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We present a novel method for constructing a visual vocabulary that takes into account the class labels of
images, thus resulting in better recognition performance and more efficient learning. Our method con-
sists of two stages: Cluster Precision Maximisation (CPM) and Adaptive Refinement. In the first stage, a
Reciprocal Nearest Neighbours (RNN) clustering algorithm is guided towards class representative visual
words by maximising a new cluster precision criterion. As we are able to optimise the vocabulary without
the need for expensive cross-validation, the overall training time is significantly reduced without a neg-
ative impact on the results. Next, an adaptive threshold refinement scheme is proposed with the aim of
increasing vocabulary compactness while at the same time improving the recognition rate and further
increasing the representativeness of the visual words for category-level object recognition. This is a cor-
relation clustering based approach, which works as a meta-clustering and optimises the cut-off threshold
for each cluster separately. In the experiments we analyse the recognition rate of different vocabularies
for a subset of the Caltech 101 dataset, showing how RNN in combination with CPM selects the optimal
codebooks, and how the clustering refinement step succeeds in further increasing the recognition rate.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A popular strategy for representing images within the context
of category-level object recognition is the Bag-of-Words (BoW)
approach [1,2]. The standard pipeline for this type of systems is
shown in Fig. 1. It starts with the extraction of local features either
at interest points or densely sampled followed by robust descrip-
tion of the features, e.g. using SIFT [3] (see steps 1 and 2 in
Fig. 1). The key idea is to vector quantise the high-dimensional
space of local image descriptors, to obtain a codebook of so-called
visual words, sometimes also referred to as a visual vocabulary
(Fig. 1, step 3). A BoW is then built as a histogram of visual word
occurrences (Fig. 1, step 4). This image representation has been
shown to characterise the images and objects within it in a robust
yet descriptive manner, in spite of the fact that it ignores the spa-
tial configuration between visual words.

These BoW systems have shown impressive results lately [4,5].
Variations on the BoW scheme won the recent PASCAL Visual Ob-
ject Classes Challenge on object classification [6]. Moreover, also
other methods for category-level object recognition often start
with the construction of a visual vocabulary (e.g. [7,8]).

In the literature (e.g. [9]), visual words are sometimes justified
on the basis of their ability to group semantically meaningful ob-
ll rights reserved.
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ject parts such as wheels or eyes, hence narrowing the semantic
gap. In practise though, this only holds for a limited number of
visual words, and only if the dataset is sufficiently coherent (e.g.
only images of one particular object class). When applied to a more
diverse set of images, synonyms and polysemies are, unfortu-
nately, the norm rather than the exception [10].

Using a fixed feature detector and descriptor scheme, different
vocabularies of varying quality can be obtained for the same data
set, depending on several parameters: the number of visual words,
the chosen distance function to measure the similarity between
descriptors, and the clustering algorithm.

These parameters are normally determined empirically, i.e. by
applying a grid search over different parameter combinations,
training the entire system, and selecting the optimal parameter
setting on a validation set. Given that the normally used classifiers
(e.g. SVM) also have their own set of parameters that require tun-
ing, this results in a computationally heavy process, usually spread
over multiple cores or days of processing.

Our aim in this paper is to study how to adapt the vector quan-
tisation process so as to yield class representative visual words, i.e.
how to exploit the class labels information during the process of
vocabulary construction. This allows us to construct an optimal vi-
sual vocabulary without the need for cross-validation in the outer
system-loop.

The contribution this paper makes is twofold. First we propose a
novel cluster precision criterion. This evaluates the clusters repre-
sentativeness. High representativeness is assigned to visual words
minative and semantic visual vocabulary, Comput. Vis. Image Understand.
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Fig. 1. BoW system overview. It starts with the extraction of local features either at
interest points or densely sampled followed by robust description of the features,
e.g. using SIFT [3] (steps 1 and 2). Step 3 consists in vector quantising the high-
dimensional space of local image descriptors to obtain a visual vocabulary. A BoW is
then built as a histogram of visual word occurrences (step 4).
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that generalise well over the within-class variability, yet are
discriminative with respect to the object class (between-class var-
iability). We determine the optimal clustering by maximising this
measure in an agglomerative clustering approach. We refer to this
as Cluster Precision Maximisation (CPM).

Second, a new adaptive cluster threshold refinement scheme is
proposed. It is based on a correlation clustering scheme [11], and
its objective is to increase the recognition rate and representative-
ness of the codebook while at the same time reducing its size. The
correlation clustering of an n vertex weighted graph is the partition
of vertices which minimises the sum of positive weights that are
cut minus the negative weights that are uncut. The number of
clusters is not fixed by the user, but determined as part of the
clustering process. The key idea behind our refinement procedure
is to exploit the object class label of each feature in a traditional
correlation clustering algorithm, i.e. we consider two clusters to
be similar if their features come from the same object classes. A
meta-clustering step such as this might also be useful in other
scenarios (as long as cluster similarity is well-defined). To the best
of our knowledge, this is the first paper to describe a correlation
clustering approach within this context.

Both contributions pursue the same objective: to increase the
representativeness of the visual words. The basic assumption be-
hind the whole paper is that the better this representativeness,
the better the classification rate (and this will indeed be validated
experimentally as well).

Fig. 2 shows two examples of visual words. The first (upper
row) represents a bad cluster with image patches that clearly come
from different object classes and from single object instances, not
generalising well within the class. The second example (lower
row) on the other hand, shows a class representative visual word
found almost exclusively on objects of a single class and including
different instances of this class. Our goal is to have more clusters of
Fig. 2. First row: image patches that have been clustered together. Clearly all come
from different object categories and from single object instances. Second row:
cluster with image patches of the same object category and from different instances
of the class, i.e. it contains class representative visual words.
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the latter type than what one normally gets when using e.g. stan-
dard K-means clustering.

1.1. Overview

The rest of the paper is organised as follows. Section 2 gives an
overview of the related literature. Section 3 first formalises the
cluster precision computation problem, then gives a complete
description of the CPM approach. The adaptive threshold refine-
ment using correlation clustering is explained in Section 4. Section
5 shows the results obtained and Section 6 concludes the paper.
2. Related work

This section gives a brief survey of recent work on both class
representative visual words and correlation clustering.

2.1. Class representative visual words

First, there are several works based on frequent itemset mining
[12–16]. Typically, these methods look for frequent co-occurring
groups of descriptors in a transaction database obtained from the
training images. These often correspond to larger, higher level fea-
tures that are semantically more meaningful than the composing
elements/original features separately (e.g. a wheel rather than an
edge or corner).

In a similar spirit, others have tried to add more local geometric
information to their codebook generation algorithms. Lazebnik
et al. [17] constructed a codebook with groups of nearby regions
whose appearance and spatial configuration occur repeatedly in
the training set. In [18] Leibe et al. presented how to learn seman-
tic object parts for object categorisation. They use what they call
co-location and co-activation to learn a visual vocabulary that gen-
eralises beyond the appearance of single objects, and often obtains
semantic object parts.

