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In this paper, a new approach to real-time people segmentation through processing images captured by
an infrared camera is introduced. The approach starts detecting human candidate blobs processed
through traditional image thresholding techniques. Afterwards, the blobs are refined with the objective
of validating the content of each blob. The question to be solved is if each blob contains one single human
candidate or more than one. If the blob contains more than one possible human, the blob is divided to fit
each new candidate in height and width.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The use of infrared cameras in the surveillance field (López,
Fernández-Caballero, Fernández, Mira, & Delgado, 2006; Pavón,
Gómez-Sanz, Fernández-Caballero, & Valencia-Jiménez, 2007) are
being intensively studied in the last decades. Many algorithms
focusing specifically on the thermal domain have been explored.
The unifying assumption in most of these methods is the belief that
the objects of interest are warmer than their surroundings (Yilmaz,
Shafique, & Shah, 2003). Thermal infrared video cameras detect
relative differences in the amount of thermal energy emitted/
reflected from objects in the scene. As long as the thermal proper-
ties of a foreground object are slightly different (higher or lower)
from the background radiation, the corresponding region in a ther-
mal image appears at a contrast from the environment.

In Iwasawa, Ebihara, Ohya, and Morishima (1997) and Bhanu
and Han (2002), a thresholded thermal image forms the first stage
of processing after which methods for pose estimation and gait
analysis are explored. In Nanda and Davis (2002), a simple inten-
sity threshold is employed and followed by a probabilistic tem-
plate. A similar approach using Support Vector Machines is
reported in Xu, Liu, and Fujimura (2005). Recently, a new back-
ground-subtraction technique to robustly extract foreground ob-
jects in thermal video under different environmental conditions
has been presented (Davis & Sharma, 2007). A recent paper (Jung,
Eledath, Johansson, & Mathevon, 2007) presents a real-time
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egomotion estimation scheme that is specifically designed for
measuring vehicle motion from a monocular infrared image se-
quence at night time. In the robotics field, a new type of infrared
sensor is described (Benet, Blanes, Simó, & Pérez, 2002). It is suit-
able for distance estimation and map building. Another application
using low-cost infrared sensors for computing the distance to an
unknown planar surface and, at the same time, estimating the
material of the surface has been described (Garcia & Solanas,
2004).

In this paper, we introduce our approach to real-time robust
people segmentation through processing video images captured
by an infrared camera, complementing this way the previous
works on knowledge-based object detection (Fernández-Caballero,
Gómez, & López-López, 2008; Fernández-Caballero, López, & Saiz-
Valverde, 2008; Fernández-Caballero et al., 2007; López, Fernán-
dez-Caballero, Mira, Delgado, & Fernández, 2006; Mira, Delgado,
Fernández-Caballero, & Fernández, 2004).
2. Robust people segmentation algorithm

The proposed human detection algorithm is explained in detail
in the following sections related to the different phases, namely,
people candidate blobs detection, people candidate blobs refine-
ment and people confirmation.

2.1. People candidate blobs detection

The algorithm starts with the analysis of input image, I(x,y),
captured at time t by an infrared camera, as shown in Fig. 1(a).
Firstly, a change in scale, as shown in Eq. (1) is performed. The
idea is to normalize all images to always work with a similar
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Fig. 1. (a) Input infrared image, (b) Scaled frame, (c) Incandescence elimination, (d) Thresholded frame.

2578 A. Fernández-Caballero et al. / Expert Systems with Applications 38 (2011) 2577–2584
scale of values, transforming I(x,y) to In(x,y) (see Fig. 1(b)). The
normalization assumes a factor c, calculated as the mean gray level
value of the las n input image, and uses the mean gray level value
of the current image, I.

Inðx; yÞ ¼ Iðx; yÞ � c
I

ð1Þ

where In(x,y) is the normalized image. Notice that In(x,y) = I(x,y)
when I ¼ c.

The next step is the elimination of incandescent points-
corresponding to light bulbs, power sources, and so on-, which
can confuse the algorithm by showing zones with too high temper-
atures. As the image has been scaled, the threshold hi calculated to
eliminate these points is related to the normalization factor c.
Indeed,

hi ¼ 3� 5
4
c ð2Þ

d ¼ 5
4 c introduces a tolerance value of a 25% above the mean image

value. And, 3 � d provides a value high enough to be considered an
incandescent image pixel. Thus, pixels with a higher gray value are
discarded and filled up with the mean gray level of the image.

