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Abstract

This paper proposes a novel approach to recognize ob-
ject categories in point clouds. By quantizing 3D SURF
local descriptors, computed on partial 3D shapes extracted
from the point clouds, a vocabulary of 3D visual words is
generated. Using this codebook, we build a Bag-of-Words
representation in 3D, which is used in conjunction with a
SVM classification machinery. We also introduce the 3D
Spatial Pyramid Matching Kernel, which works by parti-
tioning a working volume into fine sub-volumes, and com-
puting a hierarchical weighted sum of histogram intersec-
tions at each level of the pyramid structure. With the aim of
increasing both the classification accuracy and the compu-
tational efficiency of the kernel, we propose selective hierar-
chical volume decomposition strategies, based on represen-
tative and discriminative (sub-)volume selection processes,
which drastically reduce the pyramid to consider. Results
on the challenging large-scale RGB-D object dataset show
that our kernels significantly outperform the state-of-the-
art results by using a single 3D shape feature type extracted
from individual depth images.

1. Introduction

We humans look at a picture and are able not just to see
a pattern of color and texture, but to comprehend it. What-
ever the image depicts, we have the ability to interpret it.
Furthermore, we do this with an astonishing ease.
Image categorization, including category-level object

recognition and scene classification, remains to be a ma-
jor challenge for the computer vision community. Given
an image, the objective is to predict the presence/absence
of at least one object of a particular class. In the last few
years, this problem has been receiving a lot of attention. A
popular strategy for representing images, within the context
of category-level object recognition, is the Bag-of-Words
(BoW) approach [5, 23]. The brilliant idea behind this type

Figure 1. Proposed approach using Selective 3D Spatial Pyramid
Matching Kernels for object recognition in point clouds. We quan-
tize 3D SURF descriptors, extracted from partial 3D shapes com-
puted from single depth images, into 3D visual words. This code-
book is used to represent the objects in a BoW approach. The 3D
SPMK repeatedly subdivides a cube inscribed in the 3D shape, and
computes a weighted sum of histogram intersections at increas-
ingly fine sub-volumes. Selective volume decomposition strate-
gies are proposed, based on representative and discriminative vol-
ume selection processes, which drastically reduce the volume to
consider (see the red sub-volume selected), increasing both the
classification accuracy and the computational efficiency of the ker-
nel.

of representation is to characterize an image by an order-
less set of quantized local features, i.e. the well-known vi-
sual words. This approach has inspired a lot of research
efforts that have obtained impressive results recently (e.g.
[16, 24, 26, 27]), being the basic recipe for most of the
methods submitted to the PASCAL VOC Challenge [6].
Various generative approaches have been proposed (e.g.

[7]). However, nonlinear SVMs methods using Spatial
Pyramid Matching Kernels (SPMKs) [9, 16] have been sys-
tematically obtaining the best results. The most recent
improvements have been achieved by incorporating mul-
tiple local features such as SIFT [17], SURF [2] or color
SIFT [26], into the BoW pipeline [3, 26].
So, we can say that the categorization problem in 2D im-

ages is a well established field of research. But, nowadays,
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we are witnessing how a new generation of depth cameras,
such as Kinect, are capable of offering quality synchronized
images of both color and depth information. The introduc-
tion of these sensors represents an opportunity to explore
how to increase the capabilities of object recognition and
detection approaches [1, 14].
In this paper, we build a discriminative approach for rec-

ognizing object categories in point clouds, which just uses
the information extracted from depth images. Inspired by
the works of Lazebnik et al. [16] and Knopp et al. [13], we
introduce a novel framework for object recognition, which
uses 3D local shape features. The new methodology is de-
picted in Figure 1. We start extracting 3D SURF local de-
scriptors [13] on a partial 3D shape obtained from a point
cloud that a depth camera provides. Note that we do use
a single depth image as input. These 3D SURF descrip-
tors are then quantized, e.g. using K-means, so as to ob-
tain the 3D visual words. We introduce a kernel-based
category-level object recognition approach, which works
adapting the SPMK [16] to work in 3D, i.e. the 3D SPMK.
This novel mechanism involves repeatedly subdividing a
cube inscribed in the 3D shape, building histograms rep-
resentations at increasingly fine sub-volumes, and comput-
ing a weighted sum of histogram intersections. We thor-
oughly explore how the 3D spatial binning and pyramids
affect the performance, and propose selective hierarchical
volume decomposition strategies, based on representative
and discriminative (sub-)volume selection processes, which
drastically reduce the volume to consider (see the red sub-
volumes selected in the cubes of Figure 1), while jointly
increase the classification accuracy and the computational
efficiency of the kernel. Results on the challenging RGB-D
object dataset [14] show that our kernels significantly out-
perform the state-of-the-art results by just using a single 3D
shape feature type extracted from individual depth images.
The rest of this paper is organized as follows. Section 2

