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A B S T R A C T

Most injuries in the elderly are due to falls. The response time, to attend to the critically injured in such
fall cases, is crucial to their survival. This paper presents a low-cost, autonomous assistive patrol robot which
additionally includes a fallen person detection module with facial recognition that allows identification of
patients. Patrol robots could be beneficial for care centers, where there is a considerable number of patients
that require care. In these conditions, falls can be generally detected by the robotic platform during the post-
fall phase. This allows the system to work with no frame rate constraints, allowing other tasks to be run
simultaneously. Based on the YOLO network, we propose two approaches for the fallen person detector. The
first approach can differentiate between fallen persons and persons doing ordinary activity in a single stage,
while the second is a two-staged approach. The network weights were obtained using a fine-tuning process
by retraining with our own extended Fall Person Dataset (E-FPDS), which we release as a benchmark for
other RGB vision-based approaches. Quantitative evaluations confirm that the detector performs robustly in
detecting fallen persons in different situations. The results also show a recall of 98.97% in our test set.
1. Introduction

Recent developments in social science and technology have enabled
using auxiliary systems with new tools to active aging and ease the
burden of healthcare professionals in hospitals and daycare centers. Ex-
amples of such technologies that involve computer vision and robotics
include a wide range of applications related to real-time assistance and
humans’ assistance, such as automatic fallen person detection. Fallen
person detection systems (FPDS) have received a growing interest in
recent years, and it is a crucial part of advanced assistive systems (Wang
et al., 2020; Xu et al., 2018; Yusoff et al., 2021). Most injuries in the
elderly are the result of falls; fractures of the hip, forearm, humerus,
and pelvis usually result from the combined effect of falls and os-
teoporosis (Burns & Kakara, 2018). In such fall cases, the response
time to attend to patients in a critical condition is crucial to their
survival. Care center staff often do not see patients fall, especially when
there are many patients. However, falls require immediate attention to
reduce the risk of injury. Some authors have proposed patrol robots
to help improve surveillance of elderly people and detect falls as soon
as possible (Li et al., 2019; Menacho & Ordoñez, 2020; Tomoya et al.,
2017).
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Reliable systems can mitigate the negative consequences of falls and
even save lives. Numerous efforts, presented in literature, have been
made over the past years to detect fallen persons. Some examples can
be found in Xu et al. (2018). However, in real applications, FPDS has
always been a challenging task presenting challenges for understanding
the scene using computer vision. The most important challenges are
listed below:

• Complex dynamic environments: hospitals and care centers have
complex indoor environment with varying illuminations, a variety
of furniture, and people (patients, visitors, and personal staff).

• Perspective distortion: the projection of a fallen person on the
image plane differs in terms of scale, orientation, and position.
It depends on the camera motion and the possible motions of the
fallen person, e.g., a person can be simply crawling, trying to find
a phone, or trying get the system’s attention.

• Activities: fall-lying pose is like other lying poses such as sleeping
(common place in the elderly population). Contextual information
is crucial for distinguishing between both activities in simple
image processing.
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• Occlusions: they are given when some elements of indoor struc-
ture, such as walls or pieces of furniture, occlude a fallen person
partially. In this case, part of the body is missed in the image,
making it more difficult.

It is hard to solve these problems with traditional image processing
r machine learning methods. In recent years, deep learning techniques
ave been widely used in object detection. They provide an efficient
ay to extract features from images. Among these techniques, YOLO

You Only Look Once) (Redmon et al., 2016; Redmon & Farhadi, 2017)
tands out for its simplicity and efficiency. YOLO can concurrently
redict bounding box coordinates and associated class probabilities,
nd it achieves end-to-end target detection without a complex pipeline.
nspired by our previous fallen person detection algorithm (Maldonado-
ascón et al., 2019), in this work we propose two strategies based
n YOLOv3 (Redmon & Farhadi, 2018) for fallen person detection.
OLOv3 algorithm performs well in object detection but does not
onsider the problem of a fallen person as a category in its training
ataset (MS-COCO) (Lin et al., 2014).

Considering that the system must differentiate fallen persons from
ersons doing ordinary activities (standing up, sitting in a chair, lying
n the sofa, walking, etc.), we tackle the problem with two different
onfigurations. The two configurations differ on the number of stages
one or two) in the architecture. The two-stage configuration is com-
osed of two blocks: (1) a Convolutional Neural Network (CNN) based
n YOLO for detecting persons and (2) a Support Vector Machine (SVM)
ased stage that is capable of detecting fallen persons from among
reviously identified persons. To further enhance the extraction ability
f CNN, the one-stage configuration tries to integrate both stages of the
revious architecture into the YOLO network.