Perronnin et al. [19] combine a universal vocabulary with class-
specific vocabularies to improve the performance of the recogni-
tion system, in spite of the increased cost of histogram computa-
tions. To obtain more compact vocabularies Winn et al. [20]
proposed an approach based on the bottleneck principle, while
Moosmann et al. [21] organised the vocabulary using Extremely
Randomised Clustering Forests. Finally, Perronnin et al. [22] have
proposed the use of Fisher Kernels. Their gradient representation
has much higher dimensionality than a histogram representation,
resulting in very compact vocabularies yet highly informative
representations.

However, in the previous works, the derived vocabularies are
not universal. When one needs to add new categories, the whole
system needs to be fully retrained. Furthermore, it has been ob-
served, even on databases containing a restricted number of cate-
gories (e.g. 610), that using more visual words first results in
better performance [22]. But increasing the number of visual
words to certain levels finally saturates the performance of vision
tasks. To find the optimal codebook size is a complex procedure
that should be as effective as possible.

In order to overcome these limitations we present an efficient
method for obtaining class representative visual words. It auto-
matically determines the codebook size that allows the best recog-
nition rates by maximising the precision of clusters.

Closer to our approach are the works of Mikolajczyk et al. [23]
and Stark et al. [24]. In [23] the performances of local detectors
and descriptors are compared within the context of object class
recognition, and a new evaluation criterion based on the clusters’
precision is proposed. However, following this approach, clusters
with features from only one object instance get high precision
iminative and semantic visual vocabulary, Comput. Vis. Image Understand.
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scores. Stark et al. [24] give higher scores to feature descriptors
that generalise across multiple instances of an object class, and
propose a new cluster precision definition, but their approach
obtains the best score for the degenerate case when each cluster
contains only one vector. Nevertheless, our methodology is able
to identify a maximum for the clustering precision, as well as to
predict how the classifier will perform.
2.2. Background: correlation clustering

There is an extensive literature on the problem of correlation
clustering, first defined by Bansal et al. [11]. They consider the
problem of having a complete graph of n vertices, where each edge
(u, v) is labelled either +1 or �1 depending on whether u and v
have been deemed to be similar or different. The objective is to
partition the nodes in order to minimise the number of positive
edges that are cut, and the number of negative edges that are un-
cut. Cutting an edge, means that the nodes are not merged. The
best known approximation algorithm for this problem is by Chari-
kar et al. [25] who give an LP-based algorithm that achieves an
approximation factor of 4. When the edge weights are arbitrary,
the problem is equivalent to the multicut problem shown in De-
maine et al. [26], and there is a O(log n)-approximation bound.
The approach implemented in this paper is based on the correla-
tion clustering technique described by Gionis et al. [27,28], where
a graph with edge weights Wuv satisfying the triangle inequality
must be given. These weights represent how dissimilar vertices
linked by the edge are.

Spectral clustering methods also build a graph, and then try to
find the optimal cut (e.g. normalised cuts [29]). They rely on the
eigen-decomposition of a modified similarity matrix to project
data prior to clustering. Choosing a good similarity graph is not
trivial, and spectral clustering techniques can be quite unstable un-
der different choices of the parameters for the neighbourhood
graphs. Correlation clustering techniques use a fully-connected
graph. Moreover, the number of clusters is determined as part of
the optimisation process, i.e. one does not need to fix the number
of clusters as a separate parameter.
Fig. 3. Left – Following Eq. (1), clustering {C1, C2, C3, C4} obtains cluster precisions of
1 for all classes, that is the same score for a nearly perfect clustering as
fC01;C

0
2;C

0
3;C

0
4g. Right – Can the Eq. (1) determine whether or not cluster C4 is

representative? As it is shown, cluster C4 would get a high score for Pm, but it is not a
class representative cluster. It brings together a lot of features, from class a, but only
one image is represented by it.
3. Obtaining class representative visual words via Cluster
Precision Maximisation

In this section we present a novel methodology for obtaining
more discriminative visual vocabularies. We define a new measure
for cluster precision and show how this measure can be maximised
using a Reciprocal Nearest Neighbours (RNN) clustering algorithm,
resulting in class representative visual words.

Whether a particular clustering (or codebook) is better than the
baseline or not can be evaluated within the context of the entire
system, i.e. by evaluating its effect on the accuracy of the resulting
classifier on a validation set. The main problem with this approach
is clear: to validate just the clustering it is necessary to go through
the system’s entire pipeline. Moreover, this validation usually in
turn involves cross-validation for tuning the parameters of the
classifier. The combinatorics involved results in an explosion of
the number of experiments needed. Moreover the result also
becomes dependent on the classifier chosen.

Our aim is to directly build a codebook whose clusters have a
high precision and representativeness. The Cluster Precision
Maximisation (CPM) method searches directly for class representa-
tive visual words, i.e. representative clusters. The key idea behind
this approach is that, the more images with different object
instances of a particular class contain a particular visual word,
the more representative the word is for that class and the better
the classification based on a codebook that includes it will be.
Please cite this article in press as: R.J. López-Sastre et al., Towards a more discri
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3.1. Cluster precision

Let us assume a database DB containing N images of M different
object classes, DB ¼ fI1; I2; . . . ; INg. For each image in the data-
base we first extract local features f, so an image I i can be repre-
sented with a set of features I i ¼ ffi1 ; fi2 ; . . .g. Note that this will
not be a BoW representation until the vector quantisation is done.
After the clustering, a codebook W ¼ fw1;w2; . . . ;wKg with K
words is obtained, and thus the images can be represented with
it. See Fig. 1 for a graphical overview of a traditional BoW
approach.

3.1.1. Cluster precision following Mikolajczyk et al. [23]
A codebookW can be evaluated by computing the average clus-

ter precision for all the object classes. Suppose there are K clusters
in the vocabulary, but only Km for which class m dominates, i.e.
clusters where there are more vectors belonging to class m than
any other. Mikolajczyk et al. [23] define the average precision for
a given object class m as

Pð½23�Þ
m ¼ 1

Km

XKm

j¼1

pjm
; ð1Þ

where pjm
is the number of features of class m in cluster j divided by

the total number of features in cluster j.
Eq. (1) was used in [23] for comparing the performance of sev-

eral local detectors and descriptors within the context of object
recognition. The main problem with Eq. (1) is that clusters for
which none of the classes dominate do not have any impact on
the score at all. For instance, in Fig. 3 (left), the clustering {C1, C2,
C3, C4} obtains cluster precisions of 1 for all classes, that is the same
score as for a nearly perfect clustering as fC01;C

0
2;C

0
3;C

0
4g. Moreover,

Eq. (1) can obtain high scores for those clusters that contain fea-
tures from only a single object instance, as shown in Fig. 3 (right).