Inðx; yÞ ¼
Inðx; yÞ; if Inðx; yÞ 6 hi

In; otherwise

(
ð3Þ

The algorithm uses a threshold to perform a binarization for the aim
of isolating the human candidates spots. The threshold hc, obtains
the image areas containing moderate heat blobs, and, therefore,
belonging to human candidates. Thus, warmer zones of the image
are isolated where humans could be present. The threshold is calcu-
lated as:
hc ¼
5
4
ðcþ rIn Þ ð4Þ

where rIn is the standard deviation of image In(x,y). Notice, again,
that a tolerance value of a 25% above the sum of the mean image
gray level value and the image gray level value standard deviation
is offered.

Now, image In(x,y) is binarized using the obtained threshold hc.
Pixels above the threshold are set as maximum value max = 255
and pixels below are set as minimum value min = 0.

In
bðx; yÞ ¼

min; if Inðx; yÞ 6 hc

max; otherwise

�
ð5Þ

Next, the algorithm performs morphological opening (Eq. (6)) and
closing (Eq. (7)) operations to eliminate isolated pixels and to unite
areas split during the binarization. These operations require struc-
turing elements that in both cases are 3 � 3 square matrices cen-
tered at position (1,1). These operations greatly improve the
binarized shapes as shown in Fig. 1.

In
oðx; yÞ ¼ In

bðx; yÞ �
0 1 0
1 1 1
0 1 0

�������
������� ð6Þ

In
c ðx; yÞ ¼ In

oðx; yÞ �
0 1 0
1 1 1
0 1 0

�������
������� ð7Þ

Afterwards, the blobs contained in the image are obtained. A mini-
mum area, Amin, – function of the image size- is established for a
blob to be considered to contain humans.

Amin ¼ 0:0025� ðr � cÞ ð8Þ
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where r and c are the number of rows and columns, respectively of
input image I(x,y). As a result, the list of blobs, LB, containing people
candidates in form of blobs bk[(xstart,ystart), (xend,yend)], is generated.
k stands for the number (index) of people candidate blob in image
In(x,y), whereas (xstart,ystart) and (xend,yend) are the upper left and
lower right coordinates, respectively, of the minimum rectangle
containing the blob. As an example, consider the resulting list of
blobs related to Fig. 1 and offered in Table 1.

2.2. People candidate blobs refinement

In this part, the algorithm works with the list of blobs LB, pres-
ent in image In(x,y), obtained at the very beginning of the previous
section. At this point, there is a need to validate the content of each
blob to find out if it contains one single human candidate or more
than one. Therefore, the algorithm processes each detected blob
separately.

Let us define a region of interest (ROI) as the minimum rectan-
gle containing one blob of list LB (obtained from In(x,y)). A ROI may
be defined as Rk = Rk(i, j), when associated to blob bk[(xstart,ystart),
(xend,yend)]. Notice that i 2 [1. . .maxi = xend � xstart + 1] and
i 2 [1. . .maxj = yend � ystart + 1].

2.2.1. People vertical delimiting
The first step consists in scanning Rk by columns, adding the

gray level value corresponding to each pixel in that column, as
shown in Eq. (9).

Hk½i� ¼
Xmaxj

j¼1

Rkði; jÞ; 8i 2 ½1 . . . maxi� ð9Þ

This way, a histogram Hk[i] showing which zones of the ROI own
greater heat concentrations is obtained. A double purpose is pur-
sued when computing the histogram. In first place, we want to in-
Table 1
People candidates blobs list.

k xstart ystart xend yend. Area

1 297 270 482 458 35154
2 608 344 645 376 1254

Fig. 2. (a) Input ROI, (b) Histogram, (c) Columns adjustment to obtain three human
candidates.
crease the certainty of the presence and situation of human heads.
Secondly, as a ROI may contain several persons that are close en-
ough to each other, the histogram helps separating human groups
(if any) into single humans. This method, when looking for maxi-
mums and minimums within the histogram allows differentiating
among the humans present in the particular ROI.