describes related work. The 3D SPMK is detailed in Sec-
tion 3. The experimental setup and results are presented in
Sections 4 and 5 respectively. We conclude in Section 6.

2. Related Work
As there exists a large body of work on category-level

object recognition (e.g. [5, 16, 24, 26, 27]), we briefly re-
view in the following only the most relevant to this paper,
i.e. on image categorization using point clouds, 3D shapes
and/or depth images.
The problem of 3D shape class recognition has been ex-

tensively explored, and both local and global features have
been proposed. A considerable variety of global descriptors
have been detailed, such as the shape moments [22] or the
shape histograms [21], for example. Neither partial shapes,
nor intra-class variations are successfully handled by global
descriptions. Moreover, using depth cameras, we do not ob-

tain perfect scans of the environment, and we capture all the
neighboring clutter in addition to the relevant data coming
from the object of interest. Therefore, global descriptors
will be less successful at handling this type of data.
In the 2D case, it is well-known that the use of local fea-

tures is beneficial for the object recognition problem. In
the literature, there are also 3D shape categorization meth-
ods using local features. For instance, Mian et al. intro-
duce the use of local tensors [19], while scale-dependent
and scale-invariant local 3D shape descriptors are proposed
in [20]. Toldo et al. [25] describe 3D shapes by splitting
them into segments, which are then described on the ba-
sis of their curvature characteristics. These descriptors are
then quantized into a visual vocabulary, using a SVM for
classification. Knopp et al. [13] introduce the 3D SURF de-
scriptors in combination with a probabilistic Hough voting
framework for the purpose of 3D shape class recognition.
Our approaches also use their 3D SURF descriptors, but
we propose to build a BoW based approach with them, in
combination with the 3D SPMK for object categorization.
Moreover, we extend their method to work with partial 3D
shapes obtained from depth images and their corresponding
point clouds.
Recently, some approaches combine RGB and depth im-

ages so as to increase the performance in visual categoriza-
tion (e.g. [1, 14, 15]). For instance, Lai et al. [14] bench-
mark the object categorization problem using a combination
of RGB (SIFT [17]) and depth features (spin images [12])
in the very challenging large-scale hierarchical multi-view
RGB-D object dataset, consisting of segmented RGB and
depth images of 300 everyday objects distributed across 51
different categories. In [15], a sparse distance learning ap-
proach is designed for combining RGB and depth informa-
tion. However, in this paper, we show how our selective 3D
SPMK significantly outperforms the state-of-the-art results
reported in the RGB-D object dataset, by just using a single
feature type computed on partial 3D shapes obtained from
depth images.

3. Categorizing Point Clouds
Our goal is to learn models for object categorization in

point clouds. In this section, we detail our proposed repre-
sentation for object categories, and introduce the 3D SPMK,
which can be used in a SVM machinery for object recogni-
tion.

3.1. Category Representation

Our approach is shown in Figure 2. We start capturing a
point cloud that contains the object of interest (Figure 2(a)),
from a single depth image, for example captured with the
Kinect. We then perform a point cloud triangulation so as to
obtain a partial 3D shape. For this step, we use the greedy
surface triangulation method proposed in [18]. For more



(a) (b) (c)

Figure 2. 3D SURF extraction pipeline from a depth image. (a) the
input image is a point cloud obtained by the Kinect depth sensor.
(b) we process the point cloud to obtain a partial 3D shape. (c) 3D
SURF features are extracted and back-projected to the 3D shape.

details, see Section 4.2. Figure 2(b) shows the result of this
triangulation step. Finally, 3D SURF features [13] are ex-
tracted on the partial 3D shape (Figure 2(c)). In contrast
to a global representation, by using, for example, a dense
or random coverage with spin images [12], the 3D SURF
is equipped with an interest point detector, where the de-
scriptors are computed. By following a traditional BoW
approach, we quantize 3D SURF descriptors, into 3D vi-
sual words. Each image can be then characterized by a his-
togram of its 3D visual words.

