
Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8
DOI 10.1186/s13640-016-0108-7

RESEARCH Open Access

Geometric bounding box interpolation:
an alternative for efficient video annotation
Pedro Gil-Jiménez* , Hilario Gómez-Moreno, Roberto López-Sastre and Saturnino Maldonado-Bascón

Abstract

In video annotation, instead of annotating every frame of a trajectory, usually only a sparse set of annotations is
provided by the user: typically its endpoints plus some key intermediate frames, interpolating the remaining
annotations between these key frames in order to reduce the cost of the video labeling. While a number of video
annotation tools have been proposed, some of which are freely available, and bounding box interpolation is mainly
based on image processing techniques whose performance is highly dependent on image quality, occlusions, etc. We
propose an alternative method to interpolate bounding box annotations, based on cubic splines and the geometric
properties of the elements involved, rather than image processing techniques.
The algorithm proposed is compared with other bounding box interpolation methods described in the literature,
using a set of selected videos modeling different types of object and camera motion. Experiments show that the
accuracy of the interpolated bounding boxes is higher than the accuracy of the other evaluated methods, especially
when considering rigid objects. The main goal of this paper is related with the bounding box interpolation step, and
we believe that our design can be integrated seamlessly with any annotation tool already developed.

Keywords: Video annotation, Bounding box interpolation, Projective geometry, Cubic splines

1 Introduction
The growth in image and video processing demands larger
quantities of annotated training data. A still image can be
annotated at different levels. At the image level, annota-
tions consist of simply indicating the objects present in
the image, without any spatial information. At the pixel
level, each pixel must be assigned to a label. Intermediate
solutions may consist of drawing polygons surrounding
the object or simple geometric shapes, such as rectan-
gles or ellipses. The complexity, and thus, the cost or time
required to annotate an image, depends on the level at
which we need to annotate it.
Large-scale image databases are useful for supervised

learning of visual object appearance. There are many pub-
licly available databases. For instance, the PASCAL VOC
Challenge [1] provides a standard dataset of annotated
images at the bounding box level, for object categorization
and detection. The images are collected from the flickr
photo-sharing web site, and annotations are done at a

*Correspondence: pedro.gil@uah.es
Signal Theory and Communication Department, Universidad de Alcala, Crta
Madrid-Barcelona km 33.600, Alcala de Henares, Spain

single annotation “party”, to ensure consistency. The Ima-
geNet database [2] offers a collection of tens of millions of
annotated images hierarchically organized, in this case, at
the image level.
Many applications has been proposed in the literature

for the task of image annotation, both for personal use
and for massive annotations. In [3], Russell et al. proposed
LabelMe, a web-based open tool that allows polygon-
based image annotations. This tool can be accessed freely
by any researcher, either to annotate their own images or
to download the already annotated image collections. In
[4], von Ahn and Dabbish took advantage of the Games
With A Purpose (GWAP) philosophy to develop an online
game which allows image annotation while the users are
enjoying the game. In this case, images can only be anno-
tated at the image level. The Human Intelligence Task
(HIT) service provided by Amazon Mechanical Turk was
explored by Sorokin and Forsyth [5] to outsource human
annotation services at a low cost. This approach enables
the annotation of large image databases at the bounding
box level in a short time.
Video annotation can also be done at different levels.

For instance, ANVIL [6] is a free tool that allows video

© 2016 Gil-Jiménez et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-016-0108-7-x&domain=pdf
http://orcid.org/0000-0002-6991-0702
mailto: pedro.gil@uah.es
http://creativecommons.org/licenses/by/4.0/

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 2 of 13

annotations at the frame level, that is, without any spatial
information. However, when object location is required,
the temporal evolution of the annotated objects must also
be provided. Manually annotating the object location for
all the frames in the video sequence is a tedious task. This
is typically solved by allowing the user to provide only a
limited set of annotations for a given object, then propa-
gating this to the rest of the frames. The frames where the
annotations are supplied are called key frames, and this
set must usually include the first and last frames where
the object is visible, in order for the system to know the
endpoints of the object’s trajectory.
The number of key frames needed depends on many

factors, such as the object type (rigid or non-rigid), tra-
jectory length (number of frames), type of object motion
(straight, curved, or chaotic), and the accuracy required
for the propagated annotations. The number and posi-
tion of these key frames can be fixed or defined by
the user. Vondrick et al. [7] discovered that ‘a fixed key
frame schedule is significantly faster than a user-defined
key frame schedule.’ However, the key frame frequency
needs to be adjusted depending on the type of motion
to annotate. When an object moves in a chaotic trajec-
tory, more annotations are needed in order to accurately
handle the chaotic motion. In this paper, however, we are
not concerned with this issue and will use both schedules
indiscriminately.
Propagation across frames has typically been performed