3.1.2. Cluster precision following Stark et al. [24]
Stark et al. [24] discount such clusters by summing over the

fraction of objects of a class m in cluster j ðp0jm Þ instead of individual
features, and weight these fractions by cluster sizes, obtaining a
new expression,

Pð½24�Þ
m ¼

XK 0m
j¼1

sj

 !�1XK 0m
j¼1

sjp0jm ; ð2Þ

where j now ranges over all K 0m clusters in which objects of class m
dominate and sj is the total number of features in cluster j. This new
cluster precision definition gives higher scores to clusters that gen-
eralise across multiple instances of an object class. However, it casts
the maximum score when each cluster contains only one vector
again.
minative and semantic visual vocabulary, Comput. Vis. Image Understand.
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Fig. 5. P(t) evolution in a CPM execution.
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3.1.3. Our cluster precision formulation
Because neither of the two previous cluster precision definitions

seem to meet our goal of selecting class representative visual
words without artefacts, we propose a new cluster precision, this
time summing over the number of features of class m times the
number of objects of class m in each cluster,

Pm ¼
K
M

XK

j¼1

sjm njm ; ð3Þ

where sjm is the number of features found in images of object class
m in cluster j; njm is the number of different objects of class m
represented in cluster j, K is the number of clusters and M is the
number of classes. This is illustrated in Fig. 4. This new cluster
precision definition varies from S � Sm/M (when there is a cluster
per feature), to Sm � Nm/M (when one cluster brings together all
the features), Sm being the number of features extracted from
images of the object class m, S the total number of extracted
features and Nm the number of different images of class m in the
database.

3.2. Cluster Precision Maximisation

Eq. (3) is the core of the CPM approach. With this new formula-
tion, it is possible to evaluate the cluster’s precision and represen-
tativeness after each iteration i of the agglomerative hierarchical
clustering. Let RNN(ti) be the execution of the RNN clustering algo-
rithm with threshold ti in the iteration i, then the overall cluster
precision is

PðiÞ ¼
XM

m¼1

PðiÞm ; ð4Þ

where superscript i indicates the iteration number and we sum over
all object classes. The aim of CPM is finding the value of the thresh-
old ti that maximises Eq. (4)

topt ¼ argmaxti2½tmin ;tmax � PðiÞ: ð5Þ

These threshold limits tmin and tmax must be chosen depending on the
distance function used and the normalisation carried out with the
data. Fig. 5 shows how P(i) evolves while the threshold varies in each
iteration. For the first iteration, e.g. t0 = 0, RNN casts only singletons
and P(i=0) = S2/M. As the threshold increases, P(i) should also grow until
a maximum is reached (t = topt). Then it quickly drops until RNN casts
only one cluster bringing together all vectors (t = tmax) and

Pði¼maxÞ ¼
XM

m¼1

Sm � Nm

M
: ð6Þ

Normally Smo Nm, so P(i=0)
o P(i=max). The experiments must con-

firm what is shown in Fig. 5, i.e. whether the CPM approach is able
to find a maximum for (4). In Appendix A we analyse that P(i) cannot
Fig. 4. Cluster Cj contains features from three different classes {a, b, c}. Eq. (3) takes
into account the number of objects instances represented by the cluster Cj, i.e. the
number of different images from which the local features are extracted.
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stabilise if any clusters are merged, i.e. the precision does not
plateau at a maximum.

Algorithm 1 describes both the RNN clustering algorithm and its
integration in a Cluster Precision Maximisation (CPM) approach.
For the RNN clustering algorithm, we have chosen the efficient
implementation described in [8], which has O(N2d) time and O(N)
space complexity.

Algorithm 1. RNN clustering algorithm integrated in a CPM
approach

Pmax = 0
for thres = min to max do

C = ;; last 0; lastsim[0] 0; C contains a list of clusters
L[last] v 2 V; R Vnv; Start chain L with a random vector v
while R – ; do

(s,sim) getNearestNeighbor(L[last],R);
if sim > lastsim[last] then

last last + 1; L[last] s; R Rn{s}
else

if lastsim[last] > thres then
s agglomerate(L[last],L[last � 1]); R R [ {s};

last last � 2
else

C C [ L; last �1; L = ;;
end if

end if
if last < 0 then

last last + 1; L[last] v 2 R; R Rns
end if

end while
P getP(C); //Evaluate P
if P > Pmax then

Pmax P; Coptimum C;
end if

end for
4. Correlation clustering based refinement step

In this section, an adaptive threshold refinement step for com-
pacting the codebook while further increasing the average recogni-
tion rate in categorisation is described.

Just like the K-means algorithm, the agglomerative clustering
algorithms in general, and the RNN clustering algorithm in partic-
ular, have several known deficiencies. The RNN algorithm over-
comes those related to both the time and space complexity
which are often significantly higher for agglomerative methods.
It is clear that it is not necessary to fix the number of clusters
beforehand, but a cut-off threshold must be provided instead,
which divides the high dimensional vector space into clusters with
a compactness that is always below the threshold. Because this
threshold is the same for all clusters, it may occur that some real
clusters are still split into several clusters.
iminative and semantic visual vocabulary, Comput. Vis. Image Understand.
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Fig. 7. Example of correlation clustering. Solid edges indicate weight 0, and dashed
edges indicate weight 1. Observe the algorithm cuts edge (C1, C2) with weight 0,
while it does not fail to cut edges with weight 1. The result is depicted on the right.
Two clusters, one containing {C2, C3} and the other {C1, C4, C5}.
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Moreover, in our experiments we found that after an RNN clus-
tering algorithm execution, e.g. with the threshold obtained by the
CPM approach, there is often lots of singletons, i.e. clusters with
only one vector. This can be explained by the fact that during the
clustering process chains of NN are sometimes discarded. This in-
creases the size of the codebook and has a negative impact on
the computation time during the on-line classification.

One possible solution is to consider these points as outliers, so
they are not used to define any cluster centre. They can then sim-
ply be assigned to the nearest cluster centre after the clustering is
finished. But following this approach we neither guarantee the
resulting clusters are class representative, nor increase the dis-
criminativity of the codebook.

Here, we explore whether it is not possible to follow a different
policy for decreasing the number of clusters while pursuing this
threefold objective: (1) to integrate the smaller clusters in bigger
clusters to obtain more representative visual words, (2) to obtain
compact codebooks and (3) to increase the recognition rate of
the overall system. In this section we describe a new correlation
clustering based refinement step so as to obtain an adaptive
threshold scheme where the clusters are merged in accordance
with the qualitative information we have.

The idea is simple. It is illustrated in Fig. 6. Once the clustering
has been done, e.g. following the CPM approach with an RNN clus-
tering algorithm, it is possible to construct a complete graph with K
vertices, one per cluster, where each edge (Cu, Cv) is labelled either
0 or 1 depending on whether the clusters Cu and Cv have been
deemed to be similar or different, respectively.

In our approach, how similar two clusters are depends on: the
distance between the cluster centres, their sizes, and on the class la-
bels of the features they bring together. One of the objectives is to
reduce the number of small clusters, but not to merge clusters that
have nothing in common. That is why the class labels are used. The
label of each feature in a cluster is known, i.e. which class it belongs
to. Only those clusters with classes in common may be merged by
this refinement step.

Once such a graph is built the goal is to find a partition of the
vertices of the graph that minimises the sum of 0 weight edges that
are cut minus the 1 weight edges that are uncut. This is achieved
by the correlation clustering algorithm proposed by Bansal et al.
[11]. An example of correlation clustering on a graph with 5 verti-
ces is shown in Fig. 7.