Now the histogram, Hk[i], is scanned to separate grouped hu-
mans, if any. For this purpose, local maxima and local minima
are searched in the histogram to establish the different heat
sources (see Fig. 2(a)). To assess whether a histogram column con-
tains a local maximum or minimum, a couple of thresholds are
fixed, hvmax and hvmin

. Experimentally, we went to the conclusion
that the best thresholds should be calculated as:

hvmax ¼ 2� Rk þ rRk
ð10Þ

hvmin
¼ 0:9� Rk �maxj ð11Þ

Each different region that surpasses hvmax is supposed to contain one
single human head, as heads are normally warmer than the rest of
the people body covered by clothes. That is why hvmax has been set to
the double of the sum of the average gray level plus the standard
deviation of the ROI. On the other hand, hvmin

indicates those regions
of the ROI where the sum of the heat sources are really low. These
regions are supposed to belong to gaps between two humans. We
are looking for regions where the column summed gray level is be-
low a 90% of the mean ROI gray level value. Fig. 2(b) shows the his-
togram for input ROI of Fig. 2(a). You may observe the values for
hvmax and hvmin

, corresponding to three peaks (three heads) and two
valleys (two separation zones). Fig. 2(c) shows the three humans
as separated by the algorithm into sub-ROIs, sRk,a.

2.2.2. People horizontal delimiting
All humans contained in a sub-ROI, sRk,a, obtained in the previ-

ous section possess the same height, namely the height of the ori-
ginal ROI. Now, we want to fit the height of each sub-ROI to the real
Fig. 3. (a) Input sub-ROI, (b) Binarized sub-ROI, (c) Rows adjustment to delimit
three human candidates.

Table 2
Refined people candidates blobs list.

j xstart ystart xend yend Area

1 339 286 395 354 3808
2 396 270 481 458 15980
3 298 289 338 354 2600



Fig. 4. Some indoor output images.
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height of the human contained. Rows adjustment is performed for
each new sub-ROI, sRk,a, generated by the previous columns adjust-
ment, by applying a new threshold, hh.

The calculation is applied separately on each sub-ROI to avoid
the influence of the rest of the image on the result. This threshold
takes the value of the sub-ROI average gray level, hh ¼ sRk;a. Thus,
sub-ROI sRb,k,a is binarized in order to delimit its upper and lower
limits, obtaining sRk,a, as shown in Eq. (12) similar to Eq. (5).

sRb;k;aði; jÞ ¼
min; if sRk;aði; jÞ 6 hh

max; otherwise

�
ð12Þ

After this, a closing is performed to unite spots isolated in the bina-
rization, getting sRc,k,a (see Fig. 3(b)).

sRc;k;aði; jÞ ¼ sRb;k;aði; jÞ �
0 1 0
1 1 1
0 1 0

�������
������� ð13Þ

Next, sRc,k,a is scanned, searching pixels with values superior to min.
The upper and lower rows of the human are equal to the first and
last rows, respectively, containing pixels with a value set to max.
The final result, assigned to new ROIs, Rj, may be observed in
Fig. 3(c). The blobs associated to the split ROIs are enlisted into
the original blobs list, LB (see Table 2).
Fig. 5. People segmentation algorithm (speed in fps).
3. Data and results

The people segmentation algorithm proposed has been tested
on a series of indoor video sequences captured by a FLIR camera.
The aim has been to extensively show the robustness of the pro-
posal in only obtaining humans through the segmentation of war-
mer spots and the refinement to eliminate non-human objects.
Fig. 4 shows a couple of output images of the infrared human
detection algorithm. As you may easily observe, in both frames
presented, humans are perfectly segmented.

Fig. 4(a) shows the clear separation of three very close people in
the running example used in the previous section. Notice that two
of the three humans are partially occluded, and, nonetheless, they
are correctly segmented. It is also worthwhile to highlight that the
shadow of the non-occluded human is eliminated from the human
body. In the same figure, a laptop (at the right of the people) is not
segmented as a human, although there is sufficient heat emitted by
the computer to confuse the algorithm. Also, consider Fig. 4(b),
where a window at the left of the image has not provided a false
positive.

The performance results in terms of real-time capability of the
algorithms described are also excellent, as the method works with
6 frames per second in the worst situation, which corresponds to
the processing of large typical 768 � 576 pixel images provided
by a FLIR camera (see Fig. 5). When processing smaller images
are processed, the performance reaches 13 frames per second for
537 � 403 pixel images and 26 frames per second for 384 � 288
pixel images in the test performed.

Of course, we have also tested our proposal with a well-known
indoor infrared video benchmark, namely the ‘‘Indoor Hallway
Motion” sequence included in dataset 5 ‘‘Terravic Motion IR Data-
base” provided within the OTCBVS Benchmark Dataset Collection.