by means of image and video processing techniques. In
[8], Badrinarayanan et al. proposed a propagation scheme,
given the pixel-level annotation of the first and last frames
of a video sequence. The algorithm is based on a hid-
den Markov model and labels every pixel in all the frames
between the endpoints. In [9], Liu et al. proposed a con-
tour tracker to track the contour provided by the user in
the first frame. The user can specify a time-varying depth
value for each annotated object, intended to handle occlu-
sions and 3D linear interpolation. The user may also be
requested for an inspection to correct tracker mistakes.
Contour tracking is also used in [10] to track annotated
curves in a video sequence for rotoscoping, i.e., the pro-
cess of tracking shapes throughout a video sequence. In
[11], Kalal et al. proposed a long-term tracker of a bound-
ing box provided by the user in the first frame. The system
is able to automatically re-detect the object after a period
when it is not in the field of view or after tracking fail-
ure, by learning the object appearance from the previous
frames.
Propagation can also be done by means of the geometric

properties of the elements involved. In this case, the user
provides a set of simple (rectangle, ellipse, etc.) or complex
shapes, and the system computes the coordinates of the
polygon for the remaining frames. For this case, the main
techniques described in the literature will be analyzed in

Section 2, where different publicly available annotation
tools will be introduced. Section 3 describes the alterna-
tive procedure proposed in this paper. Section 4 describes
the experiments performed to compare the existing soft-
ware applications. Section 5 concludes the paper.

2 Related works
In this paper, we propose an alternative method to prop-
agate bounding box annotations between key frames. For
that reason, we will analyze here the most popular soft-
ware packages for video annotation at the bounding box
level, focusing on the propagation algorithms proposed in
each.

2.1 Available software
VIdeo Performance Evaluation Resource (ViPER) is one
of the earliest video annotation tools provided by the
research community [12]. The initial goal was to create a
flexible ground truth format and a tool for ground truth
generation and sharing. It is a JAVA application that allows
the user to define object categories (people, cars, ani-
mals, etc.) and different attributes, including spatial ones
(bounding box, bounding ellipse, points, etc.). The soft-
ware includes a default linear interpolation utility. For this
interpolator, if we define bi to be the coordinates of a
bounding box at t = ti, then

bi = [
xi yi wi hi

]
, (1)

where (xi, yi) are the coordinates of the center of the
bounding box and (wi, hi) are its width and height. Given
two consecutive annotations bi and bi+1, the coordinates
of the bounding box for a given time t = tj are

bj =
(ti+1 − tj
ti+1 − ti

)
bi +

(tj − ti
ti+1 − ti

)
bi+1. (2)

Linear interpolation can be defined as the simplest
approach [7] for label propagation. This method has two
main drawbacks. On the one hand, linear interpolation
can only handle straight trajectories, since interpola-
tion between adjacent segments are computed indepen-
dently. On the other hand, it can not accurately capture
scale transformations due to perspective effects. A recent
update can be found in [13], which allows semiautomatic
video annotation. Nevertheless, the system is based on
a foreground/background motion detection, which limits
its use to videos recorded with static cameras.
Vondrick et al. proposed in [7] a user interface to

be deployed on Amazon Mechanical Turk (MT) to out-
source bounding box annotations using its HIT services.
In their work, they analyzed several aspects related to this
HIT service, such as interface design, the evaluation of
a worker’s talents, and the optimal key frame frequency.
Focusing on the bounding box propagation technique,
they proposed two different algorithms, the simplest one

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 3 of 13

being the linear interpolation discussed above. The other
method is based on dynamic programming, using a visual
model of the annotated object. They extract the model
from the N bounding boxes provided, compute a feature
descriptor composed of HOG and color features, and train
a linear SVM classifier from positive and negative (back-
ground) samples. Themain drawback is that the algorithm
is highly dependent on the image quality, and the system
can even fail in the case of object occlusions. The sys-
tem includes a constant to allow the visual interpolator to
gracefully degrade to linear interpolation when the former
becomes inaccurate.
Instead of relying on visual properties, the interpola-

tion can be done using the geometric properties of the
elements involved. In this case, when interpolating coor-
dinates, we can use image or spatial coordinates.
Consider a point Q moving in front of a camera, as in

