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Abstract

The design of novel robust image descriptors is still a
formidable problem. Different features, with different capa-
bilities, are introduced every year. However, to explore how
to combine them is also a fundamental task. This paper pro-
poses two novel strategies for aggregating different feature-
based image partitions to tackle the challenging problem
of discovering objects in unlabeled image collections. In-
spired by consensus clustering models, we introduce the Ag-
gregated Partition (AP) approach, which, starting from a set
of weak input partitions, builds a final partition where the
disagreements with the input partitions are optimized. We
then generalize the AP formulation and derive the Selec-
tive AP, which automatically identifies the subset of features
and partitions that further improves the precision of the fi-
nal partition. Experiments on three challenging datasets
show how our methods are able to consistently outperform
competing methods, reporting state-of-the-art results.

1. Introduction
The design of novel image descriptors is a topic that has

been obsessively drawing the attention of the computer vi-
sion research community. Every year, several novel robust
features are introduced. Some of them are hand-crafted,
while others are directly learned from the data, using, for
instance, deep learning. They all come with different capa-
bilities and strengths.

Indeed, this is still a challenging problem. However, in
this paper, we argue that it is also a fundamental task to de-
velop novel models which are able to effectively use and
combine these descriptors in order to improve the perfor-
mance of the approaches in which they are involved.

In particular, we address here the formidable problem of
discovering objects in unlabeled image collections [3, 16,
28, 32]. Note that the setting of this problem is completely
unsupervised: given a set of unlabeled images, the goal is
to separate the different classes.

As illustrated in Figure 1, in this work we propose a
model to discover object categories based on the power of

Figure 1. We show an overview of our AP approach. Given a
group of images, we start building a set of M weak partitions
P = {P1, P2, . . . , PM}. For these partitions different descrip-
tors can be used. Our AP model is able to build the partition P ∗

solving an optimization problem to maximize its purity.

the ensemble of robust descriptor-based image partitions.
Following the motto, “One for all, all for one”, our hypoth-
esis is that by combining the strengths of the different fea-
tures we can improve the performance and robustness of the
discovery of object categories.

Technically, we draw inspiration from consensus clus-
tering algorithms [11, 14, 31], and propose an unsupervised
robust feature-based partition ensembling model: the Ag-
gregated Partition (AP) method. Consensus clustering al-
gorithms consider the following problem: given a set of
clusterings, find a single and robust clustering that agrees
as much as possible with the input weak clusterings. We
show in this paper how consensus clustering can be adapted
to provide a natural solution for the unsupervised object dis-
covery problem.

See Figure 1, we start from a set of weak input parti-
tions for the unlabeled images, which can be obtained us-
ing different features (e.g. GIST [24], LBP [23], PHOG [1],
LLC [35], BoW [5], etc.) in conjunction with different clus-
tering algorithms (e.g. K-mean, Spectral Clustering, etc.).
Our approach is able to build a robust final partition, the AP,
which better discovers the objects. We formulate the com-
putation of this AP as an optimization problem, where the
disagreements of the AP with the input partitions are min-
imized. Furthermore, we then generalize the AP formula-



tion and derive a novel selective approach, the Selective AP,
which is able to identify the subset of the provided weak in-
put partitions that further minimizes the conditional entropy
of the final partition. All this in a completely unsupervised
manner.

The key contributions of our work can be summarized
as follows: 1) to the best of our knowledge, our AP model
(detailed in Section 3.1) is the first one to frame the unsu-
pervised object discovery problem as a consensus clustering
based approach; 2) with the formulation of the novel opti-
mization problem for the Selective AP (see Section 3.2), we
not only generalize the AP (and any other consensus clus-
tering model), but introduce a new approach, based on a
simple weighting mechanism for the input partitions, able to
further improve the precision of the final partition, without
any supervision; 3) experiments on three challenging and
heterogeneous datasets, included in Section 4, show how
our methods are able to consistently outperform competing
methods, reporting state-of-the-art results; 4) we also pro-
vide the first experimental results on the challenging task of
unsupervised fine-grained categorization in Section 4.2.3.