Firstly, in Fig. 6 the results of applying the algorithm to a se-
quence where a person is crossing the scene form right to left.
Fig. 6(a) shows the scenario. Notice the presence of a hot spot in
the image that could lead to confusion, but the algorithm does
not make any mistake. Fig. 6(b) shows the first frame where the
person is detected. The detection works fine – a hit of a 100% –
through all the frames (see Fig. Fig. 6(c)) until the person reaches
the hot spot region. Here (Fig. 6(d)), the human region also covers
the hot spot. From this moment on, and until the person exits the
scene, the performance of the person segmentation hit is a 98%
(e.g. Fig. 6(e) and (f)).

The second example shows another person crossing from right
to left, while, at the same time, a second human is slowly



Fig. 6. Crossing from right to left. (a) Frame #220, (b) Frame #250, (c) Frame #290, (d) Frame #292, (e) Frame #324, (f) Frame #333.

Fig. 7. Crossing from right to left, and approaching from rear to front. (a) Frame #2326, (b) Frame #2357, (c) Frame #2362, (d) Frame #2420, (e) Frame #2411, (f) Frame
#2530.
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Fig. 8. Walking from front right to rear left. (a) Frame #5135, (b) Frame #5150, (c) Frame #5175, (d) Frame #5209, (e) Frame #5229, (f) Frame #5264.

Fig. 9. Two persons walking to the rear. (a) Frame #8268, (b) Frame #8293, (c) Frame #8297, (d) Frame #8344, (e) Frame #8377, (f) Frame #8478.

2582 A. Fernández-Caballero et al. / Expert Systems with Applications 38 (2011) 2577–2584



Fig. 10. Some results on outdoor infrared images.
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approaching the camera from the rear. As you may observe
(Fig. 7(a)–(c)), the first human is perfectly segmented. The person
approaching is wearing clothes that do not emit any heat. Thus,
only the head is visible, and it is very difficult to detect such a spot
as belonging to a human. Nonetheless, in a 63% of the frames
where the partially occluded human is present, he is detected
(see Fig. 7(d) and (e)). Unfortunately, when this person is too close
to the camera, it is not detected as a human (see Fig. 7(f)).

The third example shows a human entering the scene from the
front right and walking to the rear left (see Fig. 8). Now, this person
shows an abnormal and uniform high heat level. This is a challenge
for our proposal, as we try to locate the human head in relation
with the body (in terms of heat and size). The performance of
the algorithm in this sequence is about a 60% of hits when the per-
son is close to the camera (see Fig. 8(a)–(c)) and grows to a 90%
when the human goes far, as shown in Fig. 8(e) and (f). Fig. 8(d)
shows one of the three frames where a false positive is gotten in
a total of 140 frames of the sequence.

Finally, we show in Fig. 9(a) sequence of two people entering
the scene from different sides, and walking together to the rear.
As shown in Fig. 9(a)–(c), the segmentation process is efficient.
From frame #8344 on, corresponding to Fig. 9(d), the humans
are not correctly divided, as they are too close to the rear. As shown
in Fig. 9(e) and (f), until the humans disappear from the scene, the
segmentation of the group is right for a 47%.

Lastly, for the purpose of discovering how good our algorithms
could work in outdoor scenarios, we tested our algorithm on some
outdoor benchmarks (also from the OTCBVS Benchmark Dataset
Collection – ‘‘Weapon Presence Detection” and ‘‘Weapon Discharge
Detection”, IR05 and IR03, respectively, of dataset 6 ‘‘Terravic
Weapon IR Database”). Just by modifying a few parameters of the
algorithm, we came to the conclusion that the proposal is very
encouraging, as shown by the results offered in Fig. 10 and Table 3.
Table 3
Outdoor human detection results.

Benchmark Frames Hits False positives False negatives

IRG03 480 98% 0% 2%
IRG05 297 100% 0% 0%
4. Conclusions

A new approach to real-time people segmentation through pro-
cessing images captured by an infrared camera has been exten-
sively described. The proposed algorithm starts detecting human
candidate blobs processed through traditional image thresholding
techniques. Afterwards, the blobs are refined with the objective of
solving the question if each blob contains one single human candi-
date or has to be divided into smaller blobs. If the blob contains
more than one possible human, the blob is divided to fit each
new candidate in height and width.