Fig. 1. At t = ti, the point will be located at Qi in spatial
coordinates, and its image will be at qi, and similarly for
t = ti+1. If we suppose constant motion for the point, at
tj = (ti + ti+1)/2, the point will be located at Qj, at the
intermediate position between the points in space and its
image at qj. However, if we interpolate using image coor-
dinates, the point q̂j will be located at the intermediate
position between the image points, and as can be seen in
Fig. 1, the coordinates qj and q̂j do not coincide, due to the
effects of perspective.
Perspective effects get canceled only when the object

moves parallel to the image plane. These effects increase
as the component of the motion normal to the image
plane increases. For instance, in Fig. 2, we can see two
annotated trajectories. Object 1 moves almost parallel to
the image plane, so that the perspective effects are mini-
mal and interpolation using image coordinates can be an
accurate solution.
However, parallel motion is not the general situation.

For object 2 in Fig. 2, the variation in depth is large. In
this situation, the last assumption does not hold, and the
accuracy in the bounding box interpolation decreases, as
we will see later, in Section 4.

Fig. 1 Interpolation of the intermediate position between Qi and
Qi+1 using image (q̂j) and spatial (qj) coordinates

Fig. 2 Perspective effects for an object which moves parallel (1) and
for an object which does not move parallel (2) to the image plane

To take into account this effect, Yuen et al. [14] pointed
out that ‘a constant velocity in space does not project to
a constant velocity in the image plane, due to perspec-
tive effects.’ In their work, they proposed an alternative
method to project the coordinates of the annotated object
to the image plane for any time between two key frames.
Assuming that an object in space is moving with con-

stant motion between two key frames, any point of the
object will therefore move in a straight line. The line in the
image plane joining the same point of the object in both
key frames will be the image of the line followed by this
point in space. If all the points of the object move in paral-
lel trajectories, all points in space will meet at infinity, and
so the cross point in the image plane of all lines will be the
vanishing point for this trajectory. The coordinates of any
point of the object for a given time t is computed using

(x(t), y(t)) =
(
x0 + λ(t)xv
λ(t) + 1

,
y0 + λ(t)yv
λ(t) + 1

)
(3)

where (x0, y0) are the coordinates of the point in the
frame at t = 0, and pv = (xv, yv) are the coordinates of
the vanishing point computed as described above. λ(t) is
the displacement of the point along the direction of the
motion in space, and since constant motion is assumed,
we have λ(t) = vt, where v is the velocity of the point in
space and can be computed, given a second key frame at
t = t1, using

v = x1 − x0
t1 · (xv − x1)

. (4)

This approach has two main drawbacks. Suppose that
we have two bounding boxes of an object at t = ti and
t = ti+1, as in Fig. 3, and we trace the lines joining the
four pair of corners. As stated before, the cross point
would correspond to the vanishing point of the trajec-
tory. However, in the general situation, annotation errors
and changes in object aspect ratio will make the lines fail

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 4 of 13

Fig. 3 Errors in computation of the vanishing point from a pair of
bounding boxes

to meet at the same point. For some points in the last
figure, some of the cross points are even located outside
the image plane. Furthermore, for motion parallel to the
image plane, the vanishing point will lie at infinity, so that
in (3), there is an indetermination that must be resolved
some other way. The second drawback is that this schema
can only be employed between a pair of key frames, while
assuming straight paths in between, which is not a correct
assumption for object motion in general.
The second drawback is solved by Lee et al. in [15, 16]

by interpolation using cubic splines [17]. In their work,
they proposed a tool for collaborative video annotation,
mainly intended for interactive services (i.e., smart TV) in
the multimedia industry. They also proposed a dynamic
sampling-based cubic spline interpolation (DSCSI) algo-
rithm to reduce the size of the trajectory data on a
“clickable video”. Focusing on the interpolation part, the
object position is computed using cubic spline interpola-
tion (CSI) from a sparse set of annotations. Nevertheless,
the interpolation is performed using image coordinates
instead of spatial coordinates, so that, as explained above,
it is not able to accurately model object trajectories with
large depth variations.
To address these problems, in this paper, a new inter-

polation algorithm that combines a 3D reconstruction
schema is proposed, similar to the one proposed in [14],
with the cubic spline interpolation used in [16]. How-
ever, the main difference with respect to [14] is that
the algorithm proposed in our paper performs a con-
tinuous reconstruction in the spatial coordinates, as will
be described in Section 3.3. This improvement allows
us to use cubic splines to interpolate the spatial bound-
ing box coordinates, instead of using linear interpolation,
to model object trajectories. The main difference with
respect to [16] is that the proposed 3D reconstruction
allows us to model more accurately the trajectory of
objects when they exhibit large depth variations.