2. Related work
This Section reports on related work of object discovery

and consensus clustering.
Over the last decade, supervised learning methods for

image categorization have led to great progress, e.g. see the
last benchmark results [7, 8]. These approaches normally
need a strong supervision, with a large amount of labeled
images so as to learn robust features and train the classifiers
or detectors. However, to manually annotate these images
is a time-consuming task, with its associated costs. Further-
more, this detailed labeling process is prone to undesirable
user-specific biases and errors.

In order to overcome these problems, effective weakly-
supervised (e.g. [4, 10, 25]) and completely unsupervised
[6, 9, 16, 20, 26, 27, 30, 32, 36] object discovery techniques
have been proposed.

In [36], we probably find the first unsupervised object
discovery approach, which is built employing a constella-
tion model. The use of probabilistic models has been also
explored (e.g. [27, 30]).

Our models belong to the group of partition based solu-
tions, in which very different approaches have been pro-
posed [6, 9, 16, 20, 26, 32]. In [16], a spectral cluster-
ing based method for separating the objects from the back-
ground is introduced. In [32], a complete study of both clus-
tering based and probabilistic methods is conducted, along
with a clear experimental setup (which we follow in this pa-
per) for enabling further comparisons. Objects are discov-
ered by clustering image contours based on their intrinsic
geometric properties, and spatial layouts, in [26]. In [20],
the proposed approach leverages knowledge about previ-

ously learned categories to enable a more accurate discov-
ery. Recently, the clustering by composition approach [9]
has been introduced. It works by detecting statistically sig-
nificant regions which co-occur between images. The im-
age clusters are then defined as those in which each image
can be easily composed using statistically significant pieces
from other images in the cluster.

Similar to our idea of using weak input partitions, Dai
et al. [6] propose the weak training sets. For each of these
sets, a discriminative classifier is trained (a Linear SVM) to
obtain a base partitioning of the image collection. Then, all
these partitions are combined to an ensemble proximity ma-
trix. The final categorization is completed by feeding this
proximity matrix into a spectral clustering algorithm. Our
method significantly differs from [6]. First, we do not need
to train any ensemble of classifiers. We simply start from
weak input partitions, which can be easily constructed by
clustering methods. Second, while they build the final par-
tition using spectral clustering with the distances encoded
in a proximity matrix, as an extra step of their pipeline, we
propose a more compact approach, where our final partition
is obtained directly solving an optimization problem.

To formulate our AP approach for unsupervised object
discovery, we leverage existing consensus clustering tech-
niques [11, 14, 31]. While consensus clustering has been
previously proposed to improve clustering robustness or to
perform clustering of heterogeneous data, in our AP model
we explore its benefits in a novel problem: the unsuper-
vised object discovery. We propose to build a robust fi-
nal partition of the image collection, given a set of initial
weak partitions, which can be obtained by a set of different
features extracted from the image. Our formulation for the
AP follows a consensus clustering approach where, instead
of maximizing the average mutual information of the final
partition with all the input partitions [31], we choose the
criterion in [14], which consist in minimizing the number
of disagreements between the final and the weak input par-
titions. It is in the Selective AP, where we go further and
generalize the formulation of the consensus clustering. Our
novel Selective AP introduces an approach which is able to
identify the subset of weak input partitions that minimizes
the conditional entropy of the final partition. Specifically,
we propose a weighting approach for the partitions, where
the weights assigned encode the contribution of the input
partitions to the final partition. Our experiments reveal that
the Selective AP systematically outperforms the AP.