The results obtained so far in indoor and (initial) outdoor sce-
narios are promising. We have been able of testing our person seg-
mentation algorithms on our proper testbeds, as well as on very
well-known datasets.
Acknowledgements

This work was partially supported by the Spanish Ministerio de
Ciencia e Innovación under project TIN2007-67586-C02-02, and by
the Spanish Junta de Comunidades de Castilla-La Mancha under
projects PII2I09-0069-0994, PII2I09-0071-3947 and PEII09-0054-
9581.
References

Benet, G., Blanes, F., Simó, J. E., & Pérez, P. (2002). Using infrared sensors for distance
measurement in mobile robots. Robotics and Autonomous Systems, 40(4),
255–266.

Bhanu, B., & Han, J. (2002). Kinematic-based human motion analysis in infrared
sequences. In Proceedings of the sixth IEEE workshop on applications of computer
vision (pp. 208–212).

Davis, J. W., & Sharma, V. (2007). Background-subtraction in thermal imagery using
contour saliency. International Journal of Computer Vision, 71(2), 161–181.

Fernández-Caballero, A., Gómez, F. J., & López-López, J. (2008). Road-traffic
monitoring by knowledge-driven static and dynamic image analysis. Expert
Systems with Applications, 35(3), 701–719.

Fernández-Caballero, A., López, M. T., Mira, J., Delgado, A. E., López-Valles, J. M., &
Fernández, M. A. (2007). Modelling the Stereovision-correspondence – Analysis
task by lateral inhibition in accumulative computation problem-solving
method. Expert Systems with Applications, 33(4), 955–967.

Fernández-Caballero, A., López, M. T., & Saiz-Valverde, S. (2008). Dynamic
stereoscopic selective visual attention (DSSVA): Integrating motion and shape



2584 A. Fernández-Caballero et al. / Expert Systems with Applications 38 (2011) 2577–2584
with depth in video segmentation. Expert Systems with Applications, 34(2),
1394–1402.

Garcia, M. A., & Solanas, A. (2004). Estimation of distance to planar surfaces and
type of material with infrared sensors. In Proceedings of the 17th international
conference on pattern recognition (Vol. 1, pp. 745–748).

Iwasawa, S., Ebihara, K., Ohya, J., & Morishima, S. (1997). Realtime estimation of
human body posture from monocular thermal images. In Proceedings of the 1997
IEEE computer society conference on computer vision and pattern recognition (pp.
15–20).

Jung, S. -H., Eledath, J., Johansson, S., & Mathevon, V. (2007). Egomotion estimation
in monocular infra-red image sequence for night vision applications. In IEEE
workshop on applications of computer vision (p. 8).

López, M. T., Fernández-Caballero, A., Fernández, M. A., Mira, J., & Delgado, A. E.
(2006). Visual surveillance by dynamic visual attention method. Pattern
Recognition, 39(11), 2194–2211.

López, M. T., Fernández-Caballero, A., Mira, J., Delgado, A. E., & Fernández, M. A.
(2006). Algorithmic lateral inhibition method in dynamic and selective visual
attention task: Application to moving objects detection and labelling. Expert
Systems with Applications, 31(3), 570–594.

Mira, J., Delgado, A. E., Fernández-Caballero, A., & Fernández, M. A. (2004).
Knowledge modelling for the motion detection task: The algorithmic lateral
inhibition method. Expert Systems with Applications, 27(2), 169–185.

Nanda, H., & Davis, L. (2002). Probabilistic template based pedestrian detection in
infrared videos. In Proceedings of the IEEE intelligent vehicle symposium (Vol. 1,
pp. 15–20).

Pavón, J., Gómez-Sanz, J., Fernández-Caballero, A., & Valencia-Jiménez, J. J. (2007).
Development of intelligent multi-sensor surveillance systems with agents.
Robotics and Autonomous Systems, 55(12), 892–903.

Xu, F., Liu, X., & Fujimura, K. (2005). Pedestrian detection and tracking with night
vision. IEEE Transactions on Intelligent Transportation Systems, 6(1), 63–71.

Yilmaz, A., Shafique, K., & Shah, M. (2003). Target tracking in airborne forward
looking infrared imagery. Image and Vision Computing, 21(7), 623–635.


	Real-time human segmentation in infrared videos
	Introduction
	Robust people segmentation algorithm
	People candidate blobs detection
	People candidate blobs refinement
	People vertical delimiting
	People horizontal delimiting


	Data and results
	Conclusions
	Acknowledgements
	References