3 Geometric interpolation
In this section, we will describe the process designed to
compute the bounding box coordinates for any frame

from the known bounding box annotations. The over-
all schema is depicted in Fig. 4. Suppose we have two
annotations bi and bi+1 of an object, the key idea is find-
ing the coordinates Bi and Bi+1 of the bounding box in
space. Having that, computing the coordinates bj of the
bounding box in the image plane for any time t = tj is
straightforward, assuming we know the motion model of
the object in space.
We will demonstrate that using only bounding box

coordinates, we can perform a 3D reconstruction of the
bounding box positions. If the camera’s internal param-
eters are not known, i.e., we are working with an uncal-
ibrated camera, the 3D positions can be computed only
up to a scale transformation. Nevertheless, we will see
that actual 3D coordinates are irrelevant for bounding box
interpolation, and so, no camera calibration is needed.
Prior to defining the interpolation schema proposed in

this paper, we introduce briefly the basic concepts related
with central projection and the camera model needed.
The notation has been taken from [18] where possible.We
will first describe the interpolation technique for a sim-
pler two-dimensional case and then extend the concepts
to three dimensions.

3.1 Two-dimensional camera model
In the two-dimensional case, central projection is based
on the line camera shown in Fig. 5. This camera projects
points on the plane XZ onto an image line. Let the cen-
ter of projection be the point C = (XC,ZC, 1)T, expressed
in homogeneous coordinates, and let l = (a, b, c)T be the
homogeneous vector representing the image line. The dis-
tance from the line l to the point C is f, which is called the
focal length of the camera. The line from the center of pro-
jection, normal to the image line, is called the principal
axis of the camera, and the cross point between the
image line and the principal axis is called the principal
point.

Fig. 4 Overview of 3D interpolation technique. Given annotations bi
and bi+1, the computation of bj is performed by a 3D reconstruction
of those given annotations and the projection onto the image plane
of the interpolated annotation in space (Bj)

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 5 of 13

Fig. 5Model for a two-dimensional projective camera

Under this model, a point Q = (XQ,ZQ, 1)T in the
plane is mapped to the point q = (xq,wq)T in homoge-
neous coordinates in the image line. This point will be
located where a line joining the point Q with the center
of projection C meets the image line. The homogeneous
coordinates of q can be computed from the projection
matrix P:

P = K · R·[I | − C̃] (5)

where K is the 2 × 2 camera internal parameter matrix,
R is the 2 × 2 camera rotation matrix, I is the 2 × 2
identity matrix, and C̃ = {XC,ZC} is the center of projec-
tion expressed in inhomogeneous coordinates. In order to
simplify the problem, suppose that the camera is placed
at a canonical position, that is, suppose that the cen-
ter of projection is the origin of the coordinate system,
C = (0, 0, 1)T, and that the principal axis is the Z axis
(α = 0), as in Fig. 6. Furthermore, we can have the princi-
pal point be the origin of the image coordinate system. In
this situation, P reduces to

P =
(
f 0
0 1

)
·
(
1 0
0 1

)
·
(
1 0 0
0 1 0

)
=

(
f 0 0
0 1 0

)
. (6)

A pointQ = (
XQ,ZQ, 1

)T in the plane is projected onto
the image line at

Fig. 6 An object moving in the plane XZ, with the camera placed at a
canonical position

q =
(
xq
wq

)
= P · Q =

(
f · XQ
ZQ

)
(7)

which can be expressed in inhomogeneous coordinates as

q̃ = f · XQ
ZQ

. (8)

3.2 Reconstruction for a single segment
Now, consider an object moving in front of a line camera
from t = ti to t = ti+1, as shown in Fig. 6. In this section,
we will consider a trajectory defined by only one segment,
that is, only two key frames, at the start and endpoints of
the trajectory, without intermediate key frames. In the fol-
lowing sections, we will extend the method to any number
of segments.
If we call a the lower edge of the object, and b the

upper one, as can be seen in Fig. 7, the edges of the object
will have inhomogeneous coordinates Q̃a

i = {Xa
i ,Zi} and

Q̃b
i = {Xb

i ,Zi}, respectively. Note that we have assumed
the object to be parallel to the image line, thus the coordi-
nate Z for both points is the same. Under a camera matrix
P, the point a is imaged onto the image line at

q̃ai = f · Xa
i

Zi
(9)

as shown in Fig. 8. If the shift of the object from ti to ti+1
is �i = {�Xi,�Zi}, then the coordinates for point a at
t = ti+1 will be