Finally, simply note that consensus clustering and sta-
ble clustering [13, 18, 33] are very different techniques,
although sometimes in the literature stable clustering is
named consensus clustering (e.g. [21]). Both families of ap-
proaches can be used as model selection strategies for clus-
tering (e.g. for automatically selecting the number of clus-
ters). However, essentially, the problems of consensus clus-



tering and stable clustering are different. For the clustering
stability, one first selects a clustering algorithm X , and then
the idea is to use perturbed versions of the input data, to
find the best solution using a stability metric. This cluster-
ing stability models have some applied limitations, which
have been recently highlighted in [29]. On the other hand,
in the consensus clustering problem that we follow in this
paper: a) the data is fixed, so no perturbations are needed;
b) the final partition is not based on a stability criterion,
but in a consensus criterion; c) we are not restricted to use
only one clustering algorithm, actually, our models can si-
multaneously work with different clustering algorithms and
features.

3. Unsupervised Object Discovery
3.1. Aggregated Partition

If we are given a set of N unlabeled images S =
{I1, I2, . . . , IN}, where each image belongs to one of the
K predefined categories, our goal is then to separate the
different object classes. We consider that each image Ii
can be characterized by a set of F different feature types,
{f (1)i , f

(2)
i , . . . , f

(F )
i }, where f

(f)
i ∈ RDf , and Df is the di-

mensionality of feature type f . So, for each feature type f ,
we can build the set Ff = {f (f)1 , f

(f)
2 , . . . , f

(f)
N }, contain-

ing the features for all the images in S. As we show in the
experiments, our models generalize to any image represen-
tation, from Bag of Words (BoW) [5], to descriptors such as
GIST [24].

With these F different feature sets Ff , we can pro-
ceed to build the set of weak input partitions used by
our AP approach. We define the set of partitions P =
{P1, P2, . . . , PM}, where M is the number of weak input
partitions, each of which groups the images using a partic-
ular clustering algorithm. Note that our approach general-
izes to any clustering algorithm and feature combination, so
M 6= F . For example, we can build a weak partition, using
as features the concatenation of BoW and GIST descriptors,
and the clustering algorithm K-means.

Given this set of weak input partitions P =
{P1, P2, . . . , PM}, our objective is to build a final partition,
i.e. the Aggregated Partition (AP) P ∗, which betters discov-
ers the objects in the image collection S (see Figure 1). For
doing so, we propose to leverage consensus clustering tech-
niques [11, 14, 31], which consider an equivalent problem:
given a set of clusterings, seek a final clustering that shares
the most information with the original clusterings.

We proceed to formulate the computation of our AP P∗
as a consensus clustering problem. To build the optimal
combined clustering, we adopt the criterion in [14], which
consist in minimizing the number of disagreements between
the final and the input partitions.

So, following [14], we formulate an optimization prob-

lem where, given a set of M weak input image partitions
P = {P1, P2, . . . , PM}, the objective is to build the parti-
tion P ∗ that minimizes the total number of disagreements
with the M input partitions,

argmin
P∗

1

M

M∑
m=1

d(P ∗, Pm) , (1)

where d(P ∗, Pm) measures the dissimilarity between image
partitions P ∗ and Pm as the number of pairs of images on
which the two partitions disagree. Note that solving Eq. (1),
we do not impose any constraint on the number of clusters
of P ∗, i.e. the number of categories discovered is automati-
cally determined by the optimization process.

The objective function in Eq. (1) represents a difficult
combinatorial optimization problem, where an exhaustive
search results unapproachable. In order to solve Eq. (1),
we proceed to reduce the problem of building the AP to a
graph partitioning problem. We first have to transform the
given cluster labels for the images into a suitable graph rep-
resentation, where the edge weights encode the dissimilari-
ties in Eq. (1). We consider the images Ii ∈ S as vertices
of a connected, undirected and weighted graph denoted by
G = (S,E), where E is a symmetric non-negative affinity
matrix E = [eij ] ∈ RN×N (eii = 0). We define the weight
eij ∈ [0, 1] of edge (i, j) as the fraction of weak partitions
that assign the pair of images Ii and Ij into different clus-
ters. The AP can be now formulated as the partition P ∗ that
minimizes the following function,

argmin
P∗

∑
l(Ii,P∗)=l(Ij ,P∗)

eij +
∑

l(Ii,P∗) 6=l(Ij ,P∗)

(1− eij) ,

(2)
where, l(Ii, P ∗) represents the cluster label assigned by the
partition P ∗ to the image Ii. This way, if the AP P∗ places
images Ii and Ij in the same cluster, it will disagree with
M×eij of the original partitions, while if they are separated
into different clusters, P∗ will disagree with the remaining
M × (1−eij). In our implementation, Eq. (2) is solved fol-
lowing the ALGCOMPLETE graph partitioning algorithm
introduced in [2].

