, we have performed an additional experiment. It
consist of the following steps. First, we take the previously
trained models on the TOSCA+SUMNER dataset with the HIK
kernel, for L = 1 and L = 2, and with a vocabulary of size
1000. For all the test 3D shapes, we incrementally rotate them
from 0 to %, in steps of 7 radians (see Figure 11). After each
rotation, the 3D SURF descriptors are computed and the 3DSP
representation is build. In Figure 12 we show the classification
performance versus the change in orientation.

First, Figure 12a shows how the classification accuracy varies
for 3DSP representations when no feature selection methods
are used. It is interesting to observe the performance of the
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Figure 12: Variation of the classification performance versus
rotation variations.

configuration 3DSPMKHIK for L = 0, i.e. a standard BoW ap-
proach where no spatial pyramid is used. This configuration
also shows a decrease of the performance under severe rota-
tions of the models, which indicates that 3D SURF descriptors
are not totally rotation invariant. We experimentally observe
that the higher the level of the pyramid, the higher its rotational
variability. Second, Figure 12b shows that the rotational vari-
ability slightly increases for the Discriminative Feature-based
approach.

We can conclude that the level of the pyramid is the most
significant parameter. So, as for the 2D spatial pyramid [32],
the 3DSP is not fully invariant to rotations and deformations.
Even if the local features used are invariant to rotation, it is im-
portant that all further steps along the 3D shape categorization
pipeline are as well. As a solution, any technique for automati-
cally aligning the 3D shapes into a canonical coordinate frame
(e.g. [35, 36]) could be incorporated to our approach as a pre-
processing stage.



5.6. Timing

The code has been written in Matlab with some parts in C.
To perform the test we used an Intel Core 2 Quad CPU Q6600
@ 2.40GHz, running OS Ubuntu 12.04. The entire approach
is computationally efficient. Recall that the 3DSP representa-
tion uses histogram vectors which are extremely sparse. Three
are the parameters that most affect the runtime of the proposed
pipeline: the vocabulary size, the pyramid levels and the type
of Kernel (HIK or y?). We again used the TOSCA+SUMNER
dataset for this evaluation of the timing information. The over-
all process of building and testing the 3DSP representations for
the 66 test models in the TOSCA+SUMNER dataset takes the
times detailed in Table 5. In general, the runtime slightly in-
creases with the vocabulary size and the pyramid levels. The
results also confirm that the HIK is more efficient than the y?
kernel.

5.7. Testing the 3DSP approach with my own 3D shapes

We encourage the readers to try our methods through the
Collage Platform. In Experiment Code Item 2, readers are al-
lowed to upload the 3D SURF descriptors extracted from their
own 3D shapes. With these descriptors, our algorithms will es-
timate a shape class. We refer to Experiment Data Item 2 to
know more details on how to compute the 3D SURF descrip-
tors, and how to use them with our trained models.

6. Conclusion

In this paper, we introduced the 3DSP representation in
combination with two kernel definitions (the 3DSP-HIK and
the 3DSP-y?) for the problem of 3D shape categorization. A
thorough evaluation of these kernels has been carried out, and
it demonstrates the power of the classification framework pro-
posed on state-of-the-art databases. Rather than simply releas-
ing a set of classification results, we defined an elaborate ex-
perimental setup, which we hope will allow to establish further
comparisons with other methods dealing with the challenging
problem of 3D shape class recognition. Last but not least, we
have released a publicly available version of all the codes and
data needed to reproduce the results.

Bringing in some weak form of textured information (if
available in the 3D shape) is one interesting avenue of future
research that might bring us closer to our goal. One way of do-
ing so is combining the 3DSP approach with appropriate local
3D features, which also capture information from the texture.
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