On the other hand, one of the main problems when comparing FPDS
lgorithms is the lack of large benchmark datasets as a standardized
ramework by the research community. Most of them are simulated
n the laboratory to test the performances in the absence of real
all databases. In fact, in most studies dealing with fallen detection
lgorithms, authors create their own datasets with their particular
haracteristics: group of persons and predefined typologies of falls and
ctivities. Unfortunately, these generated datasets are rarely published
r made available. Therefore, the reproducibility of the tests and the
ross-comparison with other algorithms becomes difficult. The datasets
or fallen person detection can be separated mainly in four categories:
1) sensor-based databases which including wearable sensors (Casilari
t al., 2017; Ferreira et al., 2020; Frank et al., 2010; Medrano et al.,
014; Sucerquia et al., 2017; Vavoulas et al., 2014; Vilarinho et al.,
015), (2) vision-based databases which including one or multiple
GB cameras (Auvinet, Rougier et al., 2010; Bosch-Jorge et al., 2014;
harfi et al., 2012; Mastorakis & Makris, 2014), (3) depth cameras
uch as Kinect (Ni et al., 2011; Wu et al., 2017; Zhang et al., 2014)
nd (4) multimodal databases which contain a combination of sensors
nd/or cameras (Chen et al., 2015; Kwolek & Kepski, 2014; Stone &
kubic, 2014). In vision-based datasets, images do not include critical
ituations for FPDS, such as lying/sleeping people, that can be easily
onfused with fallen persons. As many images are taken in a laboratory,
here is a lack of variety in the image background, and many are
aken from perspectives that are not suitable for robot patrolling. For
ll these reasons, in this paper, we release a large dataset, E-FPDS
Extended-Fallen People Dataset), which contains 6982 RGB annotated
mages with 5023 and 2275 fallen/non-fallen persons that try to solve
he above mentioned problems. Each image is annotated with the
ectangular regions of interest (ROIs) and the specific classes (persons
nd/or fallen persons).

Therefore, the main contributions of this study can be summarized
y the following:

• A dataset of RGB images for fallen detection is collected and
contributed by this paper. The primary intention to release this
dataset is to compare different RGB vision-based algorithms, sys-
2

tems, and configurations fairly.
• The integration of an FPDS in a low-cost autonomous assistive
robot to detect fallen persons in real-time and distinguish them
from other daily activities.

• Two architectures based on YOLO are proposed for fallen person
detection. In the first strategy, the features from the ROI detected
by the YOLO network are provided as inputs to an SVM classifier,
which decides if the person is in a fall or not. On the other
hand, the second method uses a fine-tuning process by retraining
YOLOv3 that detects a fallen person directly with a unique one-
stage system. The results show that a suitable training of YOLOv3
can identify the fall-lying pose with very high recall and precision.

• As a complementary utility of the system, we introduce a face
recognition stage to identify the fallen person. For this purpose,
we explore how the face recognition algorithm from King (2017)
needs to be adapted for lying postures under different viewing
angles.

The paper is structured as follows: Section 2 focuses on a review of
the related works. Detailed implementation of the framework is given
in Section 3. The extended fallen person detection dataset, E-FPDS, is
introduced in Section 4. Section 5 evaluates the performance of the
proposed algorithms. Finally, we get conclusions and present future
works in Section 6.

2. Related work

There is a lot of research on automatic fallen person detection algo-
rithms to enable fast and proper assistance to the elderly. A complete
monitoring system for the elderly suffering from Alzheimer’s disease
was proposed in Charlon et al. (2013). The most common methods
consist of a combination of sensing and computing technologies to col-
lect relevant data and develop algorithms that can detect falls based on
those collected data; the paper (Mubashir et al., 2013) offers a survey of
such systems. Depending on the nature of the employed sensors, fallen
person detection systems can be classified into different groups. Igual
et al. (2013) classify these systems into two generic groups: context-
aware systems and wearable devices. Firstly, context-aware systems
are based on sensors located in the environment around the user.
Thus, these solutions typically integrate vision-based, and ambient-
based systems (Mastorakis & Makris, 2014; Rimminen et al., 2010;
Tzeng et al., 2010), including cameras, microphones, infrared, vibration
sensors, and pressure sensors. The other type of fallen person detec-
tion system works with wearable sensors (Khan & Taati, 2017; Paoli
et al., 2012). These systems employ accelerometers (and other mobility
sensors) attached to the clothes or transported by the persons. Lately,
sensors embedded in smartphones, smartwatches, and other portable
devices have gained popularity due to their high affordability and
global adoption. However, Mubashir et al. (2013) consider that vision-
based and ambiance sensors should be in a different category. Zhang
et al. (2015) make the classification based on the use of cameras so
that the systems can be either non-vision-based or exclusively vision-
based. Additionally, the vision-based devices can also be classified into
three subcategories based on their type of camera: single RGB camera-
based (Charfi et al., 2012; De Miguel et al., 2017; Hsu et al., 2015;
Maldonado-Bascón et al., 2019), multiple RGB cameras-based (Auvinet,
Multon et al., 2010; Cucchiara et al., 2007), and depth cameras-
based (Lewandowski et al., 2017; Ni et al., 2011; Wu et al., 2017; Zhang
et al., 2014).

Wearable sensors offer several advantages over other sensors in
terms of cost, size, weight, ease to use, and, most importantly, portabil-
ity. However, the significant advance is the privacy and independence
of them respect the particularities of the environment. On the other
hand, these devices have limited acceptance by the users for three main
reasons: the discomfort in wearing them during normal daily activities,
easy to forget wearing them, and their false-positive alarms. Ambient

sensor-based approaches sense the pressure of everything around the
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person and generate too many false alarms (Principi et al., 2016). As
an alternative to wearables, vision-based methods have emerged. The
main advantage of vision based systems is that the person does not
need to wear any devices. Furthermore, cameras provide a very rich set
of information about the person’s behavior, and their use is becoming
more and more prevalent in everyday life.

Analyzing the three types of vision-based systems, the biggest prob-
lem of RGB cameras is occlusion. This problem can be solved if the
camera is placed higher in the wall or ceiling to have a larger field of
view. However, there is no access to the body’s vertical motion in those
cases, which also provides useful information for some fallen person
detection approaches (Lee & Mihailidis, 2005; Nait-Charif & McKenna,
2004). Apart from RGB cameras, the use of RGBD cameras, like Kinect,
for fallen person detection has increased because it can additionally
obtain 3D information by tracking a person. However, RGBD cameras
cannot cover an entire room because the resolution decreases in the
depth image, hindering detection. Finally, there are multi-camera sys-
tems which have two main drawbacks: synchronization and calibration
to compute reliable 3-D information, making the systems more difficult
to implement than monocular ones. Determining human action in video
scenes is another method of vision-based systems, as Olivieri et al.
(2012).