3.2. 3D Spatial Pyramid Matching Kernel

Nonlinear SVMs methods using SPMKs [9, 16] have
been offering the best performances in object categoriza-
tion systems. The original formulation of pyramid match-
ing was introduced in [9]. The idea of pyramid matching
consists in mapping a set of features to multi-resolution his-
tograms. Then, a comparison between histograms is carried
out using a histogram intersection function so as to approx-
imate the similarity of the best partial matching between
feature sets. Grauman and Darrell [9] demonstrated that the
pyramid match kernel satisfies the Mercer’s condition, i.e.
it guarantees an optimal solution to kernel-based algorithms
based on convex optimization, such as SVMs.
Based on [9], Lazebnik et al. [16] introduced a differ-

ent approach for image categorization: the SPMK. They
propose to perform the pyramid matching in the two-
dimensional image space, while using traditional quantiza-
tion techniques in feature space.
Inspired by [16], we propose to extend the SPMK to the

three-dimensional space, i.e. the 3D SPMK. As it was de-
scribed in Section 3.1, we model a partial 3D shape by an
orderless set of 3D visual words. That is, if we define a vi-
sual codebook of size K, each 3D feature is associated to a
codebook label {1, . . . ,K}. The 3D SPMK should be able
to capture the spatial distribution of such codewords at dif-
ferent scales and locations in a working cube Ω(0). Similar
to [16], but in 3D, we define a pyramid structure by parti-
tioning Ω(0) into fine sub-cubes. For each level l, the vol-
ume of the previous level, i.e. Ω(l−1), is decomposed into
eight sub-cubes (see Figure 3). It is straightforward to see
that, in our formulation, if we build a pyramid of L levels,
P (L), it will have D = 8L sub-cubes.

Figure 3. Example of a 3D spatial pyramid of three levels. The
working volume Ω(0) is recursively decomposed into eight sub-
cubes.

Once the pyramid decomposition of L levels P (L) is
processed, we perform the pyramid matching in 3D. Let us
define H l

X and H l
Y as the histograms for features X and

Y in the level l of the pyramid. We also define H l
X(i) and

H l
Y (i) as the histograms of features X and Y that fall into

the ith sub-cube in the pyramid P (L) for the level l, i.e.
Ω

(l)
i . Only features of the same type can be matched. So

the number of matches at level l is given by the histogram
intersection function as follows

I(H l
X , H l

Y ) =

D�

i=1

min(H l
X(i), H l

Y (i)) . (1)

The 3D SPMK is then defined as the following sum of
weighted histogram intersections

K(X,Y ) = ω0I(H0
X , H0

Y ) +

L�

l=1

ωlI(H l
X , H l

Y ) , (2)

where, wl is set to 1
2L−l . By doing so, we penalize those

matches found in larger volumes, because they involve in-
creasingly dissimilar features.

3.3. Selective 3D SPMK

So far, our formulation can be seen as an extension of
the original SPMK [16] to 3D. One clear disadvantage of
the pyramid decomposition proposed is its high computa-
tional cost. For a pyramid of L levels and K features, we
obtain a vector of dimensionality K

�L
l=0 8

l, i.e. 2l times
more bins in each level with respect to the SPMK [16].
With the aim reducing this dimensionality, but also increas-
ing both the classification accuracy and the computational
efficiency of the 3D SPMK, we introduce two selective vol-
ume decomposition schemes based on representative and
discriminative (sub-)volume selection processes. Note that
our approach significantly differs from [10], where neither
discriminative feature-based, nor representativeness-based
decomposition mechanisms are considered. Furthermore,
in [10] the appearance information is transfered to the 3D



Figure 4. Toy example of the representativeness-based selective
3D SPMK. The process selects the green sub-volume.

points from 2D images where invariant descriptors are com-
puted. However, we recover the invariant information di-
rectly from the sparse point clouds thanks to the 3D SURF
descriptors.