4.1. Clustering refinement algorithm

The clustering refinement algorithm first builds a complete
graph G0. Let C = {C1,C2, . . . ,Ck} be the complete set of clusters.
S is the set of small clusters in C, and the rest of clusters belong
to S, so C ¼ S [ S. We consider a cluster small if the number of
vectors it contains is below a fixed threshold. All the edges in G0

joining two clusters in S are labelled with 1. Furthermore, all the
Fig. 6. Correlation clustering based refinement. Solid edges indicate weight 0, and
dashed edges indicate weight 1. Observe singleton Cu, which is clustered with the
one of the same class Ca, even though it is nearer to Cb but they do not share features
with the same class label.
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edges linking clusters that have no features with the same class la-
bels are labelled with 1 (recall Fig. 6). The remaining edges of G0

are labelled with the distance between centroids. For the experi-
ments we report results using the Euclidean distance between
centroids.

Now the adaptive threshold merging of clusters begins. In each
iteration the algorithm increases the threshold ti. Let tmin and tmax

be the minimum and maximum threshold respectively, and ti the
threshold to be used in the iteration i. At the beginning of each iter-
ation Gi = G0. Edges in Gi with distance over ti are automatically la-
belled with 1. Suppose N is the number of nodes in Gi that might be
merged, i.e. vertices whose common edges have a distance d 6 ti.
These edges are labelled with 0 in Gi, which becomes a binary
graph. Then the correlation clustering approach is run over the
graph, and a new codebook for each iteration is obtained. Until tmax

is reached the procedure is repeated. Since we can no longer rely
on the cluster precision at this stage (giving rise to too many sin-
gletons), we use cross-validation in this final step, i.e. for every
new codebook a classifier is trained and the average class recogni-
tion rate is measured. At the end of this refinement process the
codebook allowing the best recognition results is selected.

This refinement procedure can be run iteratively. For instance,
we first run the refinement for reducing the singletons. With the
resulting codebook, we run again the correlation clustering ap-
proach for reducing clusters up to size 2, and so on.

As described earlier, in each iteration a correlation clustering
algorithm is run. This correlation clustering works as a meta-
clustering refinement merging clusters, reducing the codebook size
and increasing the recognition rate. It is possible to apply any cor-
relation clustering algorithm described in [11]. However, we pro-
pose a correlation clustering following the formulation detailed
in [28]. This algorithm takes a complete graph Gi as input. The algo-
rithm goes through the nodes in Gi, i.e. the centroids, and it consid-
ers merging them with a different centroid or allowing them to
continue being alone. A node is merged with the cluster that yields
the minimum cost. The process iterates until there is no move that
can improve the cost or a maximum number of iterations has been
exceeded. The cost function used in this approach is similar to the
one proposed in [28] for correlation clustering. Given a complete
graph Gi, each edge (Cu,Cv) has weight Wuv 2 {0,1}. The cost
cðCu;C

0
iÞ of assigning node Cu to a new cluster C0i is computed as

follows

cðCu;C
0
iÞ ¼

X
Cv2C0i

Wuv þ
X

Cv2C0i

ð1�WuvÞ: ð7Þ

The first term is the cost of merging Cu in C0i, while the second is the
cost of not merging node Cu with nodes not in C0i. The experiments
show that the algorithm is quite effective, improving the
recognition rate from a clustering partition obtained with an RNN
algorithm while the size of the codebook is dramatically reduced.
minative and semantic visual vocabulary, Comput. Vis. Image Understand.
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Fig. 8. Images examples from the subset of the Caltech 101 database used in the experiments. Note that some images have a partially black background due to artificial image
rotations (e.g. corners of the third butterfly image).
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5. Experiments

In the experiments we show how the CPM succeeds in finding the
threshold which obtains a maximum for the cluster precision. It is
shown that the average classification rate drastically drops with
codebooks obtained with thresholds over this threshold; further-
more the best results in classification are obtained by codebooks
with high values of cluster precision (CP). We also show how the cor-
relation clustering refinement algorithm improves the average rec-
ognition rate while reducing the size of the codebooks.

5.1. Experimental setup

We use a subset of the Caltech 101 database [30]. This dataset
contains 101 object categories with 40–800 images per class. Most
of the images in the database have little or no clutter. Furthermore,
the objects tend to lie in the centre of the images and appear in
similar poses. Some images have a partially black background
due to artificial image rotations. For our experiments we have ran-
domly chosen the following 10 categories: ewer, sunflower, kanga-
roo, starfish, trilobite, menorah, helicopter, butterfly, brain and
grand piano. In the experiments we randomly select 50% of the
images for training the system. Some of the images are shown in
Fig. 8. More details are summarised in Table 1.

We show results using a traditional BoW approach, which is
based on regions of interest and not on dense sampling, although
the latter has been shown to outperform interest point detector
based methods in image classification [19]. The objective of this
paper is to demonstrate that the CPM procedure is able to identify
the thresholds for a RNN agglomerative clustering that cast the
best results in recognition of object classes.

There are many different techniques for detecting and describ-
ing local image regions [31,32]. Here we use the Hessian-Laplace
detector [32] and SIFT [3] as descriptor.1
1 The binaries have been taken from http://www.robots.ox.ac.uk/�vgg/research/
affine/.
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For classification we use SVM with the kernels most widely
used within the context of category-level object recognition in
images: Histogram Intersection Kernel [33] (HIK) and the extended
Gaussian kernel with v2 distance [5] (i.e. the v2-Kernel). We also
present, for comparison, results obtained with general radial basis
functions using Euclidean distances between the histograms.

Specifically, we use libSVM [34] and the built in one-versus-one
approach for multi-class classification. A 10-fold cross-validation
on the train set to tune SVM parameters is conducted. When the
RBF kernel is used two parameters need to be tuned: C and r.

The HIK applied to two feature vectors (histograms of visual
words) Hx and Hy of dimension D is defined as

kðHx;HyÞ ¼
XD

i¼1

minðHxðiÞ;HyðiÞÞ: ð8Þ

For this particular case, only the C parameter needs to be tuned.
When the v2-Kernel is used, we first compute the v2 distance be-
tween feature vectors Hx and Hy as

dv2 ðHx;HyÞ ¼
1
2

XD

i¼1

ðHxðiÞ � HyðiÞÞ2

HxðiÞ þ HyðiÞ
: ð9Þ

The kernel function based on the v2 distance is then defined as

kðHx;HyÞ ¼ e�
1
rdv2 ðHx ;HyÞ; ð10Þ

where r is a scalar which normalises the distances. It is possible to
fix this r parameter to the mean of all distances, or to tune it
through the cross-validation approach. In our experiments the lat-
ter has not shown better results, so to reduce training time we
opted for the former.

5.2. CPM performance with RNN clustering

In these initial experiments the first objective is to analyse the
performance of the CPM approach. Fig. 9a confirms what was
predicted in Section 3.2: the CP reaches a maximum for a specific
iminative and semantic visual vocabulary, Comput. Vis. Image Understand.
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Table 1
Outline of the number of images and features (for training and testing) obtained from
the subset of the Caltech 101 database.