The purely vision-based approaches focus on the frames of videos or
images to detect falls. Features such as silhouettes or bounding boxes
are extracted from the frames/images to facilitate detection in those
approaches. Some approaches use those features as input for a machine
learning classifier (Zerrouki et al., 2016) to detect falls such as Hidden
Markov Models (HMM) (Anderson et al., 2006; Töreyin et al., 2005),
Gaussian Mixture Models (GMM) (Rougier et al., 2011; Vishwakarma
et al., 2007), K-Nearest Neighbor (Liu et al., 2010) and SVM (Charfi
et al., 2012; Ebrahimi et al., 2017; Maldonado-Bascón et al., 2019;
Schüldt et al., 2004; Zhang et al., 2006). As mentioned previously,
several methods exist to detect falls with good detection rates.

These works demonstrate the importance of integrating real-time
fallen person detection solutions to further robotic solutions for aiding
patients. The solution should be as simple as possible. Ideally, we
should avoid installing complex sensor networks at centers or over the
user’s body. Furthermore, there is no doubt that cost-effectiveness must
be considered since the provisioning of the robotic platform to the
user usually results in an expense paid by families or health services.
In the context of our application, which is an assistive patrol robot
(APR) collecting interesting information as it goes, we formulate the
problem of fall detection as a fall-lying pose recognition and not as a
process of falling. The reason is the difficulty of capturing the person
during the fall when the robot is on patrol. Since our detector system is
triggered by each captured frame and the inter-frame information is not
considered, a fallen person is generally detected in several consecutive
frames. That is, we get redundant information to provide an alarm. Our
APR has the following properties:

• The use of an RGB camera as a sensor for the detector instead of
wearable sensors.

• It is robust enough to differentiate falls from other similar activ-
ities, such as lying down on a sofa or bed.

• It is capable of navigating in an environment.
• It is a simple and low-cost system, which will help increase

accessibility to communities that require it.
• It provides face recognition as a complementary utility of the

fallen person detection. However, face recognition can be diffi-
cult, depending on the pose of falling.

• It provides an alarm in case of detecting a fallen person. The gen-
erated information includes the localization of the robot, which
is, in this case, close to the detected fallen person.

Therefore, according to the previous characteristics, this paper’s
ain objective is to present a fallen person algorithm embedded on
3

n autonomous APR to be used in elderly care centers. However, it
could also be applied in other centers for children, youth, or adults,
who may also benefit from FPDS, especially in persons with functional
disabilities.

3. Assistive robot for fallen persons detection

This section presents the main parts of the proposed mobile assistive
robot, including an embedded system with an application to fallen
person detection. To make this application possible, it was necessary to
use different types of hardware that facilitated the acquisition of data
and software tools that analyzed the information sent by those devices.
This way, mixing these technologies was possible to patrol around the
place, detect falls, and provide an alarm with the person’s identification
if the face is visible.

In the beginning, the system architecture is outlined. Next, a fallen
detection algorithm based on person detection with a fine-tuning
YOLOv3 and fall classification using SVM is presented. Following, an al-
ternative method based on fallen detection using a fine-tuning YOLOv3
with two classes is explained. Finally, we describe a complementary
utility based on an adapted face recognition algorithm for identifying
the fallen person.

3.1. Robotic platform

As a base for the fallen person detection approach, we use the last
updated version of our autonomous assistance robot, ‘‘LOLA’’ (Fig. 1).
LOLA has been designed entirely by our research team to monitor and
help users. It is a differential wheeled robot, equipped with two motors
and their corresponding encoders, all controlled with an open-source
Arduino Mega board. We have performed all mechanical and electrical
designs. Additionally, the outer shell, imitating a person wearing a
tuxedo, was made entirely by 3D printing. Two batteries power the
platform, and it includes an electronic driver interface to allow easy
interconnection of the different parts of the system and all the power
management. The complete platform measures approximately 800 mm,
slightly higher than a table.

As for the sensors, the platform has the following: a LIDAR, a touch
screen, and a frontal camera. The images are acquired using an RGB
camera with a wide-angle and image size of 640x480 pixels. In order to
integrate into the mobile robot all the high-level processing that cannot
be embedded into the Arduino, the platform has a Jetson TX2 board
from NVIDIA, including visual perception with the FPDS module and
navigation. Fig. 2 shows the overview of the system architecture where
all the different modules are separated for a more comprehensible
structure.

