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daniel.onoro@edu.uah.es robertoj.lopez@uah.es

Abstract. In this paper we address the problem of counting objects
instances in images. Our models are able to precisely estimate the num-
ber of vehicles in a traffic congestion, or to count the humans in a very
crowded scene. Our first contribution is the proposal of a novel convolu-
tional neural network solution, named Counting CNN (CCNN). Essen-
tially, the CCNN is formulated as a regression model where the network
learns how to map the appearance of the image patches to their co-
rresponding object density maps. Our second contribution consists in
a scale-aware counting model, the Hydra CNN, able to estimate object
densities in different very crowded scenarios where no geometric infor-
mation of the scene can be provided. Hydra CNN learns a multiscale
non-linear regression model which uses a pyramid of image patches ex-
tracted at multiple scales to perform the final density prediction. We
report an extensive experimental evaluation, using up to three different
object counting benchmarks, where we show how our solutions achieve
a state-of-the-art performance.

1 Introduction

Take an image of a crowded scene, or of a traffic jam. We address here the
hard problem of accurately counting the objects instances in these scenarios. To
develop this type of ideas makes possible to build applications that span from
solutions to improve security in stadiums, to systems that precisely monitor how
the traffic congestions evolve.

Note that the covered applications define the typical scenarios where in-
dividual object detectors (e.g. [1, 2]) do not work reliably. The reasons are: the
extreme overlap of objects, the size of the instances, scene perspective, etc. Thus,
approaches modeling the counting problem as one of object density estimation
have been systematically defining the state-of-the-art [3–7]. For this reason, we
propose here two deep learning models for object density map estimation.

As illustrated in Figure 1, we tackle the counting problem proposing deep
learning architectures able to learn the regression function that projects the
image appearance into an object density map. This allows the derivation of an
estimated object density map for unseen images.

The main contributions of this work are as follows. First, in Section 3.2,
we propose a novel deep network architecture, named Counting CNN (CCNN),
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Fig. 1. We define the object counting task like a regression problem where a deep
learning model has to learn how to map image patches to object densities.

which is an efficient fully-convolutional neural network able to perform an ac-
curate regression of object density maps from image patches. Second, we show
that object densities can be estimated without the need of any perspective map
or other geometric information of the scene, in contrast to most of the state-
of-the-art methods [3–8], which require this information. Thus, we introduce in
Section 3.3 the Hydra CNN architecture, a scale-aware model, which works lear-
ning a multiscale regressor for mapping the appearance of a pyramid of multiple
scale patches to an object density map. Like the mythological Hydra creature,
each head of our Hydra learns the feature representation for a particular scale of
the pyramid. Then, all these head features are concatenated and passed through
a set of fully-connected layers, forming the body of the Hydra, which is in charge
of learning the high-dimensional representation which performs the final density
estimation. Third, in Section 4, we report a thorough experimental validation of
the proposed models. Three publicly available datasets are used, two for crowd
counting [4, 9] and one for vehicle counting [10]. We show how our solutions
report state-of-the-art results in all these heterogeneous scenarios.

2 Related Work

Significant progress has been made to count objects in images. We refer the
reader to the survey of Loy et al. [8]. Following the taxonomy introduced in [8],
the algorithms can be classified into three groups: counting by detection [1, 2,
11–16], counting by clustering [17, 18], and counting by regression [3–7, 19, 20].

Here we focus the review of the literature on the counting by regression mo-
dels, because our approaches belong to this group too. But also because these
approaches have so far been more accurate and faster, compared to the other
groups, defining the state-of-the-art results in most of the benchmarks. Essen-
tially, these methods work defining a mapping from the input image features
to the object count. A special attention deserves the learning-to-count model of
Lempitsky et al. [6]. They introduce a counting approach, which works by lear-
ning a linear mapping from local image features to object density maps. With a
successful learning, one can provide the object count by simply integrating over
regions in the estimated density map. This strategy is followed also in [5, 20]
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where a structured learning framework is applied to the random forests so as to
obtain the object density map estimations. In [3], the authors propose an inte-
ractive counting system, which simplifies the costly learning-to-count approach
[6], proposing the use of a simple ridge regressor.