Dataset #Images (trainingjtest) #Features (trainingjtest)

Caltech 101 subset 446j444 55,679j56,590

Total 890 112,269
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Fig. 9. (a) CPM performance. The threshold resulting in the maximum CP is
topt = 0.25 for the Caltech 101 subset. A comparison with the cluster precision
measures of Mikolajczyk et al. [23] and Stark et al. [24] is shown too. (b) Average
classification rate recognition versus Clustering threshold. For the RBF kernel, the
codebook with the highest CP obtains the highest classification rate. For the HIK and
the v2-Kernel the maximum of the CP does not coincide with the maximum of the
classification rate. Nonetheless, the HIK and the v2-Kernel obtain the best results
for thresholds near topt. Furthermore, it can also be seen that for thresholds over topt

the classification rate drastically drops.
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threshold (topt = 0.25) for the subset of Caltech 101 database, and
then it quickly drops to suboptimal values. The experiments con-
firm that there are no local maxima either. Moreover, Fig. 9a shows
a comparison of our cluster precision formulation in Eq. (3) with
the formulations in Eqs. (1) and (2), proposed by Mikolajczyk
et al. [23] and Stark et al. [24] respectively. While our cluster
precision obtains a maximum for a specific threshold, the other
Please cite this article in press as: R.J. López-Sastre et al., Towards a more discri
(2010), doi:10.1016/j.cviu.2010.10.009
formulations are monotonically decreasing functions. Both preci-
sion measures (1) and (2) start with a maximum (when all the
clusters are singletons), and drop until all the features are assigned
to only one cluster.

The experiments also confirm that the CPM is able to identify
for a RNN clustering the thresholds that allow the best recognition
rates. In each iteration of the CPM, we fix a threshold and obtain a
visual vocabulary using the RNN clustering algorithm. With this
codebook, we train and test the classifier using the kernels de-
scribed in Section 5.1. The average recognition rate that the classi-
fier obtains on the test images is shown in Fig. 9b. For the RBF
kernel, the codebook with the highest CP obtains the highest clas-
sification rate. For the HIK and the v2-Kernel the maximum of the
CP does not coincide with the maximum of the classification rate.
Nonetheless, the HIK and the v2-Kernel obtain the best results for
thresholds near topt. Furthermore, it can also be seen that for
thresholds over topt the classification rate drastically drops. That
is, the codebooks obtained with thresholds over the upper bound
topt, defined by the maximum of CP, result in poor recognition rates
for the three different types of kernels. As we are able to avoid
expensive cross-validation through the optimisation of vocabulary,
the CPM method significantly reduces the overall training time
without a negative impact on the results. Finally, Fig. 9 shows that
among the three precision measures, ours is the only one that
allows to predict how the classifier is going to perform.

5.3. Correlation clustering based refinement

The results obtained with a traditional BoW approach, or build-
ing the codebook with an RNN clustering algorithm and the CPM
methodology, can be improved further by the meta-clustering
algorithm described in Section 4.

We first run the correlation clustering based refinement for
reducing the number of singletons. The algorithm is initialised
with the codebook obtained with an RNN with threshold 0.25.
The threshold is increased from 0.25, in steps of 0.05, until a max-
imum of 0.9 is reached. After each iteration the average recognition
rate is measured. For this experiment we use the v2-Kernel which
reported the best results in [4,5]. Testing with the Caltech 101 sub-
set of images, this refinement step finds that the best average rec-
ognition rate is obtained when the cut-off threshold varies from
0.25 to 0.9. This means that some clusters have been merged by
the correlation clustering algorithm, and that the maximum
threshold for some of them is now 0.9. The refined codebook is
now made up of clusters with different cut-off thresholds, that is,
these thresholds have been separately optimised for each cluster.
The average classification rate after this first iteration has been in-
creased from 43.4% to 52.5%, while the codebook size has been
drastically reduced from 17,575 to 6614, i.e. by 63%. This huge
reduction is due to the high number of initial singletons the code-
book had. Table 2 presents the confusion matrix for the classifier
trained with the codebook before and after this first adaptive
threshold refinement. It can be observed how the misclassifica-
tions decrease. So the refinement step obtains more discriminative
codebooks reducing their size, both of which are desirable aspects.

After this first refinement process the resulting codebook has
6614 clusters. It consist of 8 singletons, 1571 clusters of size 2,
1223 clusters of size 3, and the rest of clusters. We again run the
correlation clustering based refinement process, but this time with
the aim of merging the clusters of size up to 3. The algorithm is ini-
tialised with the codebook obtained in the previous iteration. The
threshold is increased from 0.5, in steps of 0.1, until a maximum
of 0.9 is reached. The best average recognition rate is obtained in
the third iteration, when the cut-off threshold varies from the min-
imum until 0.7. The resulting codebook has 3818 clusters, and it al-
lows an average recognition rate of 58.33%. That is, the average
minative and semantic visual vocabulary, Comput. Vis. Image Understand.
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classification rate has been increased from 52.5% to 58.33%, while
the codebook size has been reduced from 6614 to 3818.

Fig. 10 shows the class recognition rates before and after these
two iterations of the correlation clustering based refinement. It is
important to note that not all the class rates vary in the same
way. In the experiments, in 80% of the classes the recognition rate
is increased.

5.4. A comparison with K-means codebooks

So far we have shown how the CPM algorithm and the correla-
tion clustering based refinement perform with RNN codebooks.
However, the most common clustering algorithm used in BoW ap-
proaches is K-means. So, an experimental comparison with vocab-
ularies obtained with K-means clustering has also been carried out.
Our objective it to evaluate: how the CPM performs in combination
with each clustering algorithm; what recognition performance the
codebook allows; and the computational complexity.

5.4.1. CPM performance
Using the same Caltech 101 subset described above, K-means

codebooks of similar sizes to those obtained with the RNN cluster-
ing have been obtained. For each vocabulary we first measure its
cluster precision. Fig. 11 shows a comparison of the CP obtained
for different K-means and RNN codebooks. Note the CP is similar
at the beginning when the number of clusters is near the number
of features. Once the number of clusters decreases, the CP for
K-means codebooks decreases too. Note that there is no maximum
for the CP when K-means codebooks are used, the CP monotoni-
cally decreases. This is due to the fact that the RNN produces visu-
ally compact clusters, with a high proportion of singletons, which
makes the CP increase when they merge during the first iterations.
With K-means there is neither any guarantee that the clusters are
visually compact nor such a large number of singletons. Because of
the fixed value of K, some cluster centres may lie in-between sev-
eral real clusters. That is, K-means has the defect that, in high-
dimensional spaces, it tends to focus on the high-density area,
resulting in clusters that extend quite far into the less dense areas,
so not compact at all. However, with an agglomerative clustering
algorithm, such as RNN, where the clusters aggregation process
is heavily dominated by the similarity of the vectors they contain,
the CPM is able to identify the threshold limit above which the
average classification rate drastically decreases. This capacity is
important, especially in high-dimensional spaces where the
distances (similarities) tend to concentrate.