3.2. Proposed architectures

In this work, we implement a vision-based fallen detector in an APR
based on a YOLO network. The YOLOv3 model runs a deep learning
CNN on an input image to produce network predictions. The CNN
consists of 106 layers, including successive 3 × 3 and 1 × 1 convolu-
tional layers, shortcut connections, up-sample layers, route layers, and
detection layers. It is important to point out that even when the original
YOLO is trained using the COCO dataset (Lin et al., 2014) with the
‘‘person’’ class, it does not have the capability of discriminating a fallen
person against other human postures. Inspired by this idea, we propose
two strategies to solve the problem:

• YOLO+SVM (called TDSVM-fall): this architecture (see Fig. 3)
consists of two stages: (1) a CNN based on YOLO for detecting
all persons in the image independently of their postures, and (2)
an SVM for detecting fallen persons among the persons extracted
previously. Here, we ran a fine-tuning process retrained YOLO

for detecting people using PASCAL VOC (2007&2012) and our
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Fig. 1. Pictures of our low-cost autonomous robot ‘‘LOLA’’.
Fig. 2. Overview system architecture.
Fig. 3. Flowchart of the TDSVM-fall detection algorithm.
own dataset E-FPDS, which contains mainly fallen person im-
ages. Thus, the network worked with a unique class (‘‘person’’
class) that considers all different human poses and activities.
The main difference of this strategy concerning our previous
work (Maldonado-Bascón et al., 2019) is that now we have re-
trained the network to make it robust to changes of human poses,
instead of correcting the orientation of the input images to the
CNN in Maldonado-Bascón et al. (2019). In the previous work,
cross-validation was performed on the training set to find the
optimal parameters (the 𝐶 upperbound and kernel parameters) of
a Radial Basis Function (RBF) kernel SVM. The SVM to be used
in this approach is built upon that work.

• YOLO (called TD-fall method): this architecture (see Fig. 4) im-
plements a two-class detector (person and fallen person classes)
based on another fine-tuning process without a posterior need of
an additional SVM classifier. The whole network can be end-to-
end trained. The capacity of discrimination between persons and
fallen persons is entirely transferred to the CNN, and the output
of YOLO provides the detections when the robot is on patrol.
The ROIs annotated as a non-fallen person in the datasets for
4

the fine-tuning process include many different situations, such as
standing, lying, or sitting.

As we can see in Figs. 3 and 4, an image is captured with the
RGB camera and is given as input to the detection stage. If it detects
a fallen person, the ROI is forwarded to the face recognition system,
triggers an alarm, and generates a voice message to interact with the
user asking if needs help. The algorithm provides information about the
fallen person’s localization and his/her identification when is possible.

3.3. Face recognition

In a patrol robot with an embedded FPDS, it is important to identify
the subject in risk. In FPDS, the alignment of faces is the main prob-
lem to overcome because faces may appear downward, sideways, or
occluded (if the person is on his/her back) in the plane image. Other
difficulties to face are the small size of the face in the image when the
camera is far from the target and the blurring caused by the possible
motions of the fallen person.
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Fig. 4. Flowchart of the TD-fall detection algorithm.
CNNs have received increasing interest in face recognition, and
several deep learning methods have been proposed. Guo and Zhang
summarize them and make a concise overview of face recognition’s
main problems in Guo and Zhang (2019). Our face recognition mod-
ule is based on the open-source face_recognition package (King, 2017),
which was written in C++ and built using dlib’s state-of-the-art face
recognition. The pipeline consists of face detection, projecting faces,
encoding faces, and finding the person from the encodings. The basic
idea of encoding is to quantify the face with a vector of measurements.
In this way, identifying someone over a registered database of people
involves identifying the person with the closest measurements to the
test image.

In our FPDS, the primary challenge is face detection robust enough
to multiple rotations. In general, heads of fallen people on the floor
appear with rotations closed to ±90◦ concerning conventional situations
where a person is walking, standing up, or sitting. From our experi-
ments with the mentioned library, we can confirm that the performance
of the face_recognition package deteriorates with rotations higher than
approximately 45◦. As a solution to adapt the library face_recognition for
lying postures, we feed the face recognition module with three inputs:
the original ROI and the rotated versions corresponding to ±90◦. In this
way, we apply facial recognition to the three versions of the original
ROI to solve the rotation dependency. Although facial recognition is
applied three times by each detected fallen person, it is important to
consider the reduced computational load of the process because the
facial recognition module is only triggered when a fallen person is
detected.

Fig. 5 represents the flowchart of our proposal, where each one of
the three ROIs (the original ROI detected and the both rotated versions)
is processed independently. The faces localized by the detection block
are fed to the face encoding stage, which returns a 128-length vector
for each detection. Thus, vectors 𝐟1, 𝐟2 and 𝐟3 denote the encodings of
the original and ±90◦ rotated versions, respectively. Then, the vectors
of distances 𝐝1, 𝐝2 and 𝐝3 to the face prototypes of our dataset are
calculated. Finally, the last stage of the face recognition algorithm
identifies the person with the lowest distance whenever this distance
is higher than a fixed threshold. In the example of Fig. 5, the system
detects and recognizes the face only in the ROI clockwise rotated.
However, some faces may be detected in more than one orientation
even when the correct detection is given only by one of the three.
For that reason, we include the block ‘‘combination of recognitions’’.
It identifies the person as the one that corresponds to the index with
the lowest distance in any of the three distance vectors.

Fig. 6 depicts three examples of our proposed algorithm in which
the faces are detected: in the counterclockwise and clockwise rotations
for the first two images, respectively, and in the original orientation for
the last one. The name of each identified person is written above the
corresponding ROI, which is represented with a green box.

4. A fallen people dataset: E-FPDS dataset

A fundamental problem in the analysis and comparison of the
5

different fallen person detection algorithms is the lack of public datasets
with a large number of people in lying-positions even in the large
datasets (Antonello et al., 2017; Auvinet, Rougier et al., 2010; Charfi
et al., 2013; Debard et al., 2016; Igual et al., 2015; Kwolek & Kepski,
2014; Martínez-Villaseñor et al., 2019). Additional limitations of these
datasets are related to the lack of a wide range of situations such
as several scenarios, fallen persons with many different poses and
appearance. On the other hand, persons in resting positions (lying down
on the sofa or in bed) are critical situations to discriminate against
fallen persons.