Our models also treat the counting problem as an object density estimation
task, but they are deep learning based approaches which significantly differ from
these previous works. To the best of our knowledge, only two works [7, 21] have
addressed the object counting problem with deep learning architectures. In [21]
a multi-column CNN is proposed, which stacks the features maps generated by
filters of different sizes and combine them to generate the final prediction for
the count. Zhang et al. [7] propose a CNN architecture to predict density maps,
which needs to be trained following a switchable learning process that uses two
different loss functions. Moreover, for the crowd counting problem they do not
use the direct density estimation of the network. Instead, they use the output of
the network as features to fit a ridge regressor that actually performs the final
density estimation. Our models are different. First, the network architectures do
not coincide. And second, we do not need to either integrate two losses or to use
an extra regressor: the object density map is the direct output of our networks,
which are trained with a single regression loss.

3 Deep learning to count objects

3.1 Counting objects model

Let us first formalize our notation and counting objects methodology. In this
work, we model the counting problem as one of object density estimation [6].

Our solutions require a set of annotated images, where all the objects are
marked by dots. In this scenario, the ground truth density map DI , for an image
I, is defined as a sum of Gaussian functions centered on each dot annotation,

DI(p) =
∑
µ∈AI

N (p;µ,Σ) , (1)

where AI is the set of 2D points annotated for the image I, and N (p;µ,Σ)
represents the evaluation of a normalized 2D Gaussian function, with mean µ
and isotropic covariance matrix Σ, evaluated at pixel position defined by p.
With this density map DI , the total object count NI can be directly obtained
by integrating the density map values in DI over the entire image, as follows,

NI =
∑
p∈I

DI(p). (2)

Note that all the Gaussian are summed, so the total object count is preserved
even when there is overlap between objects.

Given this object counting model, the main objective of our work is to design
deep learning architectures able to learn the non-linear regression function R
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Fig. 2. Our novel CCNN model. The input image patch is passed forward our deep
network, which estimates its corresponding density map.

that takes an image patch P as an input, and returns an object density map

prediction D
(P )
pred,

D
(P )
pred = R(P |Ω) , (3)

where Ω is the set of parameters of the CNN model. For the image patch P ∈
Rh×w×c, h,w and c correspond to the height, width and number of channels

of the patch, respectively. In the density prediction D
(P )
pred ∈ Rh′×w′

, h′ and w′

represent the height and width of the predicted map. Thus, given an unseen test
image, our model densely extracts image patches from it, and generates their
corresponding object density maps, which are aggregated into a density map for
the whole test image.

3.2 The Counting CNN

We introduce in this section our first deep learning architecture, the Counting
CNN (CCNN). It is shown in Figure 2. Let us dissection it.

The architecture consists of 6 convolutional layers. Conv1 and Conv2 layers
have filters of size 7x7 with a depth of 32, and they are followed by a max-pooling
layer, with a 2x2 kernel size. The Conv3 layer has 5x5 filters with a depth of 64,
and it is also followed by a max-pooling layer with another 2x2 kernel. Conv4 and
Conv5 layers are made of 1x1 filters with a depth of 1000 and 400, respectively.
Note that we do not integrate any fully-connected layer in the model. With these
Conv4 and Conv5 layers, we propose a fully convolutional architecture [22]. All
the previous layers are followed by rectified linear units (ReLU). Finally, Conv6
is another 1x1 filter with a depth of 1. Conv6 is in charge of returning the density

map estimation D
(P )
pred for the input patch P .

Like we specify in Equation (3), we want our deep network to learn a non-
linear mapping from the appearance of an image patch to an object density map.
Thus, our CCNN has to be trained to solve such a regression problem. For doing
so, we connect to the Conv6 layer the following Euclidean regression loss,
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l(Ω) =
1

2N

N∑
n=1

∥∥∥R(Pn|Ω)−D(Pn)
gt

∥∥∥2
2
, (4)

where N corresponds to the number of patches in the training batch, and D
(Pn)
gt

represents the ground-truth density for the associated training patch Pn. Recall
that Ω encodes the network parameters. We have implemented our network
design using the excellent Caffe [23] framework, and we make use of the popular
stochastic gradient descent algorithm to fit the parameters of our models.