5.4.2. Classification performance
We compare the average classification obtained with K-means,

RNN and refined RNN codebooks. The most important results in
classification are shown in Fig. 12. We have used the HIK and the
v2-Kernel for this comparison. It is clear that K-means codebooks
perform better than RNN codebooks, but after the correlation clus-
tering based refinement, the refined RNN codebooks obtain better
results than K-means codebooks for both types of kernels.

5.4.3. Computational complexity
Consider a classical BoW approach using K-means as clustering

algorithm. To find the number of K clusters with which the code-
book allows the best classification rate implies empirically deter-
mining the parameters of the whole system. We define the
run-time of an iteration i for a classical BoW as tðiÞBoW ¼ tðiÞK�meansþ
tðiÞtrain þ tðiÞval, where tðiÞK�means is the run-time of K-means clustering,
and tðiÞtrain and tðiÞval are respectively the time spent training the
classifier and testing with a validation set. Let M be the number
of iterations until the desired classification rate is achieved, we
define tBoW ¼

PM
i¼1tðiÞBoW .
iminative and semantic visual vocabulary, Comput. Vis. Image Understand.
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On the other hand we have the CPM with RNN clustering
scenario. A CPM approach requires the clustering algorithm to be
run with varying parameters, e.g. the threshold for the RNN clus-
tering algorithm. It is possible to perform a full RNN clustering
(i.e. with the maximum threshold) so as to save both the indices
of clusters merged in every step and the similarities between them.
With this information it is possible to rebuild a visual vocabulary
for a different threshold at almost no computational cost. The
run-time for a CPM approach with RNN can then be written as
tCPM+RNN = tRNN + MtCP + (M � 1) tRNNnew, where tCP is the time used
to measure the cluster precision in each CPM iteration, M is the
number of iterations, tRNN is the run-time of a full RNN clustering
algorithm, and tRNNnew is the time taken by the algorithm to
compute the new clusters when the threshold changes using
the saved indices and similarities. Furthermore, tRNNo (MtCP +
(M � 1)tRNNnew), so tCPM+RNN � tRNN.

The RNN clustering algorithm has O(N2d) time complexity,
which is high but almost independent of the number of clusters.
The complexity of K-means is O(NKdl). Recall l is the number of
iterations until the algorithm converges. Within the context of cat-
egory-level object recognition, normally the number of clusters K is
high (sometimes it is in almost the same order as the number of
features N, e.g. [8]). This implies that the run-time for K-means
might exceed the one for RNN when K is large, e.g. [35]. In that
case, tBoW > tCPM+RNN. However, it is possible to use efficient imple-
mentations of K-means, such as [36,37], in order to reduce tBoW. In
our experiments, we have run the K-means algorithm with the
same number of clusters obtained by the RNN algorithm during
the CPM. Specifically, we have used the efficient K-means imple-
mentation described in [36], setting the maximum number of
stages of the K-means algorithm to 10. For the first iteration of both
algorithms (when K is in almost the same order as the number of
features, see Fig. 11), tRNN < tK�means. This implies that, tBoW >
tCPM+RNN.

In terms of run-time, the RNN+CPM procedure is more efficient
than a traditional K-means based BoW approach. However, the
RNN vocabularies do not obtain better classification results than
K-means codebooks until the correlation clustering based refine-
ment is processed. That is, we have to add to the time tCPM+RNN,
the time spent in the refinement, tR. The run-time complexity of
the correlation clustering approach used for clustering refinement
is O(K2I), where K is the number of clusters and I is the number of
iterations the algorithm needs to obtain the final solution. In our
experiments, we have used I = 107, and we have confirmed that
tR + tCPM+RNN < tBoW.
6. Conclusions and future work

In this paper we consider the problem of measuring and
increasing the representativeness of visual words within the con-
text of category-level object recognition. First, we have introduced
an improved measure for cluster precision, as well as a procedure
to optimise the parameters during codebook construction without
cross-validation, by maximising this cluster precision measure.

The CPM method measures the cluster precision for each class
and automatically finds the thresholds for an RNN clustering algo-
rithm that cast the best average recognition rates. A complete
description of the method has been given,2 showing how to inte-
grate an RNN clustering algorithm in it. CPM evaluates the intrinsic
quality of the clusters for a classification task and as a result, allows
us to compare the quality of clusters computed with different
thresholds. Results confirm that the CPM is able to identify a
2 The CPM method and the clustering algorithm are available at http://agame
non.tsc.uah.es/Personales/rlopez/data/cp/.

minative and semantic visual vocabulary, Comput. Vis. Image Understand.
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maximum for the clustering precision, as well as to determine an
upper bound for the codebook size that guarantees the highest cat-
egorisation rates are obtained.

On the other hand, a meta-clustering refinement algorithm has
been presented. To the best of our knowledge, this is the first
correlation clustering based approach for improving the class
representativeness of visual words. The proposed methodology
increases the average recognition rate and also dramatically com-
pacts the size of the codebook.

When large amounts of data are given a more efficient imple-
mentation of the RNN clustering algorithm is highly desirable. So
as future work we plan to optimise the RNN clustering algorithm.
Experimenting with other descriptors, detectors and datasets (e.g.
PASCAL VOC Challenge datasets) will also be considered. Another
line of research involves bringing in local information on the clus-
tering process to discover more semantic and more class represen-
tative visual words.
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Appendix A. Evolution of cluster precision

Fig. 5 depicts the evolution of P(i) through iterations in the CPM
approach. In this appendix we analytically analyse that P cannot
stabilise, i.e. it does not plateau at a maximum, if any clusters
are merged.

For each iteration i, let PðiÞm

n o
be the finite sequence of real num-

bers defined as

PðiÞm ¼
KðiÞ

M

XKðiÞ
jm¼1

sðiÞjm
nðiÞjm

; ðA:1Þ

where KðiÞ; M; sðiÞjm
y nðiÞjm

2 N.
Let i + 1 be the iteration, where we consider that at least two

clusters, say Cu and Cv, have been merged. This implies that the
number of clusters, namely K(i+1), has decreased by one; i.e.
K(i+1) = K(i) � 1. Therefore, one obtains

Pðiþ1Þ
m ¼

KðiÞ � 1
� �

M

XKðiÞ�1

jm¼1

sðiþ1Þ
jm

nðiþ1Þ
jm

: ðA:2Þ

It is possible to develop Eq. (A.2) as follows

Pðiþ1Þ
m ¼

KðiÞ � 1
� �

M

XKðiÞ�2

jm¼1

sðiÞjm
nðiÞjm

 !
þ sðiÞum

þ sðiÞvm

� �
nðiþ1Þ

u[vm

( )
; ðA:3Þ

where nðiþ1Þ
u[vm is the new number of class m object instances repre-

sented in the new cluster Cu[v. nðiþ1Þ
u[vm will depend on whether the

clusters Cu and Cv have features which belong to the same object in-
stances. So to analyse Eq. (A.3), we must consider two possible sit-
uations when merging clusters Cu and Cv: the clusters contain
features which come from the same object instances or from differ-
ent object instances.
A.1. The same object instances in Cu and Cv

Let us assume that no new instance is added to cluster Cu when
merging with Cv, and vice versa. Then nðiþ1Þ

u[vm ¼ nðiÞum ¼ nðiÞvm , therefore
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Pðiþ1Þ
m ¼ KðiÞ�1ð Þ

M

PKðiÞ�2

jm¼1
sðiÞjm

nðiÞjm

 !
þ sðiÞum þ sðiÞvm

� �
nðiÞum

( )

¼ KðiÞ�1ð Þ
M

PKðiÞ
jm¼1

sðiÞjm
nðiÞjm

 !
¼ PðiÞm 1� 1

KðiÞ

� �
:

ðA:4Þ

Due to K(i) > 1, then Pðiþ1Þ
m < PðiÞm . So, if no new view is added when

merging the clusters, the cluster precision for each class decreases.