3.3.1 Representativeness-based Selection

Unlike in the 2D case [16], where we can consider a uni-
form distribution of local features across the whole 2D pyra-
mid (specially with a dense feature extraction), in our 3D
formulation, the local features occupy sparse locations in
the 3D working volume. Furthermore, the higher the level
of the pyramid, the lower the size of each sub-cube (e.g. for
L = 2, Ω(2)

i = Ω(0)/64), and the higher the number of
empty sub-volumes.
Thus, with the aim of increasing the computational ef-

ficiency of our approach, rather than simply decomposing
the working volume as it was described in Section 3.2, we
follow a selective approach that will incorporate into the
pyramid, only those (sub-)cubes that are likely to represent
images in our dataset. That is, our objective is to reduce the
large number of uninformative sub-cubes that yield unnec-
essary long histograms.
Let Ω(0) be the working cube for level zero. We first per-

form the pyramid decomposition until level L, so we obtain
Ω

(L)
i sub-volumes, where i = 1, . . . , 8L. We now redefine

the working volume of level zero as Ω̂(0), where the de-
composition only includes those sub-cubes Ω̂(L)

i in which
a percentage p of the images are represented. We consider
that an image I is represented if there is at least one feature
of I falling in the sub-volume. The value of p can be de-
termined empirically in the experiments. We perform this
selective pyramid decomposition just once at the beginning
of the training, and use a set of N randomly selected im-
ages per object category (e.g., in the experiments N = 50),
for computing the representativeness-based selection. A toy
example of this process is shown in Figure 4.
Once the new volume Ω̂(0) has been computed, we can

define the associated pyramid P̂ (L), where we can compute
the histogram Ĥ l

X(i) of the features that fall into the ith sub-
cube Ω̂(l)

i at level l. These histograms will be used in Eq.
(2).

3.3.2 Discriminative Feature-based Selection

The representativeness-based selective method drastically
reduces the working volume. However, it does not exploit
the fact that the volume selected may contain features that
are not discriminative for the classes of interest. In this sec-
tion, we propose the complementary discriminative feature-
based decomposition, where the objective is to select those
cubes that are likely to contain discriminative features. Our
objective is two-fold: continue reducing the working vol-
ume, and improve the classification performance.
We start considering when a particular feature is discrim-

inative enough for a particular class. Assume we are given
a set of images, and each image belongs to a class i, being
N the total number of classes. As it has been described, we
build a visual codebook of sizeK from 3D SURF local de-
scriptors extracted from the images of all the classes. Our
notation is based on a set of features F = {f1, f2, . . . , fK}
which form the visual vocabulary, and a set of measure-
ments Xj extracted from the images. That is, for a set of
3D SURF descriptors, Xj , we assign each one to a feature
fk ∈ F . For each class i, we define Mi, i = 1, . . . , N , as
the total number of descriptors extracted from the images
of the class i. We also define m(fk)

i , as the number of de-
scriptors for the class i that has been assigned to the feature
fk.
So, for a given visual codebook of sizeK, and a set ofN

different classes, we introduce a feature scoring technique
which shall define the score matrix S, of sizeN×K, where
each score sik = S(i, k) is computed as follows

sik = Δk
m

(fk)
i

Mi
, (3)

where,

Δk =

�
N�

i=1

m
(fk)
i

Mi

�−1

. (4)

Each score sik can be seen as the ratio between the per-
centage of descriptors that belong to the feature k in the
class i, and the proportion of descriptors that belong to the
feature k when all the categories are considered simultane-
ously.
Once the score matrix S has been computed, we define a

threshold τ for considering whether a feature is discrimina-
tive for a class. We then obtain the binary matrix S� where

s�ik =

�
1 if sik ≥ τ

0 if sik < τ
(5)

Our next step consist in propagating this discriminative
analysis from the feature-level to the pyramid-level. The
question we want to address is: how do we consider that a
sub-cube Ω(l)

i is discriminative?



Figure 5. Toy example of the discriminative feature-based volume
decomposition for the 3D SPMK. The discriminative features fall
in the green sub-volume selected.