To consider the above problems in the analysis of algorithms, we
collected our own dataset to evaluate the performance of our proposed
FPDS framework. We captured a significant number of images with
different subjects simulating falls and other conventional activities
to construct the dataset. Images were taken using an RBG camera
mounted on our robotic platform and present a resolution of 640 × 480
size. In addition to capture images in different scenes and places, we
also collected images in different illumination conditions (indoor and
outdoor scenes). We will use the term fallen person instance to refer to
a physical fallen person on the floor. Thus, each fallen person instance
is captured in several images with different poses as the robot moves.
The main features of this dataset are:

• Several scenarios with variable light conditions,
• Subjects with different ages and appearance,
• Images with one or several subjects,
• Images with fallen persons and resting persons.

E-FPDS dataset1 includes images and their corresponding annotation
files. Each 𝑖th ROI is characterized by its corresponding label 𝑦𝑖 (𝑦𝑖 = 1
for fallen person, 𝑦𝑖 = −1 for non-fallen person) and its bounding box
𝑏𝑖 defined by the coordinates {𝑥𝑙𝑒𝑓 𝑡𝑖 , 𝑥𝑟𝑖𝑔ℎ𝑡𝑖 , 𝑦𝑡𝑜𝑝𝑖 , 𝑦𝑑𝑜𝑤𝑛

𝑖 }.
We presented the first version of our FPDS dataset in Maldonado-

Bascón et al. (2019). However, in this new work, we release an ex-
tended version of our dataset (called E-FPDS dataset) with a total
of 6982 images with 5023 and 2275 annotated fallen and non-fallen
persons, respectively grouped in 13 splits. The non-fallen persons are
in different activities such as standing up, sitting in a chair, lying on
the sofa, and walking. The dataset is composed of a training set, a
validation set, and a test set. Tables 1–3 summarize the features of
the E-FPDS database. The training dataset is used to fit the parameters
(weights) of the network, whereas the validation set is used to tune the
hyperparameters (i.e., the architecture) of the network. The test dataset
provides an unbiased evaluation of a final model fit on the training
dataset.

We built the training set with splits 1, 2, 3, 10, and 11, comprising
4808 images, including 3867 falls and 1005 non-falls. The test set
includes splits from 4 to 8, with 391 falls and 830 non-falls in a total
number of 973 images. Finally, the validation set comprises splits 12
and 13 with 765 falls and 440 non-falls in a total of 1201 images.

1 E-FPDS dataset including the ground-truth bounding boxes annotations
and the final optimized weights of ours trained models are public and available
at https://gram.web.uah.es/data/datasets/fpds/index.html.

https://gram.web.uah.es/data/datasets/fpds/index.html
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Fig. 5. Overall modified face recognition algorithm.
Fig. 6. Examples of output results from the proposed face recognition module.
Table 1
E-FPDS dataset — Training set.

Split 1 Split 2 Split 3 Split 10 Split 11 Total

Number of images 800 646 732 416 2214 4808
Number of falls 556 449 366 282 2214 3867
Number of non-falls 358 169 352 126 0 1005

Table 2
E-FPDS dataset — Validation set.

Split 12 Split 13 Total

Number of images 614 587 1201
Number of falls 614 151 765
Number of non-falls 4 436 440

Table 3
E-FPDS dataset — Test set.

Split 4 Split 5 Split 6 Split 7 Split 8 Total

Number of images 117 553 42 51 210 973
Number of falls 104 49 42 15 181 391
Number of non-falls 3 704 0 39 84 830

Regarding the distribution of splits, the percentages of images from
the whole dataset were 68.86% images for training, 13.93% images for
testing, and 17.21% images for validation.

5. Experiment results

5.1. Metrics

To evaluate the performance of the proposed algorithms, we uti-
lize precision and recall parameters (Charfi et al., 2013; Sokolova &
Lapalme, 2009) as metrics. Both parameters are defined as:

𝑃𝑟 = 𝑇𝑃 ; (1)
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𝑇𝑃 + 𝐹𝑃
𝑅𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (2)

being 𝑇𝑃 and 𝑇𝑁 the true positives and negatives, respectively, and
𝐹𝑃 and 𝐹𝑁 the false positives and negatives, respectively. Precision
(𝑃𝑟) and recall (𝑅𝑒) work in different directions in the sense that
improving precision typically reduces recall and vice versa. A robust
FPDS requires a trade-off between a high recall (most fallen persons are
detected) and a high precision (the number of false alarms is reduced).

To compare our system’s outcomes with the ground-truth of anno-
tated images, we adopted the Intersection over Union (IoU) criterion,
and detections having a certain overlap with an annotated fallen person
are considered as true positives. Unlike if the detection does not have
enough overlap with any annotation, it is computed as a false positive.
In order to set a threshold for IoU, 𝐼𝑜𝑈𝑡ℎ, we analyzed how this
value affects the precision and recall parameters in paper (Maldonado-
Bascón et al., 2019). It was observed that metrics values were almost
independent of the selected threshold, setting in that case, that value
to 𝐼𝑜𝑈𝑡ℎ = 0.2. We will keep this value for the proposed approaches.

In the first experiment, we evaluated the performance of the overall
end-to-end fallen detection algorithms: TDSVM-fall and TD-fall, respec-
tively. To further evaluate our proposed framework’s performance, we
conducted a set of comparative experiments on two other publicly re-
leased datasets. Finally, we tested the dependency of proposed methods
with the camera’s position to extend their usefulness to other possible
applications.