3.2. Selective AP

If there is no a priori information about the relative im-
portance of the individual input partitions, then a reasonable
goal for the AP is to seek a clustering that shares the most
information with all the original clusterings. However, this
is not optimal. This becomes evident when one inspects the
purity of the different input partitions: some of them dis-
cover the objects better than others. With the Selective AP
we introduce an approach, generalizing the AP, able to iden-
tify the subset of the provided input partitions which con-
tribute to obtain a final partition whose conditional entropy



is further minimized, improving the results of the standard
AP. Specifically, we propose a weighting approach for the
input partitions, where the weights encode the relative im-
portance of the input partitions to the final partition.

Let us first define some notations. Given a partition Pi,
we define the weighting operation wPi, where w ∈ N, as
obtaining a set of w copies of partition Pi, i.e. wPi =
{Pi1 , . . . , Piw}. With this weighting mechanism we are
able to discard a partition, i.e. when w = 0, or to increase
its relative importance by introducing multiple copies of it
into our approach.

The Selective AP is again a fully unsupervised ap-
proach which can be formulated as follows. As for the
AP, we are given the set of M weak image partitions P =
{P1, P2, . . . , PM}. The Selective AP algorithm starts it-
erating. At each iteration t, one of the weak partitions in
P is chosen, and the algorithm assumes that it encodes the
ground truth labels. We identify this partition as Pt ∈ P :
t ∈ {1,M}. We fix the number of iterations to the num-
ber of weak input partitions, this way we use all the input
partitions. So, for iteration t, we build the set of partitions
P(t) = P \ Pt. Note that the size of set P(t) is M − 1.

The objective of the algorithm is now to identify the
combination of weights w(t) ∈ NM−1, for the partitions in
P(t), that generates the AP P ∗(t) whose conditional entropy
is minimum, considering Pt as the ground truth partition.
This objective is formulated as an optimization problem.

If w(t) = (w1, . . . , wM−1), and P(t) =

{P (t)
1 , P

(t)
2 , . . . , P

(t)
M−1}, we define the following weighted

set of partitions

< w(t),P(t) >= {w1P
(t)
1 , . . . , wM−1P

(t)
M−1} . (3)

We denote by |w(t)| the total length of the weighted set
< w(t),P(t) >. For each weighted set < w(t),P(t) >, we
can define its associated AP P (t)∗ as

argmin
P (t)∗

1

M − 1

M−1∑
m=1

wmd(P
(t)∗, P (t)

m ) . (4)

The optimization problems defined by equations (4) and
(1) are equivalent, so the same solver is used now for Equa-
tion (4).

The final step of the iteration consist in finding the opti-
mal weight vector w(t). Formally, this is described by the
following optimization problem,

argmin
w(t)

H(Pt|P (t)∗) + |w(t)| s. t. 0 < wm < M . (5)

H(Pt|P (t)∗) is the conditional entropy measured con-
sidering the ground truth category labels in Pt and the la-
bels obtained by the AP P (t)∗. We follow the classical

Algorithm 1 Selective AP
Require: Weak input partitions P = {P1, P2, . . . , PM}
Ensure: Definitive partition P ∗

1: for t from 1 to M do
2: Select partition Pt

3: Build P(t) = P \ Pt

4: Solve Equation (5) to compute each w(t)

5: end for
6: Build matrix Ŵ
7: Compute w∗ using Equation (6)
8: Build the optimized weighted set < w∗,P >
9: Obtain the final partition P ∗ solving Eq. (7)