This time, we consider all the training images of all the
classes to compute S�, so we know which are the discrim-
inative features. Given a pyramid of L levels P (L), we
inspect all its sub-volumes. For each sub-volume and each
object class, we measure the proportion of images that con-
tain at least one discriminative feature, and we define this
measure as R(Ω

(l)
i ). If R(Ω

(l)
i ) > β, where β is an em-

pirically fixed threshold, then the sub-volume Ω(l)
i is con-

sidered as discriminative for the analyzed object class. The
final discriminative decomposition is obtained merging all
the discriminative sub-volumes for each category. A toy ex-
ample of this process is shown in Figure 5, where discrimi-
native features fall in the green sub-volumes.
Note that we can run this procedure on top of either

the original pyramid decomposition, or the pyramid decom-
position selected by the representativeness-based criterion.
Furthermore, both selective mechanisms can be run in par-
allel, and then define as the final decomposition, the inter-
section of the two solutions. In our experiments we have
found that normally the representativeness-based is more
restrictive than the other.

4. Experimental Setup
In this section, we briefly introduce the RGB-D Object

dataset, and then we describe in detail the feature extraction
process followed to compute the 3D SURF descriptors from
point clouds.

4.1. RGB-D Object Dataset

In order to test our approach for the problem of object
recognition in point clouds, we have used the challenging
RGB-D Object dataset [14]. It is a large scale set of im-
ages, which contains 300 objects organized into 51 cate-
gories. The dataset provides between 3 to 12 instances in
each category. The images were collected with a RGB-D
sensor that simultaneously records both color images and
depth data at 640 × 480 resolution. The dataset provides
250.000 RGB+Depth images in total, which were recorded
from 3 different zenith directions and 250 azimuth angles.
Figure 6 shows examples of objects of all the categories in
the RGB-D Object database. As we can see, each image
contains only a single object and it has little or no clutter.

Figure 6. Object instances from RGB-D Object Dataset [14]. One
example for each of the 51 object categories is shown.

We evaluate our object categorization approach on this
dataset, following the same experimental setup described
in [14]. For the experiments, we use all the 51 categories.
We subsample the turntable data by taking every fifth video
frame. For image categorization, we randomly leave one
object out from each category for testing, and train the clas-
sifier using the 3D SPMK on all the views of the remaining
objects. The final result is reported as the average per-class
recognition rate. We also present confusion matrices for the
51 categories used.

4.2. Feature Extraction

3D SURF features [13] have been computed using the
RGB-D Object dataset. For doing so, we start reading the
point clouds provided in the dataset. We consider two dif-
ferent approaches for the feature extraction: with and with-
out automatic object segmentation in the point cloud. We
report results using both pipelines. When the object has
to be automatically segmented, we use the known distance
between the turntable and the camera, to remove most of
the background points by taking only the points within a
3D bounding box, i.e. the working volume, where we ex-
pect to find the turntable and the object. Objects are placed
on a turntable, so we can clean the turntable points by run-
ning a RANSAC [8] fit plane algorithm on the point cloud.
Following this automatic procedure, we obtain clean point
clouds for all the object classes in the dataset.
The 3D SURF descriptors have to be computed from a

3D shape. Therefore, the next step consist in obtaining the
partial 3D shape defined by the point cloud. We perform
a point cloud triangulation to each depth image. For doing
so, we follow the greedy surface triangulation method pro-
posed in [18]1. The algorithm works by maintaining a list
of points from which the mesh can be grown and extend-
ing it until all possible points are connected. Triangulation
is performed locally, by projecting the local neighborhood
of a point along the point’s normal, and connecting uncon-
nected points. Above, Figure 2(b) shows an example of this
automatic object segmentation process, and how the trian-
gulation algorithm works.
Each partial 3D shape is uniformly scaled to fit a cube

1We have used the following parameters: number of neighborhood
points = 100, maximum distance between neighborhood points = 2.5, min-
imum angle in each triangle = 10◦, maximum angle in each triangle =
120◦, maximum surface angle = 45◦.



with a side of length 256. Then 3D SURF descriptors of
162 dimensions are computed using the original implemen-
tation provided in [13]. With the aim of covering the full 3D
shape with 3D SURF descriptors, we have experimentally
chosen the following parameters: the distance between tri-
angle mesh and the border of the cube is 30, and the thresh-
old is fixed to 10−8. A result of this 3D SURF extraction
step is shown in Figure 2(c).