How do we implement the prediction stage? Given a test image, we first
densely extract image patches. As illustrated in Figure 2, we feed the CCNN
with image patches scaled to a fixed size of 72x72 pixels. These input patches are
passed through our CCNN model, which produces a density map estimation for
each of them. Note that due to the two max-pooling layers, the size of the output
object density map estimation is 1/4 of the size of the input image patch, i.e.
18x18 pixels. Therefore, all the predicted object density maps DP

pred = R(P |Ω)
are rescaled in order to fit the original input patch size. Note that this rescaling
generates a density map D̂P

pred whose associated count does not necessarily match
with the original count before the rescaling. Therefore, this new resized density
map must be normalized as follows,

D̂P
pred =

∑
∀pD

P
pred(p)∑

∀p D̂
P
pred(p)

D̂P
pred. (5)

The last step of the prediction stage consists in the assembly of all the pre-
dicted density maps for the patches. In order to generate the final object density
map estimation DIt , for the given test image It, we simply aggregate all the
predictions obtained for all the extracted patches into a unique density map of
the size of the test image (see Figure 1). Note that due to the dense extraction
of patches, the predictions will overlap, so each position of the final density map
must be normalized by the number of patches that cast a prediction in it.

Like we have previously mentioned, we are not the first ones proposing a
deep learning model for object counting. Zhang et al. [7] introduce the novel
Crowd CNN architecture. In a detailed comparison of both the CCNN and the
Crowd CNN, we can discover the following differences. First, the network de-
signs are different. For instance, instead of using fully-connected layers, in our
CCNN we have incorporated the fully convolutional 1x1 layers Conv4, Conv5
and Conv6. This speeds up both the training a forwards pass [22]. Second, their
learning strategy is more complex. The Crowd CNN model needs to incorporate
two different loss functions (one for the density maps and one for the total count
of the patches). During the optimization, they implement an iterative switch-
ing process to alternatively optimize with one loss or the other. In contrast,
our CCNN only uses one loss. And third, our model is more compact. For the
problem of crowd counting, Zhang et al. [7] do not use the direct estimation of
the Crowd CNN network to obtain the final object density estimation. Instead,
they report the results feeding a ridge regressor with the output features of their
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Fig. 3. Hydra CNN. The network uses a pyramid of input patches (they are cropped
and rescaled to a size of 72x72). Each level of the pyramid, representing a different
scale, feeds a particular head of the Hydra. All the head outputs are concatenated and
passed to a fully-connected bank of layers, which form the body of the hydra.

Crowd CNN network. On the contrary, we do not need any extra regressor, our
novel CCNN is learned in an end-to-end manner to directly predict the object
density maps. Finally, our experiments (see Section 4.2) reveal that the CCNN
improves the results of the Crowd CNN in three of four subsets of the UCSD
dataset [4].

3.3 The Hydra CNN

In a typical pipeline of a counting by regression model, a geometric correction
of the input features, using an annotated perspective map of the scene, for in-
stance, results fundamental to report accurate results. This phenomenon has
been described in several works, reporting state-of-the-art results (e.g. [6, 8, 5,
7]). Technically, the perspective distortion exhibited by an image, causes that
features extracted from the same object but at different scene depths would have
a huge difference in values. As a consequence, erroneous results are expected by
models which uses a single regression function.

With the Hydra CNN model, we want to solve this problem. That is, Hydra
CNN must be a scale-aware architecture, which is not allowed to use any previous
geometric correction of the scene. Our architecture should be able to learn a non-
linear regression mapping, able to integrate the information from multiple scales
simultaneously, in order to cast a precise object density map estimation. This
aspect brings a fundamental benefit: Hydra CNN can work in scenarios and
datasets which consider not only a single calibrated scene. For instance, a single
Hydra CNN model should be able to accurately predict the number of objects
for a variety of unseen scenes, exhibiting different perspectives, and generalizing
well to real-world scenarios.