5.2. Experiment 1: Comparison of proposed methods

In this first experiment, we aim to evaluate the performance of the
proposed approaches: TDSVM-fall and TD-fall methods. The weights
of the pre-trained convolutional layers are used as initial values. The
new weights are obtained after a fine-tuning process by retraining the
network with three datasets: our new E-FPDS in addition to PASCAL
VOC 2007&2012.
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Fig. 7. Precision–recall curves over validation set for different number of epochs. (a) TDSVM-fall (20 classes). (b) TDSVM-fall (1 class). (c) TD-fall (2 classes).
Regarding the proposed methods, the number of classes to manage
is one (person) and two (fallen person and non-fallen person) for
TDSVM-fall and TD-fall, respectively. In the TDSVM-fall approach,
YOLO was trained to detect only the ‘‘person’’ class, including many
different situations from fallen and non-fallen persons (note that the
SVM classifier is fed with the detections of YOLO for detecting fallen
persons among the persons extracted previously). However, in order
to analyze the ability of the network to transfer learning from a large
source domain to a small target domain, we generated an additional
model of a network in the TDSVM-fall with the 20 classes of PASCAL
VOC (e.g., car, bus, TV, chair, etc.). The objective is to compare the
behavior of the system when the number of classes to detect varies.
To verify the effect of training, we select different training stages and
visualize their impact. Here, we chose to train from 1000 to 9000
epochs with steps of 1000 for comparison.

Fig. 7 shows precision–recall curves on the validation set for the
two approaches to determine the optimum values of the hyperparam-
eters (confidence threshold, 𝐶𝑡ℎ, and the number of epochs 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 in
training). The colors of the curves depict the results using the different
weights. Extreme points of curves with the highest recall correspond to
low values of 𝐶𝑡ℎ, whereas the lowest recall points correspond to the
highest values. Since non-detection of a fallen person has more serious
implications than a false alarm, we do not give the same importance to
precision and recall for selecting the best combinations of hyperparam-
eters. Thus, we determine the optimum values of hyperparameters that
provide a high recall even when we try to maintain a high precision
as possible. From a detailed analysis of precision–recall curves, we
selected as best results the obtained for 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 = 2000 (TDSVM-fall 20
classes), 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 = 7000 (TDSVM-fall 1 class) and 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 = 4000 (TD-
fall 2 classes) with 𝐶𝑡ℎ = 0.2 in all cases. Values of precision and recall
of selected optimum points (marked with a star symbol) are annotated
in Figs. 7(a), 7(b) and 7(c). The weights of our optimized models are
public and available at the same site URL as the E-FPDS dataset.

Using the optimum hyperparameters, we evaluate the performance
of the proposed approaches on the test dataset and compare our results
with the previous ones that we obtained in paper (Maldonado-Bascón
et al., 2019), where input images to CNNs were corrected previously
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Table 4
Comparison of methods on test set.

TP FN FP Pr (%) Re (%)

Fall detection with
pose correction
(Maldonado-Bascón
et al., 2019)

360 31 17 95.49 92.07

TDSVM-fall (20
Classes)

356 35 0 100 91.04

TDSVM-fall (1
Class)

370 21 4 98.93 94.63

TD-fall 387 4 25 93.93 98.97

to eliminate the possible changes of the pose. Table 4 summarizes the
results, and it is observed that the TDSVM-fall approach outperformed
the previous approach (Maldonado-Bascón et al., 2019) in terms of
precision. The precision rate increased by 4.51% and 3.44%, using
TDSVM-fall (20 classes) and (1 class), respectively. However, in the
recall case, the TDSVM-fall (1 class) increases the recall by 2.56% while
it decays 1.03% in the TDSVM-fall (20 classes). Our interpretation of
these results in the TDSVM-fall (20 classes) approach is based on the
overall loss function optimization because optimization considers the
20 classes and not only the ‘‘person’’ class. However, since our primary
goal is getting a high value of recall, the TD-fall method achieves a
very high recall rate of 98.97% with only 4 FN and a precision rate of
93.93%. Using that criterion, we conclude that the TD-fall method gets
the best performance. Fig. 8 shows the precision–recall curve of the
TD-fall approach over the test set by varying the 𝐶𝑡ℎ with the selected
number of epochs 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 = 4000.

Results over the test set (Table 4) confirm that the TD-fall approach
outperforms the TDSVM-fall approach in the recall parameter. How-
ever, it shows a lower precision rate. To analyze that behavior, we have
explored the 25 FPs in the test images. We found out that the FPs are
caused mainly for three situations:

• 10 FPs (see Fig. 9(a)): a leg of a chair was detected as a fallen
person in several images.
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Fig. 8. Precision–Recall curve for TD-fall over the test set for nepochs = 4000.

• 8 FPs (see Fig. 9(b)): persons in the process of falling were
annotated as non-fallen persons (we consider a fallen person only
when the person is lying on the floor).

• 7 FPs (see Fig. 9(c)): persons that appear in the scene are sur-
rounded by objects of similar color to clothes.

The optimized TD-fall method was adopted as a solution, and it was
integrated into our assistive patrol robot for fallen person detection. A
demo video is provided on the site.2 The runtime of this approach in
the NVIDIA® Jetson with 8 GB RAM was approximately on average
0.27s. This time allows detection in real-time, given an update rate of
3 frames per second.