10: return P ∗

formulation proposed in Information Theory: H(X|Y ) =∑
y∈Y p(y)

∑
x∈X p(x|y)log( 1

p(x|y) ). It gives us the av-
erage amount of uncertainty that remains in the true class
P (t)∗ given the instances estimated topic or cluster label Pt.
The term |w(t)| of Eq. (5) can be considered as a L1 spar-
sity term, which causes most weights wm to be 0, providing
a compact set < w(t),P(t) >. Eq. (5) is solved using a ge-
netic algorithm for integer optimization. Note that for each
weight vector evaluated by Eq. (5), a partition P (t)∗ has to
be obtained solving Eq. (4). In summary, in each iteration t,
the optimal weight vector w(t) is computed solving Equa-
tion (5), which considers partition Pt as the ground truth.

Once all the iterations have finished, the weight vec-
tors w(t) have to be consolidated. First, all weight vec-
tors w(t) are combined into an ensemble weight matrix
Ŵ, of size M × M . Each row in Ŵ is an augmented
weight vector ŵ(t), which incorporates the weights in w(t),
and inserts a zero weight at column t, which corresponds
to the selected partition Pt during the iteration: ŵ(t) =
(w1, . . . , wt−1, 0, wt+1, . . . , wM−1). Matrix Ŵ is used to
consolidate all the weights received by each of the weak
input partitions.

In order to obtain the final weight vector w∗ ∈ NM from
Ŵ, we solve the following equation,

w∗i = argmax
i

hist( ˆW(i, :)) , (6)

where hist( ˆW(i, :)) is the histogram of weights values for
the column i of matrix Ŵ. Intuitively, Equation (6) gives
us the most voted integer weight, i.e. the consensus weight,
for each weak input partition after the iterations. Once this
final weight vector w∗ has been obtained, the last step of our
Selective AP algorithm consists in computing the definitive
partition P ∗, solving Eq. (1), but now using the optimized
weighted set < w∗,P >, as follows,

argmin
P∗

1

|w∗|

|w∗|∑
m=1

d(P ∗, Pm) . (7)



We summarize the whole optimization process in Algo-
rithm 1. Note that for the especial case in which w∗ =
(1, 1, . . . , 1), the Selective AP is equivalent to the AP.

4. Experiments

4.1. Experimental Setup

4.1.1 Datasets

We report experimental results for three challenging prob-
lems: 1) unsupervised scene discovery with the 15-Scenes
dataset [19]; 2) unsupervised object discovery with the
Caltech-256 database [17]; and 3) unsupervised fine-
grained categorization with the Caltech-UCSD Birds-200-
2011 dataset [34]. With the Caltech-256, we follow the ex-
perimental setup described by Tuytelaars et al. in [32] for
unsupervised object discovery. We use the first subset of
20 categories proposed in [32]. For the rest of datasets we
use all the images provided. The 15-Scenes dataset contains
15 scene categories with both indoor and outdoor environ-
ments, 4485 images in total. The Caltech-UCSD Birds-200-
2011 dataset organizes 11788 images in 200 subcategories
of birds.

4.1.2 Features and clustering algorithms

Note that our approaches do not impose any constraint ei-
ther on the feature type or on the clustering algorithm to be
used to build the weak input partitions. Furthermore, any
combination of features and partition algorithms can be in-
tegrated.

With respect to the clustering algorithms, we evaluate
K-means and Spectral Clustering (SC) [22]. We choose
these two algorithms due to their excellent performance in
unsupervised object discovery: they report state-of-the-art
results in [32].

With respect to the features, we integrate: GIST [24],
LBP [23], PHOG [1], LLC [35], BoW [5] and Spatial Pyra-
mids of BoW (SP-BoW) [19]. Specifically, when using
the GIST descriptors all images are first scaled to a size of
256×256. For the LBP features we use the uniform version.
The PHOG is built from a two-layer pyramid and comput-
ing the derivatives in 8 directions. For the LLC represen-
tation, SIFT descriptors are extracted from patches densely
located by every 8 pixels. During LLC processing, we train
a codebook with 1024 bases, and only the approximated
LLC is used (the number of neighbors is set to 5 with the
shift-invariant constraint).