We attack this problem with the idea shown in Figure 3. Our Hydra CNN
has several heads and a body, remembering the ancient serpentine water monster
called the Hydra in Greek and Roman mythology. Each head is in charge of
learning the representation for a particular scale si from the input pyramid of
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image patches. Therefore, during learning we feed each head with image patches
extracted at a particular scale. We have to understand the output of the heads as
a set of features describing the images at different scales. Then, all these features
are concatenated to feed the body, which is made of fully-connected layers. Notice,
that the heads are not necessarily restricted to the same architecture, so their
features may have different dimensions, hence the use of fully convolutional layers
in the body may not be suitable. Therefore, we use fully-connected layer in order
to provide to the net full access to all the head features for the different scales.
Essentially, the body learns the high-dimensional representation that merges the
multiscale information provided by the heads, and it is in charge of performing
the final object density map estimation.

Technically, as illustrated in Figure 3, for each head of the Hydra CNN, we
propose to use a CCNN model (CCNN s0, . . . , CCNN sn). Note that we simply
exclude in each CCNN model for the heads, its final Conv6 layer. Then, the
outputs of the different heads are concatenated and passed to the body, where
we use two fully-connected layers, with 512 neurons each one. These are the layers
Fc6 and Fc7 in Figure 3, which are followed by a ReLu and a dropout layer. We
end the architecture with the fully-connected layer Fc8, with 324 neurons, whose
output is the object density map. To train this Hydra CNN model we use the
same loss function defined in Equation (4). Again the Caffe [23] library is used,
following for the optimization the stochastic gradient descent algorithm. Finally,
given a test image, we follow the same procedure described for the CCNN model
to produce the final object density map estimation.

The network design of the novel Hydra CNN is inspired by the work of Li et
al. [24] for visual saliency estimation. In [24], they propose a different network
architecture but using a multiple input strategy, which combines the features of
different views of the whole input image in order to return a visual saliency map.
In our Hydra CNN model, we adapt this idea to use the multi-scale pyramid set
of image patches to feed our network.

4 Experiments

We have evaluated our solutions using three challenging benchmarks. Two have
been proposed for the crowd counting problem: the UCSD pedestrian [4] and the
UCF CC 50 [9] datasets. The third one is the TRANCOS dataset [10], which
has been designed for vehicle counting in traffic jam scenes.

4.1 TRANCOS dataset

Experimental setup TRANCOS is a publicly available dataset, which pro-
vides a collection of 1244 images of different traffic scenes, obtained from real
video surveillance cameras, with a total of 46796 annotated vehicles. The objects
have been manually annotated using dots. It also provides a region of interest
(ROI) per image, defining the region considered for the evaluation. This database
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provides images from very different scenarios, which have not been paramete-
rized. Moreover, the cameras can move in the same scene, and no perspective
maps are provided.

We strictly follow the experimental setup proposed in [10], using only the
training and validation sets for learning our models. In each training image,
we randomly extract 800 patches of 115x115 pixels. We also perform a data
augmentation strategy by flipping each patch, having in total 1600 patches per
training image. These patches are then resized to 72x72 to feed our networks.
We generate the ground truth object density maps with the code provided in
[10], which places a Gaussian Kernel (with a covariance matrix of Σ = 15 ·12x2)
in the center of each annotated object.

For the CCNN model, we perform a cross-validation to adjust the standard
deviation values of the Gaussian noise that is necessary to initialize the weights
of each layer of the deep network. The Xavier initialization method [25] was used
to, but with it, our CCNN models are not able to converge in our experiments.

To train the Hydra CNN, we follow the same patch extraction procedure
as for the CCNN model. The only difference is that from each patch we build
its corresponding pyramid of s different scales, being s the number of heads of
our Hydra CNN. Therefore, the first level of the pyramid contains the original
patch. For the rest of levels we build centered and scaled crops, of size 1/s, of
the original patch. For example, in the case of a Hydra CNN with two heads,
the first level of the pyramid corresponds to the original input patch, and the
second level contains a crop of size 50% of the original size. When three heads
are used, the second and third levels of the pyramid contain a crop of size 66%
and 33% of the original size, respectively.

To initialize the heads of the Hydra CNN model, we use the same parameters
discovered by the cross-validation for the CCNN. Then we perform a cross-
validation to adjust the standard deviation for the layers Fc6 and Fc7.