A.2. Different object instances in Cu and Cv

Let dðiþ1Þ
um

and dðiþ1Þ
vm

be the number of new class m object in-
stances added to cluster Cu when merging with cluster Cv and vice
versa, respectively. Then,

nðiþ1Þ
u[vm ¼ nðiÞum

þ dðiþ1Þ
um
¼ nðiÞvm

þ dðiþ1Þ
vm

: ðA:5Þ

Once this merging is done the cluster precision for class m can be
expressed as follows

Pðiþ1Þ
m ¼

KðiÞ � 1
� �

M

XKðiÞ�2

jm¼1

sðiÞjm
nðiÞjm

 !
þ sðiÞum

þ sðiÞvm

� �
nðiÞum
þ dðiþ1Þ

um

� �( )
;

ðA:6Þ

and by algebraic manipulation

Pðiþ1Þ
m ¼ PðiÞm �

PðiÞm

KðiÞ
þ

KðiÞ � 1
� �

M
sðiÞum

dðiþ1Þ
um
þ sðiÞvm

dðiþ1Þ
vm

� �
: ðA:7Þ

It is straightforward to note that Pðiþ1Þ
m ?PðiÞm when

� PðiÞm

KðiÞ
þ

KðiÞ � 1
� �

M
sðiÞum

dðiþ1Þ
um
þ sðiÞvm

dðiþ1Þ
vm

� �
?0; ðA:8Þ

which implies

sðiÞvm
dðiþ1Þ

vm
þ sðiÞum

dðiþ1Þ
um

� �
>

MPðiÞm

KðiÞðKðiÞ � 1Þ
! Pðiþ1Þ

m > PðiÞm ; ðA:9Þ

sðiÞvm
dðiþ1Þ

vm
þ sðiÞum

dðiþ1Þ
um

� �
<

MPðiÞm

KðiÞðKðiÞ � 1Þ
! Pðiþ1Þ

m < PðiÞm : ðA:10Þ

So when there are different object instances in Cu and Cv, the cluster
precision for each class can either increase or decrease, depending
on Eqs. (A.9) and (A.10).

Iteration by iteration, while the threshold increases and the
RNN clustering is executed, K decreases but clusters grow in terms
of size. When clusters are big, the likelihood of having more differ-
ent object instances represented in a cluster is greater. This implies
that while the threshold increases cluster precision tends to de-
crease as situation described in Appendix A.1 is more probable
than the situation in Appendix A.2.

On the other hand, during the first iterations, when the thresh-
old t is small and the number of clusters K is high, situation in
Appendix A.2 is more probable. When the threshold increases,
sum and svm increase for sure. Moreover, dum and dvm increase during
the first iterations until a threshold after which no new object in-
stances are added when clusters are merged. In the beginning we
can also consider K � S. All this concludes in that condition (A.9)
is more probable during the first iterations and condition (A.10)
for the last ones.

Taken together, these considerations show what happens to Pm

when clusters merge. As shown in Fig. 5 P reaches a maximum.
Where this maximum is depends on given data. Nonetheless, it is
possible to prove that P cannot stabilise, i.e. it does not plateau
at a maximum, if any clusters are merged.

For any Dt > 0, however small, ti+1 = ti + Dt. If any clusters are
merged then P(i+1) – P(i). Let us consider situation in Appendix
iminative and semantic visual vocabulary, Comput. Vis. Image Understand.

http://dx.doi.org/10.1016/j.cviu.2010.10.009


R.J. López-Sastre et al. / Computer Vision and Image Understanding xxx (2010) xxx–xxx 11
A.1, where no new views are added when clusters are merged. As
proved in Eq. (A.4), Pðiþ1Þ

m < PðiÞm , so P(i+1) < P(i).
Suppose now that new views are added when clusters merge,

i.e. situation described in Appendix A.2. Remember that
K; sum ; svm ; dum ; dvm 2 N and PðiÞm 2 Q. Now, the following multivariate
rational function is considered

f ðx1; . . . ; x6Þ ¼ �
x1

x2
þ ðx2 � 1Þ

M
ðx3x5 þ x4x6Þ; ðA:11Þ

Then, equality (A.7) can be expressed as

Pðiþ1Þ
m ¼ PðiÞm þ f PðiÞm ;K

ðiÞ; sðiÞum
; sðiÞvm

; dðiþ1Þ
um

; dðiþ1Þ
vm

� �
; ðA:12Þ

note that K(i) – 0, and hence the above specialisation of f is well-
defined. f can be expressed as f = g/(x2), where g = �x1 + x2

(x2 � 1)(x3x5 + x4x6). In this situation, we observe that the iterative
sequence may stabilise, i.e. Pðiþ1Þ

m ¼ PðiÞm for some i, if g(x1, . . . ,x6) = 0
has zeros over N. In our case, since PðiÞm 2 Q and KðiÞ; sðiÞum ; d

ðiþ1Þ
um

;

sðiÞvm ; dvm 2 N, this phenomenon might happen. Nevertheless, because
of the nature of the experiment and data, in practise this situation
does not occur. In order to formally guarantee that the sequence
never stabilises, one can proceed as follows. It is possible to intro-
duce a small perturbation � in the sequence so as to guarantee that
Pm always varies when clusters merge. More precisely, instead of
working with PðiÞm , we take

eP ðiÞm ¼
KðiÞ

M

XKðiÞ
jm¼1

sðiÞjm
nðiÞjm
þ �

 !
; ðA:13Þ

where � is taken as a real non-rational number; e.g. one might take

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðiÞ=ðKðiÞ þ 1Þ

q
or a similar expression in case it turns to be a ra-

tional number. Now, the important fact is that eP ðiÞm R Q. Under these

new conditions one can prove that feP ðiÞm g never stabilises. Indeed: if

there exists i such that eP ðiÞm ¼ eP ðiþ1Þ
m , one has that

g eP ðiÞm ;K
ðiÞ; sðiÞum ; s

ðiÞ
vm ; dum ; dvm

� �
¼ 0. This implies that eP ðiÞm can be ex-

pressed rationally in terms of KðiÞ; sðiÞum ; s
ðiÞ
vm ; dum ; dvm :

eP ðiÞm ¼
KðiÞðKðiÞ � 1Þ

M
sðiÞum

dum þ sðiÞvm
dvm

� �
: ðA:14Þ

So, eP ðiÞm 2 Q which is a contradiction. So to conclude, it has been
proved that Pm will always vary if at least one pair of clusters is
merged when the threshold changes, i.e. Pm does not stabilise.