For the Caltech-256, we use the original BoW represen-
tation provided in [32]1. We choose the one that obtained

1All image representation used in [32] can be downloaded
from http://homes.esat.kuleuven.be/˜tuytelaa/
unsupervised.html

the best results: a BoW with a vocabulary size of 3000 (us-
ing SIFT descriptors). We refer to this representation as
BoW-3000. For the 15-Scenes dataset we use a SP-BoW
representation. We follow a dense sampling strategy: SIFT
descriptors of 16 × 16 pixel patches computed over a grid
with spacing of 8 pixels. A BoW of 200 visual words (with
L2 normalization) is computed. Then, we construct the SP-
BoW representation using a pyramid of two levels.

We also report results combining different features (e.g.,
PBoW+GIST, which means that we use BoW and GIST fea-
tures to obtain the partitions).

4.1.3 Experimental settings

We follow the experimental validation for unsupervised ob-
ject discovery proposed by Tuytelaars et al. [32]. An in-
put database is given, which is composed of images be-
longing to a fixed number of categories. The dataset pro-
vides ground truth information against which the results ob-
tained by the unsupervised methods can be evaluated quan-
titatively.

In a nutshell, the experiments with our approach con-
sist of the following steps. We select a particular dataset
and compute M different weak input partitions Pm. Dur-
ing clustering, we fix K for all the input partitions. The
AP P ∗ is then built solving the optimization problems de-
scribed, and evaluated against the ground truth data. In [6]
and [32], the only parameter that is assumed to be known
in advance is the number of categories which are present in
each dataset. However, our approach is fully unsupervised:
we do not fix the number of categories to be discovered.
This is automatically identified by the optimization process
of both the AP and the Selective AP models.

Note that we do not perform any parameter tuning during
the experiments. Each experiment is repeated 10 times, and
its average performance is reported. We use the evaluation
metrics previously proposed by others: in the Caltech-256
the conditional entropy (CE) [32], and in the 15-Scenes the
purity (P) proposed in [6]. For the new problem we propose
with Caltech-UCSD Birds-200-2011, we choose to report
both CE and P.

Note that our AP approach may discover more clusters
than is known in the ground truth. Both the P and CE, get
better and better when the number of discovered objects in-
creases. But this is due to over-fitting rather than discov-
ering a good partition. In order to solve this problem, we
strictly follow the evaluation protocol described in [32]. It
uses an oracle to assign each discovered topic to its best
known class, and then evaluates the resultant assignments
using P or CE. By doing so, we can establish a fair compar-
ison between all the approaches.

http://homes.esat.kuleuven.be/~tuytelaa/unsupervised.html
http://homes.esat.kuleuven.be/~tuytelaa/unsupervised.html
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Figure 2. CE (the lower the better) of the discovered categories in
the Caltech-256 as a function of M .

4.1.4 Competing methods

We compare our methods with the state-of-the-art ap-
proaches in [6, 12, 15, 30, 32]. Additionally, we compare
the performance of the AP P ∗ with the performance of the
weak input partitions Pm, which define our baselines. The
AP performance must be always better than this baseline to
corroborate our hypothesis. This comparison is a very chal-
lenging yardstick, because, as it is concluded in [32], when
dealing with images with a single object category, the par-
titions obtained with simple clustering-based methods sys-
tematically report the best results.

4.2. Results

4.2.1 Unsupervised Object Discovery: Caltech-256 Ex-
periments

Let us start using the Caltech-256 for examining the influ-
ence of our unique input parameterM , i.e. the number of in-
put weak partitions, on the performance of our method. We
compare the CE reported by the AP, with the mean CE ob-
tained by all the weak input partitions. For this evaluation,
to build the input partitions, we use K-means (with random
initialization) and the BoW-3000 features. Figure 2 shows
that the CE decreases pretty fast withM , and then stabilizes
quickly (for M > 10). Therefore, the AP approach shows a
considerable robustness against its parameter. We can also
conclude that the AP actually benefits from incorporating
multiple input partitions. Figure 2 also reveals that the AP
always outperforms the simple clustering methods.