Q̃a
i+1 = Q̃a

i + �i (10)

and will be imaged by the camera at

q̃ai+1 = f · (Xa
i + �Xi)

Zi + �Zi
(11)

and similarly for point b. Gathering all the equations, we
have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q̃ai = f ·Xa
i

Zi

q̃bi = f ·Xb
i

Zi

q̃ai+1 = f ·(Xa
i +�Xi)

Zi+�Zi

q̃bi+1 = f ·
(
Xb
i +�Xi

)
Zi+�Zi

.

(12)

Fig. 7 Point coordinates as the object moves from t = ti to t = ti+1

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 6 of 13

Fig. 8 Projection of the object points onto the camera image line

Before going on, we will analyze the effect of the focal
length f. As can be seen in Fig. 9, for an image point qi at
t = ti, if we assume the point depth to be Z = Zi and use
a camera with focal length f, the point is back projected to
Q̃i = {Xi,Zi}. Now, changing the camera focal length to
f ′ = kE ·f while keeping the same depth Zi, the point coor-
dinates will change to Q̃′

i = {X′
i ,Zi}. By similar triangles,

we have
q̃i
f

= Xi
Zi

(13)

and
q̃i
f ′ = X′

i
Zi

(14)

which gives Xi = kE · X′
i , and the same for t = ti+1.

Since our final interest is not the reconstruction itself, but
the computation of the images of intermediate positions,
it can easily be seen that the interpolation is indepen-
dent of the particular focal length chosen. For instance, if
we interpolate the image coordinates for the point at the
middle position between ti and ti+1, assuming constant

Fig. 9 Effect of the camera focal length on the interpolated points.
The inhomogeneous coordinate q̃j of the interpolated point is
independent of the particular focal length f chosen

motion, the coordinates for the point when focal length is
f will be

Q̃j =
{
Xi + Xi+1

2
,
Zi + Zi+1

2

}
(15)

which will be imaged at

q̃j = f
(
Xi + Xi+1
Zi + Zi+1

)
. (16)

In the same way, if the focal length is f ′, the interpolated
position will be

q̃′
j = f ′

(X′
i + X′

i+1
Zi + Zi+1

)
= f ′

(
Xi + Xi+1

kE · (Zi + Zi+1)

)
= q̃j,

(17)

that is, both points are imaged onto the same image
coordinate. Figure 9 shows a graphical example.
The last proof shows that the coordinate of the interpo-

lated points is independent of the particular focal length
chosen, and therefore, the internal camera parameters are
not needed. Thus, to simplify the problem, we choose
f = 1. Reorganizing the initial equations,⎧⎪⎪⎨⎪⎪⎩

q̃ai Zi − Xa
i = 0

q̃bi Zi − Xb
i = 0

q̃ai+1Zi + q̃ai+1�Zi − Xa
i − �Xi = 0

q̃bi+1Zi + q̃bi+1�Zi − Xb
i − �Xi = 0

. (18)

The last result forms a system of linear equations in the
unknowns Bi =[Xa

i ,Xb
i ,Zi,�Xi,�Zi], which can be com-

puted from its null space. Since (18) is a homogeneous
system of equations, Bi can be found up to a constant
factor ks. The meaning from the geometric point of view
is that the space is reconstructed up a scale transfor-
mation. However, under central projection, two points
related by a scale transformation are imaged onto the
same image coordinates. This means that the particular
constant factor ks chosen for Bi is not important, since
only the relation between all variables is important. We
will come back to this concept when analyzing trajectories
composed of more than one segment.
With a little computation from (18), we get{ (̃

qai+1 − q̃ai
)
Zi + q̃ai+1�Zi − �Xi = 0(̃

qbi+1 − q̃bi
)
Zi + q̃bi+1�Zi − �Xi = 0 (19)

and{
Xa
i = q̃ai Zi

Xb
i = q̃bi Zi

. (20)

Solving (19) using the cross product, we obtain⎧⎨⎩
Zi = q̃bi+1 − q̃ai+1 = si+1
�Zi = (̃

qbi − q̃ai
) − (̃

qbi+1 − q̃ai+1
) = si − si+1

�Xi = q̃bi q̃
a
i+1 − q̃ai q̃

b
i+1

(21)