5.2.1. Analysis of the confidence score
In order to analyze the influence of the confidence score 𝐶𝑠 at the

output of YOLO in the final decision, we obtained the histograms of 𝐶𝑠
for the two approaches on the validation set (see Fig. 10). We have
divided the range of values into 20 uniform intervals from 0 to 1.
Histograms are built by computing the frequency normalized of TPs
and FPs, being the frequency in each 𝑖th interval the number of TPs
and FPs with a confidence score that falls in the range of the considered
interval. As we expected, almost all the TPs were detected with a high
confidence score close to 1. However, in FPs, their confidence distribu-
tion does not follow a definite shape indicating that FPs were detected
with a wide range of values, except in the TDSVM-fall approach with a
unique class. In this last case, there exists a considerable concentration
of FPs with high values. The trade-off between a high number of TPs
and a low number of FPs with the priority of no missing TPs led us to
select a confidence threshold of 𝐶𝑡ℎ = 0.2.

Figs. 11 and 12 represent examples of detections with the TD-fall
approach corresponding to extreme values of confidence scores. Thus,
Fig. 11 includes both TPs corresponding to the lowest and the highest
scores, with values of 𝐶𝑠 = 0.24 (fallen person partially occluded) and
𝐶𝑠 = 1.0 (a fallen person easy to detect), respectively. In addition,
examples of Fig. 12 correspond to the FPs with the lowest and the
highest scores, with values of 𝐶𝑠 = 0.25 (shoes on the floor that the
system confuses with the target) and 𝐶𝑠 = 0.94 (fallen person lying on
a bed). Note that bounding boxes of TPs and FPs are depicted with
green and red colors, respectively, in the outcome images.

5.2.2. Analysis of non-max suppression
YOLO applies Non-Maximum Suppression (NMS) technique to avoid

the problem of multiple detections per object. It joins the ROIs with
high IoUs and selects the ROI with the higher confidence score. There-
fore, the IoU parameter of YOLO needs to be optimized. Fig. 13 shows
the number of FPs and FNs for different values of the IoU threshold,
𝐼𝑜𝑈𝑛𝑚𝑠. As we can observe, the number of FNs is almost not affected by
this threshold, whereas the number of FPs shows a strong dependency
on the IoU threshold, 𝐼𝑜𝑈𝑛𝑚𝑠. That is, the number of FPs increases

2 https://gram.web.uah.es/data/datasets/fpds/index.html.
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Table 5
Results on the IASLAB-RGBD and URFD datasets.

TP FN FP Pr (%) Re (%)

IASLAB-RGBD

Fall detection with pose correction 271 92 53 83.69 74.72
TDSVM-fall (20 classes) 257 104 108 70.41 71.19
TDSVM-fall (1 class) 295 66 36 89.12 81.71
TD-fall (2 classes) 301 60 3 99.01 83.37

URFD

Fall detection with pose correction 884 19 149 85.57 97.89
TDSVM-fall (20 classes) 884 19 305 74.34 97.89
TDSVM-fall (1 class) 847 56 258 76.65 93.79
TD-fall (2 classes) 885 18 0 100 98.00

notably as the value of 𝐼𝑜𝑈𝑛𝑚𝑠 grows. These results have been obtained
on the validation set, and we have fixed 𝐼𝑜𝑈𝑛𝑚𝑠 = 0.3 for all methods
because higher values provide a relevant increase in the number of FPs.
Note that the meaning of 𝐼𝑜𝑈𝑛𝑚𝑠 of the non-max suppression technique
is different from the 𝐼𝑜𝑈𝑡ℎ for the metric of evaluation.

5.3. Experiment 2: Other datasets

In this experiment, we evaluated the performance of the two pro-
posed algorithms with other datasets. This experiment supposes proof
of the capacity to generalize our approaches to other scenarios not
seen previously. Specifically, we decided to use two public datasets:
the Intelligent Autonomous Systems Laboratory Fallen Person Dataset
(IASLAB-RGBD) ([Dataset] Department of Information Engineering-
University of Padua, 2017) and the UR-Fall Detection
Dataset (URFD) ([Dataset] Interdisciplinary Centre for Computational
Modelling-University of Rzeszow, 2014):

• IASLAB-RGBD: This dataset was presented in Antonello et al.
(2017) and generated using a Microsoft Kinect One V2 camera
mounted on a mobile robot. We used a dataset with 374 images,
including 361 falls and 133 non-falls.

• URFD: This dataset was presented in Kwolek and Kepski (2014)
and contains 70 sequences (30 falls + 40 activities of daily living).
Fall events were recorded with 2 Microsoft Kinect cameras. For
this experiment, we used only the 30 fall sequences with 2103
images, including 903 falls and 1199 non-falls.

Both sets are close enough to our dataset due to the height of
the camera at which the original images were taken (see examples
of images in Fig. 14). We created the needed ground-truth bounding
boxes because neither of both datasets includes available annotations of
ROIs. Results are shown in Table 5 and we compare with our previous
contribution (Maldonado-Bascón et al., 2019). As we can observe, the
TD-fall method exhibits superior performance in new scenarios. It can
achieve precision rates of 99.01% and 100% and recall 83.37% and
98% in IASLAB-RGBD and URFD datasets, respectively. Worth noting,
the FNs, resulting in using this approach, are the lowers ones, an
essential issue for our proposed methods.