5. Experiments
We have conducted two types of experiments. First, in

Section 5.1, we integrate the automatic object segmenta-
tion algorithm in the feature extraction pipeline, and report
classification results following this approach. Next, in Sec-
tion 5.2, we conduct additional experiments where no ob-
ject segmentation is performed, showing that our approach
is able to deal with point clouds with the object of interest
and the clutter coming from the rest of the scene.
For all the experiments, we use a visual vocabulary of

size K = 200. The visual vocabulary is obtained perform-
ing K-means clustering on a subset of the local descriptors
(taking the 3D SURF descriptors of 50 images per class).
We represent each object by a 3D spatial pyramid. Typical
pyramid level values for our experiments are L = 0, 1, 2.
Note that when L = 0, we just have a standard BoW, but
in our case in 3D. To process the 3D spatial pyramids for
L = 2, we directly follow the selective algorithms described
in Section 3.3, i.e. we do not report the performance of the
3D SPMK using the full volume because the amount of
memory needed for representing all the images consider-
ably exceeds our resources.
We use SVMs for classification. As kernel function, we

use our 3D SPMK detailed in equation (2). The multi-class
classification problem is solved training the SVM using the
one-against-one strategy. We follow the approach in [11],
and train N(N − 1)/2 classifiers (being N the number of
classes) where each one is trained on data from only two
classes. For testing, we follow the Max Wins voting strat-
egy [11]: if one of the classifiers votes for the class i, then
the vote for the i-th class is added by one. The class with the
highest number of votes is selected for each image. In case
that two classes have identical votes, we select the one with
smaller index. Specifically, we use libSVM [4] for train-
ing each binary classifier. A 10-fold cross-validation on the
train set to tune SVM parameters is conducted.

5.1. Object Recognition with Object Segmentation

Table 1 shows the results obtained by our approaches,
as well as a comparison with the state-of-the-art methods
[14, 15].
First, let us analyze the performance of our 3D shape fea-

tures, i.e. quantized 3D SURF descriptors. For a pyramid of
level 0, our average classification rate for the 51 classes is

Table 1. Classification Accuracy of different approaches on the
RGB-D Object dataset. kSVM, RF (Random Forest), IDL (In-
stance Distance Learning).

Classification Accuracy
Method Shape Texture All
[14] (kSVM) 64.7 74.5 83.8
[14] (RF) 68.8 74.7 79.6
[15] (IDL) 70.2 78.6 85.4
3D SPMK (L = 0) 72.3 n/a n/a
3D SPMK (L = 1) 93.1 n/a n/a
3D SPMK Representativeness (L = 2) 94.8 n/a n/a
3D SPMK Discriminative Feature (L = 2) 94.6 n/a n/a

72.3%. If we compare with state-of-the-art results, when
only shape features are used, we can see that our approach
outperforms the best results reported in [15] (70.2%), where
spin images are the shape features used. These results reveal
the convenience of using the proposed codebooks of quan-
tized 3D SURF local descriptors for the problem of object
recognition in point clouds.
Next, let us examine the performance of the 3D SPMK.

Table 1 shows that the results improve dramatically as the
pyramid level goes from L = 0 to L = 2. Moreover, it is
important to note that our approach, which just uses a sin-
gle feature type (extracted from a single depth image), sig-
nificantly outperforms the state-of-the-art results [14, 15],
which combine multiple features (SIFT and spin images).
We consider this a remarkable point, which confirms, as
it already did before in the 2D case [16], the capacity of
strengthening image categorization strategies, via combin-
ing 3D spatial pyramid schemes into BoW approaches.
The best results have been obtained by pyramids with