After this study of the influence of parameterM , we sim-
ply fix M = 100, i.e. we report results always using 100
input partitions (e.g. 100 × PBoW means that we use 100
weak input partitions, using BoW features). For the base-
lines, we report the average of the CE for the 100 partitions.

Table 1. CE (the lower the better) of the AP and Selective AP
approaches and baseline methods in the Caltech-256.

AP Selective AP Baseline

Features SC SC SC

100× PBOW 1.8 1.8 1.8
100× PGIST 1.78 1.77 1.83
100× PPHOG 2.0 1.74 2.04
100× PLLC 1.92 1.81 1.89
100× PLBP 2.42 2.37 2.47
100× PBOW+GIST+PHOG+LLC+LBP 1.51 1.43 1.52

Table 2. Comparison with the state-of-the-art.
Methods Caltech-256 - (CE) 15-Scenes - (P)

LDA [32] 1.99 –
NMF [32] 2.00 –
L2-LEM-χ2[32] 1.58 –

AP (ours) 1.51 54%
Selective AP (ours) 1.43 54%

PLSA [30] – 29.34%
RIM [15] – 38.40%
AP [12] – 44.24%
EnPar [6] – 61.49%

The best CE in [32] is obtained when SC (L2-LEM-χ2) is
used, so, for our evaluation in this benchmark, we also re-
port the results of our methods when SC input partitions are
used.

We proceed to evaluate the performance of the AP for
all the features proposed and their combinations. Table 1
shows all the quantitative results. First, our experiments
show that the performance of both the AP and the Selective
AP is always better than the baselines, for all the features.
This confirms the convenience of using our models instead
of single clustering based methods. We also observe that
the best performance has been obtained combining multiple
features to build the input partitions. Furthermore, our re-
sults outperform the state-of-the-art results reported in [32]
(see Table 2). Finally, Table 1 also reveals that the Selec-
tive AP always outperforms the results reported by the AP.
This is remarkable, confirming that the selective strategy
designed, based on the weighting of input partitions, is able
to automatically penalize those partitions that do not con-
tribute to improve the final solution.

We additionally show qualitative results for our best ap-
proach in Figure 3. Both the CE and the number of images
assigned to each topic discovered are shown in the first row.
Interestingly, our approach seems to be able to discover
a finer granularity than expected, e.g. splitting motorbikes
with uncluttered background from motorbikes with clut-
tered background, or airplanes on the ground and airplanes
in the sky. Some discovered topics obtain a CE < 0.2.
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Figure 3. Qualitative results for the Selective AP method on the Caltech-256. 6 random images for each of the 20 categories discovered.

4.2.2 Unsupervised Scene Discovery: 15-Scenes Ex-
periments

The unsupervised discovery of scenes is a very challenging
problem. Only Dai et al. [6] have previously reported re-
sults for this problem. Here we follow their experimental
setup, using the 15-Scenes dataset [19].

We report in Table 3 the results obtained by our ap-
proaches for all the features. Our best purity is of 54%, for
a Selective AP built with 100×PSP-BOW+GIST+PHOG+LLC+LBP
weak partitions. Note that this time we report our results us-
ing the K-means clustering algorithm for the computation
of the input partitions. Using SC and the same features we
obtain a slightly worse performance of 53%. In general, the
results and conclusions are consistent with the ones previ-
ously reported using the Caltech-256: a) We again observe
that both the AP and the Selective AP approaches always
outperform the baselines; b) The Selective AP obtains bet-
ter results than the AP for most of the features, although
their best performances coincide in this dataset.