The test is performed by densely scanning the input image with a stride of
10 pixels, and assembling all the patches as it is described in Section 3.2.

The TRANCOS benchmark comes with an evaluation metric to be used: the
Grid Average Mean absolute Error (GAME) [10]. This GAME is computed as
follows,

GAME(L) =
1

N

N∑
n=1

(

4L∑
l=1

∣∣∣Dl
In −D

l
Igtn

∣∣∣) , (6)

where N is the total number of images, Dl
In

corresponds to the estimated object

density map count for the image n and region l, and Dl
Ignt

is the corresponding

ground truth density map. For a specific level L, the GAME(L) subdivides the
image using a grid of 4L non-overlapping regions, and the error is computed as
the sum of the mean absolute errors in each of these subregions. This metric
provides a spatial measurement of the error. Note that a GAME(0) is equivalent
to the mean absolute error (MAE) metric.
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Fig. 4. Comparison of CCNN and Hydra CNN in the TRANCOS dataset when the
number of objects increases.

Vehicle counting results Table 1 shows a detailed comparison of our models
with the state-of-the-art methods [5, 6] reported in [10].

Method GAME 0 GAME 1 GAME 2 GAME 3

[5] 17.77 20.14 23.65 25.99

[6] 13.76 16.72 20.72 24.36

CCNN 12.49 16.58 20.02 22.41

Hydra 2s 11.41 16.36 20.89 23.67

Hydra 3s 10.99 13.75 16.69 19.32

Hydra 4s 12.92 15.54 18.45 20.96

Table 1. TRANCOS dataset. Comparison with the of state-of-the-art models.

First, note how all our models outperform the state-the-art. The more simple
architecture of CCNN already improves the results of the previously reported
models [5, 6]. Hydra CNN should be able to report the best results in TRAN-
COS, given the high level of variability in terms of perspective and variety of
scenes that the images of this dataset exhibits. Table 1 shows that a Hydra
CNN with just 2 scales improves the results with respect to the CCNN for a
GAME(0), while for GAME(1) to GAME(3) the performance is very similar. If
we go further, and train a Hydra CNN with 3 heads, we are now able to report
the best results for this dataset for all the GAMES. Note how the error for the
higher levels of the GAME, where this metric is more restrictive, drastically de-
creases. This reveals that the Hydra CNN is more precise not only predicting
the object density maps, but also localizing the densities within them. If we
continue increasing the number of heads of Hydra CNN, this does not guaran-
tee an increment of the performance. On the contrary, we have experimentally
observed that the model saturates for 4 heads (see last row of Table 1), while
the complexity dramatically increases.

Overall, these results lead us to two conclusions. First, the object density
maps can be accurately and efficiently estimated using the CCNN model, which
works remarkably well. Second, the Hydra CNN idea of having a pyramid of
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Fig. 5. Qualitative results of our Hydra model in the TRANCOS dataset. The first
row corresponds to the target image with the ground truth. The second row shows the
predicted object density maps. We show the total object count above each image.

scales as input, to learn a non-linear regression model for the prediction of object
density maps, seems to be more accurate, defining the novel state-of-the-art in
this benchmark.

Figure 4 shows an additional analysis of our models using the MAE (GAME(0)).
We perform the comparison sorting all the test images by the number of anno-
tated vehicles they contain. We divide them in 10 subsets, and plot in this figure
the MAE of our CCNN and Hydra CNN 3s models. Interestingly, CCNN reports
a slightly lower error for the subsets of images with less objects. But its error
quickly rises when more vehicles appear in the scene. The Hydra CNN model is
clearly the winner, reporting a very stable error along the different subsets.

Finally, Figure 5 shows some of the qualitative results obtained. The first
three images present the results where our Hydra 3s model obtains a good per-
formance, and the last two images correspond to those for which we get the
maximum error. In the supplementary material, we provide more qualitative
results produced by our models.