References

[1] J. Sivic, A. Zisserman, Video google: a text retrieval approach to object
matching in videos, in: ICCV, 2003, pp. 1470–1477.

[2] G. Csurka, C.R. Dance, L. Fan, J. Willamowski, C. Bray, Visual categorization with
bags of keypoints, in: ECCV, 2004.

[3] D. Lowe, Object recognition from local scale-invariant features, in: ICCV, 1999,
pp. 1150–1157.

[4] K. van de Sande, T. Gevers, C. Snoek, Evaluation of color descriptors for object
and scene recognition, in: CVPR, 2008, pp. 1–8.

[5] J. Zhang, M. Marszalek, S. Lazebnik, C. Schimd, Local features and kernels for
classification of texture and object categories: a comprehensive study,
International Journal of Computer Vision 73 (2) (2007) 213–238.

[6] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The PASCAL
visual object classes (VOC) challenge, International Journal of Computer Vision
88 (2) (2010) 303–338.
Please cite this article in press as: R.J. López-Sastre et al., Towards a more discri
(2010), doi:10.1016/j.cviu.2010.10.009
[7] K. Grauman, T. Darrell, The pyramid match kernel: discriminative classification
with sets of image features, in: ICCV, 2005, pp. 1458–1465.

[8] B. Leibe, A. Leonardis, B. Schiele, Robust object detection with interleaved
categorization and segmentation, International Journal of Computer Vision 77
(1–3) (2008) 259–289.

[9] J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, W.T. Freeman, Discovering object
categories in image collections, in: ICCV, 2005, pp. 1–8.

[10] P. Quelhas, F. Monay, J.-M. Odobez, D. Gatica-Perez, T. Tuytelaars, A thousand
words in a scene, IEEE Transactions on Pattern Analysis and Machine
Intelligence 29 (9) (2007) 1575–1589.

[11] N. Bansal, A. Blum, S. Chawla, Correlation clustering, Machine Learning 56
(2004) 89–113.

[12] A. Gilbert, J. Illingworth, R. Bowden, Fast realistic multi-action
recognition using mined dense spatio-temporal features, in: ICCV,
2009, pp. 925–931.

[13] J. Sivic, A. Zisserman, Video data mining using configurations of viewpoint
invariant regions, in: CVPR, 2004, pp. 488–495.

[14] T. Quack, V. Ferrari, B. Leibe, L. Van Gool, Efficient mining of frequent and
distinctive feature configurations, in: ICCV, 2007, pp. 1–8.

[15] J. Yuan, Y. Wu, M. Yang, Discovery of collocation patterns: from visual words to
visual phrases, in: CVPR, 2007, pp. 1–8.

[16] J. Yuan, Y. Wu, Context-aware clustering, in: CVPR, 2008, pp. 1–8.
[17] S. Lazebnik, C. Schmid, J. Ponce, Semi-local affine parts for object recognition,

in: BMVC, 2004, pp. 779–788.
[18] B. Leibe, A. Ettlin, B. Schiele, Learning semantic object parts for object

categorization, Image and Vision Computing 26 (1) (2008) 15–26.
[19] P. Perronnin, C. Dance, G. Csurka, M. Bressan, Adapted vocabularies for generic

visual categorization, in: ECCV, 2006, pp. 464–475.
[20] J. Winn, A. Criminisi, A. Minka, Object categorization by learned universal

visual dictionary, in: ICCV, 2005, pp. 1800–1807.
[21] F. Moosmann, B. Triggs, F. Jurie, Fast discriminative visual codebooks using

randomized clustering forests, in: Advances in Neural Information Processing
Systems, 2006, pp. 985–992.

[22] F. Perronnin, C. Dance, Fisher kernels on visual vocabularies for image
categorization, in: CVPR, 2007, pp. 1–8.

[23] K. Mikolajczyk, B. Leibe, B. Schiele, Local features for object class recognition,
in: ICCV, 2005, pp. 1792–1799.

[24] M. Stark, B. Schiele, How good are local features for classes of geometric
objects, in: ICCV, 2007, pp. 1–8.

[25] M. Charikar, V. Guruswami, A. Wirth, Clustering with qualitative
information, in: IEEE Symposium on Foundations of Computer Science,
2003, pp. 524–533.

[26] E.D. Demaine, D. Emanuel, A. Fiat, N. Immorlica, Correlation clustering in
general weighted graphs, Theoretical Computer Science 361 (2) (2006) 172–
187.

[27] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, in: International
Conference on Data Engineering, 2005, pp. 341–352.

[28] A. Gionis, H. Mannila, P. Tsaparas, Clustering aggregation, ACM Transactions on
Knowledge Discovery from Data 1 (1) (2007) 1–30.

[29] A.Y. Ng, M.I. Jordan, Y. Weiss, On spectral clustering: analysis and an
algorithm, in: Advances in Neural Information Processing Systems 14, 2001,
pp. 849–856.

[30] L. Fei-Fei, R. Fergus, P. Perona, Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object
categories, in: Workshop on Generative-Model Based Vision, IEEE Proc. CVPR,
2004.

[31] T. Tuytelaars, K. Mikolajczyk, Local invariant feature detectors: a survey,
Foundations and Trends in Computer Graphics and Vision 3 (3) (2008) 177–
280.

[32] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, IEEE
Transactions on Pattern Analysis and Machine Intelligence 27 (10) (2005)
1615–1630.

[33] S. Maji, A.C. Berg, J. Malik, Classification using intersection kernel support
vector machines is efficient, in: CVPR, 2008, pp. 1–8.

[34] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, 2001.
[35] B. Leibe, K. Mikolajczyk, B. Schiele, Efficient clustering and matching for object

class recognition, in: BMVC, 2006.
[36] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, An

efficient K-means clustering algorithm: analysis and implementation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 24 (7) (2002) 881–
892.

[37] C. Elkan, Using the triangle inequality to accelerate k-means, in: Proceedings of
the Twentieth International Conference on Machine Learning, 2003, pp. 147–
153.
minative and semantic visual vocabulary, Comput. Vis. Image Understand.

http://dx.doi.org/10.1016/j.cviu.2010.10.009

	Towards a more discriminative and semantic visual vocabulary
	Introduction
	Overview

	Related work
	Class representative visual words
	Background: correlation clustering

	Obtaining class representative visual words via Cluster Precision Maximisation
	Cluster precision
	Cluster precision following Mikolajczyk et al. [23]
	Cluster precision following Stark et al. [24]
	Our cluster precision formulation

	Cluster Precision Maximisation

	Correlation clustering based refinement step
	Clustering refinement algorithm

	Experiments
	Experimental setup
	CPM performance with RNN clustering
	Correlation clustering based refinement
	A comparison with K-means codebooks
	CPM performance
	Classification performance
	Computational complexity


	Conclusions and future work
	Acknowledgments
	Evolution of cluster precision
	The same object instances in Cu and C?
	Different object instances in Cu and C?

	References