L = 2. We report results using the representativeness-
based and the feature discriminative-based approaches, and
it seems that both of them obtain similar results. For the
former, with p = 0.1, the selective pyramid Ω̂(2) contains
only 14 sub-cubes of the 64. For the latter, with τ and β
fixed to 0.7 and 50% respectively, Ω̂(2) includes only 19
sub-volumes. These results reveal that, by following our se-
lective decomposition strategies, the classification rate and
the computational efficiency jointly increase. Furthermore,
we did not fine tune the parameters β, τ and p, we experi-
mentally observed that they are not critical for classification
performance. We also found that the representativeness-
based method is always more restrictive, i.e. its selected
volume is included within the volume selected by the dis-
criminative feature-based approach. So, the results of the
representativeness-based would be equivalent to the results
obtained by the intersection of the two selected volumes.
The RGB-D Object dataset is a large scale dataset, so

it is also relevant to analyze how our methods perform for
each particular class. Figure 7 shows the results reported
per class for each of our approaches. First, it is important
to note that, for pyramids with L = 2 we obtain a classifi-
cation rate higher than 90% for 84% of the classes. When



L = 0 only 13% of the classes attain an average accuracy
higher than 90%. Figure 7 also shows that the higher the
pyramid level, the higher the minimum classification rate
which increases from 17% (class mushroom, L = 0), to
60% (class tomato, L = 2). Another conclusion is that, our
approach is a shape-based approach, so it is straightforward
to understand that the confusion between classes with a sim-
ilar shape might be high. For instance, this is what happens
for classes tomato, pear and ball. In Figure 8, we also show
confusion matrices for the 51 categories. In general, the
higher the pyramid level, the lower the confusions.

5.2. Recognizing without Object Segmentation

Our approaches are also able to perform visual catego-
rization in the wild, i.e. to work with the whole point cloud
without using any automatic object segmentation approach
which makes use of a priori knowledge of the scene.
For these experiments, we again follow the same experi-

mental setup described, but we use the whole depth image,
and not just the object segmented. Figure 9 compares the
performances of 3D SPMK with and without automatic ob-
ject segmentation. The first conclusion we draw is that for
pyramids with L = 0, the classification rate dramatically
increases (from 72.3% to 86.1%) when no automatic object
segmentation is done. We think this increment is related
with the impreciseness of the segmentation process, where
we lose local descriptors that can help in the recognition
task, specially in the object boundaries. As soon as we in-
crease the pyramid level, e.g. for L = 1, 2, the results of
both approaches are comparable. The best results are ob-
tained for L = 1 without segmentation (95.9%). For pyra-
mids with L = 2 the approach with object segmentation
performs slightly better. It is also interesting to note that
the discriminative feature-based selection works better than
the representativeness-based, which is not able to discard
those features from the background that are not discrimi-
native for an object class. Furthermore, the discriminative
feature-based approach obtains very similar results with and
without segmentation. We consider that this is related with
the fact that the discriminative feature-based approach tends
to select those sub-volumes that contain only discrimina-
tive features, discarding those sub-volumes with features
that are common to all categories (like the background fea-
tures), and we can consider this as an object segmentation
approach but from the feature space.

6. Conclusion
We have presented a novel approach for recognizing ob-

ject categories in point clouds. A BoW approach is pro-
posed, using quantized 3D SURF local descriptors, which
are computed on partial 3D shapes extracted from depth im-
ages. We have also introduced the 3D SPMK and two se-
lective volume decomposition algorithms for increasing the
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Figure 9. Category recognition performances of the 3D SPMK
with and without automatic object segmentation.

classification performance while drastically reducing both
the memory cost and runtime. Experiments on the RGB-
D object dataset show that our kernels significantly outper-
form the state-of-the-art results by using a single 3D shape
feature type.
We plan to integrate our methods in a multiple kernel

learning approach, where we can combine the shape fea-
tures with appearance features extracted from the RGB im-
ages too.
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Figure 7. Classification accuracy for each category. We use a vocabulary size ofK = 200, and the 3D SPMK with (a) L = 0, (b) L = 1,
and L = 2 with the representativeness-based and the discriminative feature-based methods, in (c) and (d) respectively. This figure is best
viewed with magnification.
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Figure 8. Confusion matrices for the 51 categories in RGB-D Object database. Average classification rates for individual categories are
listed along the main diagonal. Results for the 3D SPMK with (a) L = 0, (b) L = 1, and L = 2 with the representativeness-based and the
discriminative feature-based methods, in (c) and (d) respectively. This figure is best viewed with magnification.
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