4.2 UCSD dataset

Experimental setup Here we evaluate our models in the crowd counting pro-
blem. For doing so, we use the popular UCSD pedestrian benchmark [4]. It is
a 2000-frames video dataset from a surveillance camera of a single scene. The
images have been annotated with a dot on each pedestrian. It also includes a
ROI and the perspective map of the scene. In our experiments, we report results
when our models use and not use this perspective map. The evaluation metric
proposed in [4] is the MAE.

We follow exactly the same experimental setup that is used in [5, 6, 26, 7].
Hence, we split the data into four different subsets: 1) “maximal”: train with
frames 600:5:1400; 2) “downscale”: train with frames 1205:5:1600; 3) “upscale”:
train with frames 805:5:1100; 4) “minimal”: train with frames 640:80:1360. All
the frames out of the defined training ranges are used for testing.
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Fig. 6. CCNN qualitative results for the UCSD dataset. The first row shows the target
image with its ground truth. The second row shows the predicted object density map.
We show the total object count above each image.

In order to train our CCNN model, for each image we collect 800 patches,
of 72x72 pixels, randomly extracted all over the image, and their corresponding
ground truth density maps. We perform a data augmentation by flipping each
patch. Therefore, in total, we have 1600 training samples per image. As usual,
when the perspective map is used, the ground truth object density maps are
built scaling the covariance of the 2D Gaussian kernels, where we fix a base
Σ = 8 · 12x2, as it is described in [6].

To train the Hydra CNN models, we follow the same patch extraction detailed
for the TRANCOS dataset. This time, 800 random patches of 72x72 pixels are
extracted per training image. The pyramid of scaled versions of the patches is
built using the same procedure explained before. We initialize both the CCNN
and the Hydra CNN models following the procedures previously explained for
the TRANCOS dataset. Finally, to perform the test we fix a stride of 10 pixels
and then we proceed as it is described in Section 3.2.

Crowd counting results We start analyzing the performance of the CCNN
model. Table 2 shows a comparison with all the state-of-the-art methods. Our
CCNN, trained using the perspective map provided, like all the competing
approaches, obtains the best results for the “upscale” subset. If we compare
the performance of the two deep learning models, i.e. CCNN vs. the Crowd
CNN of Zhang et al. [7], our model gets a better performance in 3 of the 4
subsets.

Figure 6 shows some qualitative results. We have chosen five frames that
best represent the object density differences in the dataset. The last two frames
correspond with the maximal error produced by our CCNN model. In the supple-
mentary material, we provide videos with all the qualitative results.

We now proceed to analyze the results obtained by the Hydra CNN models
in this benchmark. Even though this dataset offers images of a fixed scene,
providing its perspective map, where the objects appear at similar scales, we
have decided to conduct this extra experiment with the Hydra CNN approach,
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Method ‘maximal’ ‘downscale’ ‘upscale’ ‘minimal’

[6] 1.70 1.28 1.59 2.02

[5] 1.70 2.16 1.61 2.20

[20] 1.43 1.30 1.59 1.62

[3] 1.24 1.31 1.69 1.49

[7] 1.70 1.26 1.59 1.52

Our CCNN 1.65 1.79 1.11 1.50

Table 2. Mean absolute error. Comparison with the state-of-the-art methods for the
UCSD pedestrian dataset.

Method ‘maximal’ ‘downscale’ ‘upscale’ ‘minimal’

Hydra 2s 2.22 1.93 1.37 2.38

Hydra 3s 2.17 2.99 1.44 1.92

Table 3. MAE comparison of our Hydra 2s and Hydra 3s models trained without
perspective information in the UCSD dataset.

to evaluate its performance with the state-of-the-art models. Table 3 shows the
MAE results for our Hydra with two and three heads. Recall that we do not use
the perspective information. We can observe two things. The first one is that both
architectures report a good performance, even if they do not improve the state-
of-the-art. To support this conclusion, Figure 7 shows a comparison between the
ground truth, the CCNN model (trained using the perspective map), and the
estimation generated by our Hydra with two and three heads, which does not
use the perspective information. Hydra CNN models are able to closely follow
both the CCNN and the GT. We belive that Hydra CNN does not outperform
CCNN due to the small variability and the low perspective distortion exhibited
by this dataset. In this situation, adding more scales does not seem to provide
really useful information. Hence, the use of Hydra CNN does not offer here a
clear advantage.