We now compare our performance with state-of-the-art
results. Table 2 reveals that our models outperform the com-
peting methods [30, 12, 15]. The margin of improvement is
considerable. The best results for this dataset have been
reported in [6], where: a) the number of categories to be
discovered is fixed; and b) parameter tuning is used (both
manual and using [38]) for the winner approach, based on
an ensemble of 1000 classifiers. However, recall that our
models are fully unsupervised (we even do not fix the num-
ber of categories) and that we avoid any kind of parameter
tuning. In spite of this generality, our methods markedly
outperform the previous approaches, and closely compete
with [6].

We finally show qualitative results for our best config-
uration in Figure 4, where both the purity and the number
of images assigned to each topic are shown in the first row.
We observe that there is not too much confusion splitting

Table 3. Purity (the higher the better) of the AP and the Selective
AP approaches and baseline methods in the 15-Scenes dataset.

AP Selective AP Baseline

Features K-means K-means K-means

100× PSP-BOW 0.31 0.29 0.29
100× PGIST 0.43 0.43 0.41
100× PPHOG 0.29 0.30 0.29
100× PLBP 0.29 0.29 0.27
100× PLLC 0.51 0.52 0.49
100× PSP-BOW+GIST+PHOG+LLC+LBP 0.54 0.54 0.52

between indoor and outdoor scenes, and that some topics
obtain a purity > 80%.

4.2.3 Unsupervised fine-grained categorization:
Caltech-UCSD Birds-200-2011 experiments

Finally, we introduce in this paper a new challenging
problem which has not been previously explored, to the
best of our knowledge: i.e. the unsupervised fine-grained
categorization problem. We propose the following ex-
perimental setup using the Caltech-UCSD Birds-200-2011
dataset [34]. This database organizes 11788 images in 200
subcategories of birds. Any method has to organize the im-
ages in a fully unsupervised manner. All images must be
used in the evaluation, to report both the CE and P of the fi-
nal partition. We here report the mean performance after 10
trials of a Random Assignment (RA) strategy, where each
image is randomly assigned to a subcategory with uniform
probability. RA provides a sanity check in that other meth-
ods should always perform better.

To establish further comparisons, we report the perfor-
mance of our best method, the Selective AP. To compute the
weak input partitions, we have decided to use the K-means
algorithm. It is computationally efficient, and its perfor-
mance is similar to the one reported by SC partitions. For
the features, this time we only use the LLC representation.



Figure 4. Qualitative results for the AP on the 15-Scenes. We show 6 random images for each of the categories discovered.

Table 4. CE and P for the unsupervised subcategory discovery
problem in the Caltech-UCSD Birds-200-2011 dataset.

Selective AP Baseline RA

Features CE Purity CE Purity CE Purity

100× PLLC 4.8 7.3 (%) 5.5 6.6 (%) 5.6 4.3 (%)

The rest of features, while effective for generic object cat-
egorization, result in a large loss of finer details that are
important for differentiating fine-grained object classes, as
it is concluded in [37].

Results are shown in Table 4. Our Selective AP outper-
forms the results reported by both the baseline and RAN.
Our main conclusion with respect to the challenging unsu-
pervised fine-grained categorization problem is that there is
still room for improvement for fully unsupervised methods.
An important contribution of this paper is to introduce this
analysis for establishing further comparisons, with the clear
experimental setup proposed.

5. Conclusion
This paper proposes novel strategies to perform a robust

feature-based partition ensembling for discovering object
categories. From image partitions, obtained with different
descriptors and clustering algorithms, our AP model is able
to find a more robust and precise partition, using consensus
clustering techniques. Overall, our solutions demonstrate
that by aggregating the different feature-based partitions,
we are able to combine their strengths to improve the ac-
curacy and robustness of the object discovery.

We conclude that the AP models offer promising solu-
tions for the unsupervised object discovery problem. Their
performance has been thoroughly evaluated on a variety of
challenging datasets and features. The results obtained con-
firm that our methods are able to consistently outperform
the baselines, reporting state-of-the-art results. We publicly
release the code for the AP methods to reproduce the results
in the paper.
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