The SVM classifier caused most errors in the TDSVM-fall. It should
be noted the high number of FPs in contrast to the TD-fall approach.
However, from the inspection of the images, we observe that most
of the FPs are due to the same fact. In both scenarios, there is an
object that causes many FPs: a sofa in the IASLAB-RGBD dataset
(see Figs. 15(a) and 15(b)) and a backpack in the URFD dataset (see
Figs. 15(c) and 15(d)). The backpack’s appearance is similar to a fallen
person, and the confusion of the sofa can be due to the training
images with persons lying on the sofa. In the TDSVM-fall approach
(1 class), 21 FPs of the 36 FPs (58,33%) and 258 FPs from 258 FPs
(100%) are due to the confusion of the mentioned objects with fallen
persons. However, using TDSVM-fall (20 classes), which exhibits worse
behavior, the method has 104 FPs of the 108 FPs (94.75%) and 289
of the 305 FPs (94.75%) due to the presence of these two objects.
As reflected by Table 5, we can conclude that the TD-fall approach,

https://gram.web.uah.es/data/datasets/fpds/index.html
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Fig. 9. Examples of FP with the TD-fall method. (a) Wrong identification. (b) Middle fall situation. (c) Similar color objects.
Fig. 10. Histogram of the confidence score 𝐶𝑠 on the validation set. (a) TDSVM-fall (20 classes). (b) TDSVM-fall (1 class). (c) TD-fall (2 classes).
Fig. 11. Confidence score of some TPs examples in the TD-fall method. (a) 𝐶𝑠 = 0.24. (b) 𝐶𝑠 = 1.0.
which discriminates fallen persons against other human poses, shows a
superior generalization concerning the remaining approaches.

As a third set to evaluate the performance of our proposal, we
created a complementary dataset (Elderly set) with volunteers over
65 years old in different indoor scenarios, which is available, too. Since
9

the elderly collective is one of the most vulnerable when it comes to
accidents, our motivation is to integrate the proposed methods in our
patrol robot for detecting fallen elderly in care centers. Our elderly set
comprises 413 annotated images in different situations (conventional
activities and fallen persons) of the same size as images of the E-FPDS
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Fig. 12. Confidence score of some FPs examples with the TD-fall method (TP in green and FP in red). (a) 𝐶𝑠 = 0.25. (b) 𝐶𝑠 = 0.94.

Fig. 13. Non-Max Suppression technique. (a) TDSVM-fall (20 classes). (b) TDSVM-fall (1 class). (c) TD-fall (2 classes).

Fig. 14. Examples of images from other datasets. (a) IASLAB-RGBD dataset. (b) URFD dataset.

Fig. 15. Examples of false positives on other datasets (TP in green and FP in red). (a, b) IASLAB-RGBD dataset. (c,d) URFD dataset.
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Fig. 16. Exemplar results on elderly dataset (TP in green).
Fig. 17. Images taken at different heights: (a) 0.75 m, (b) 1.0 m, (c) 1.5 m and (d) 2.0 m.
Table 6
Performance over the different camera’s height.
Number of falls Camera’s height TDSVM-fall 20 class TDSVM-fall 1 classes TD-fall 2 classes

TP FP FN TP FP FN TP FP FN

99 0.75 m 99 0 0 99 0 0 99 0 0
158 1 m 158 0 0 158 0 0 157 0 1
179 1.5 m 179 0 0 179 0 0 179 0 0
143 2 m 143 0 0 142 0 1 142 0 1
set. We tested the performance on this set with the TD-fall method and
achieved precision and recall rates of 98.86% and 95.97%, respectively
with 𝑇𝑃 = 262, 𝐹𝑃 = 3 and 𝐹𝑁 = 11. Some example images are shown
in Fig. 16. These results allow us to conclude that the detector system is
hardly affected by the age or appearance of the persons in the images.

5.4. Experiment 3: Performance for different camera’s heights

Finally, we have conducted a complementary experiment to analyze
the capacity of the system to detect fallen persons in images taken from
different camera heights. For this purpose, we have captured additional
sets of images (non-used before) taken at 0.75 m, 1 m, 1.5 m, and 2 m
above the floor. All of the images have been taken with a distance from
the image plane to the nearest seen floor of 2.5 m (see Fig. 17). Results
from Table 6 show excellent performance in all cases and demonstrate
the robustness of proposed strategies to changes in the camera’s height.

6. Conclusions and future work

This paper shows that real-time fallen person detection can be
accomplished with remarkable accuracy by using a single RGB camera
without the need for additional sensors or 3D reconstruction of human
posture. We have introduced two approaches based on the YOLO detec-
tor. The first approach, TDSVM-fall, is based on a two-stage algorithm
composed of a YOLO person detector and a RBF SVM fall classifier.
The generated region proposals by YOLO are further fed into the SVM
classifier, which takes charge of discriminate fallen persons against
non-fallen persons. In the second approach, namely TD-fall, we have
demonstrated that it is possible to fuse detection and classification steps
using an end-to-end convolutional network. We have examined our
proposed framework on our own test set (E-FPDS) that can be used
as a standard reference for other fallen person detector RGB vision-
based algorithms. It contains 6982 annotated images covering different
11
scenarios and human poses distributed in three subsets: training, valida-
tion, and test. Quantitative evaluations showed that the TD-fall method
with a unique stage achieved precision and recall rates of 93.93% and
98.97%. The main advantage of our approach is the ability to differ-
entiate between fallen persons lying on the floor and other different
lying positions. Additionally, we examined our proposed methods on
images from other public datasets. The TD-fall approach exhibited high
performance in entirely new scenarios and confirmed that the proposed
framework was feasible. Since we are mainly concerned with assistive
patrol robots for care centers, we formulated the problem of fallen
detection as lying posture detection and not as a process of falling due
to the lack of capturing the person during the fall. Future research
will incorporate complementary functionalities to the assistive robot
to improve the interaction with persons. Additionally, improvements
could come from the integration of other complementary sensors.
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