4.3 UCF CC 50 dataset

Experimental setup The UCF CC 50 dataset [9] consists of 50 pictures, col-
lected from publicly available web images. The counts of persons range between
94 and 4543, with an average of 1280 individuals per image. People have been an-
notated by dots, and no perspective maps are provided. The images contain very
crowded scenes, which belong to diverse set of events: concerts, protests, stadi-
ums, marathons, and pilgrimages. This dataset proposes a challenging problem,
especially due to the reduced number of training images, and the variability
between the scenarios covered. We have followed the same experimental setup
described in [9]. We randomly split the dataset into 5 subsets and perform a
5-fold cross-validation. To report the results the MAE and the Mean Standard
Deviation (MSD) are used.

For training our models, we scale the images in order to make the largest
size equal to 800 pixels. We follow the same experimental setup described in
Section 4.1. We now randomly extract 1200 image patches of 150x150 pixels
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Fig. 7. Comparison of ground truth, CCNN and Hydra CNN of two and three heads
in the UCSD benchmark.

with their corresponding ground truth. We also augment the training data by
flipping each sample. Finally, the covariance matrix for the ground truth density
map generation with the Gaussian functions is fixed to Σ = 15 · 12x2. For the
initialization of the CCNN and the Hydra CNN models, we follow the cross-
validation procedure already described for the other datasets. To do the test, we
densely scan the image with a stride of 10 pixels.

Crowd counting results Table 4 shows a comparison of our models with the
state-of-the-art approaches. In this dataset, the best performance is given by our
Hydra CNN 2s, which is able to drastically reduce the MAE. Hydra CNN with
3 scales outperforms 3 of 5 models previously published. The CCNN approach
only improves the results reported in [19, 6]. Analyzing the results, we find that
the performance of the CCNN decreases especially in those images with the
highest number of humans and where the perspective really matters. In Figure
9 we include some qualitative examples of the CCNN model where this can be
appreciated. This issue and the results provided, confirm the advantages of the
scale-aware Hydra model for the very crowded scenes of the UCF CC 50 dataset.

Figure 8 shows some of the qualitative results that are obtained by our Hydra
CNN model with two heads. The first three columns correspond with results
where our network reports a good performance, while the last two columns show
the maximum errors.

5 Conclusions

In this paper, we have introduced two novel deep learning approaches to count
objects in images. To the best of our knowledge, only two methods have previ-
ously explored similar ideas [7, 21]. Therefore, our research affords novel insights
into the problem of object counting with deep learning.

With our first architecture, the CCNN model, we show that object density
maps can be accurately and efficiently estimated, letting the network learn the
mapping which transforms the appearance of image patches into object density
maps. We are able to match and improve the counting accuracy of much more
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Fig. 8. UCF CC 50 dataset qualitative results for Hydra CNN with two scales. First
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object density maps. We show the total object count above each image.

Table 4. MAE and
MSD comparison for the
UCF CC 50 dataset.

Method MAE MSD

[19] 655.7 697.8

[6] 493.4 487.1

[7] 467.0 498.5

[9] 419.5 541.6

[21] 377.6 509.1

CCNN 488.67 646.68

Hydra 2s 333.73 425.26

Hydra 3s 465.73 371.84

PREDICTION
GROUND 

TRUTH

783.4730.4

1651.42549.3

1920.7917.8

Fig. 9. Qualitative results of the CCNN in
the UCF CC 50 dataset.

complex models, such as [7], where multiple loss functions and extra regressors
are used in conjunction with the deep model.

Our second model, Hydra CNN, goes one step further, and provides a scale-
aware solution, which is designed to learn a non-linear regressor to generate the
object density maps from a pyramid of image patches at multiple scales. The
experimental validation reveals that Hydra not only improves the results of its
predecessor, our CCNN, but also that it is able to improve the state-of-the-art
of those benchmarks that propose to count object in different scenes, showing
very crowded situations, and where no geometric information for the scene, like
its perspective map, is provided.

By making our software and pre-trained models available 1, we make it
effortless for future researches to reproduce our results and to facilitate further
progress towards more accurate solutions for this challenging task.
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