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 7 of 13

where s = q̃b − q̃a is the size of the object in the image
line. Finally, (20) can be solved using these last results:{

Xa
i = q̃ai · si+1

Xb
i = q̃bi · si+1

. (22)

3.3 Reconstruction frommultiple segments
The results obtained in the previous section allow us to
interpolate the coordinates for any frame between two
key frames. For a trajectory composed of N key frames,
we could apply the same process independently for the
N − 1 segments. However, since the computations are
independent, the results would give disjoint reconstructed
segments. To see this, suppose we have three different
annotations for an object, bi, bi+1, and bi+2, as in Fig. 10.
The reconstruction for the segment defined by bi and

bi+1 gives Bi and Bi+1. Likewise, for points bi+1 and bi+2
we have B′

i+1 and B′
i+2. The reconstructed segments will

be, in general, disjoint. Although both reconstructions are
correct, they are only useful if further interpolations are
performed independently for each segment, i.e. assum-
ing straight paths between key frames. However, typi-
cal object motion is better modeled with interpolation
schemes which need more samples. As we will see later,
we will use cubic spline interpolation, a method which
uses more than two samples to compute any interpolation.
To this end, we need the reconstructed trajectory to be
continuous along the whole path.
Continuity can be achieved easily taking into account

that reconstruction can only be computed up to a scale
transformation. We can adjust the scale factor ks, intro-
duced before, for the second segment to have B̂′

i+1 = Bi+1:

B̂′
i+1 = ksi · B′

i+1 = Bi+1 (23)

where ksi = Zi+1/Z′
i+1 is the scale factor to be applied to

the second segment, that is, B̂′
i+1 = ksi · B′

i+1 and B̂′
i+2 =

ksi · B′
i+2. Figure 11 shows how, applying this scale correc-

tion, we canmake the trajectory continuous. Furthermore,
for the next segment, a new scale factor ksi+1 = Z′

i+2/Z′′
i+2

Fig. 10 Independent reconstruction for two segments of an object
trajectory

Fig. 11 Scale correction for the second segment to build a
continuous trajectory

must be computed, so that the coordinates for that seg-
ment will be B̂′′

i+2 = ksi · ksi+1 · B′′
i+2 = ksi · B′

i+2, and so
on.

3.4 Three-dimensional case
Extrapolating the problem to three dimensions is not
straightforward. A first approach could be to perform the
reconstruction independently for the horizontal and verti-
cal coordinates, but this would yield different depth values
(Zi and �Zi) for the horizontal and vertical reconstruc-
tions. Although we can adjust the scale factor ks of one
of the coordinates to make the depth values Zi equal for
both coordinates, the other value, �Zi, will, in general,
be different and so will be the object depth for t = ti+1,
but, obviously, the depth position should be the same for
both coordinates along the whole path, since it is the same
point.
The depth values for the horizontal and vertical coor-

dinates will only be equal when the bounding box aspect
ratio is kept constant between annotations. Thus, to
improve the performance, we have to correct the aspect
ratio variation between key frames. To see this, suppose
given an object annotation for t = ti and t = ti+1 as in
Fig. 12. As the object moves away from the camera, its size
will decrease and inversely. If the aspect ratio of the anno-
tated rectangle was kept constant between the key frames,
this would be the only variation on both height and width.
This can easily be checked if we look at the equations

in (21) for the computation of Z and �Z. Applying the

Fig. 12 Horizontal and vertical variables for an object in two
consecutive annotations

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 8 of 13

equation for the computation of the depth information,
substituting s → w for the horizontal coordinate, and
s → h for the vertical coordinate, we have Zx

i = wi+1 and
�Zx

i = wi − wi+1 for the x coordinate and Zy
i = hi+1

and �Zy
i = hi − hi+1 for the y coordinate. We can use

the scale correction factor ks introduced before to have
Ẑ′y

i = ksi ·Zy
i = Zx

i , that is, the depth position at the begin-
ning of the segment will be the same for the horizontal and
vertical reconstructions. In this situation, the depth shift
for the vertical reconstruction will be

�Ẑ′y
i = ksi · �Zy

i = Zx
i

Zy
i

· �Zy
i = wi+1

hi+1
(hi − hi+1). (24)

If both rectangles have the same aspect ratio,

hi+1
hi

= wi+1
wi

(25)

and after a little calculation, we obtain

�Ẑ′y
i = wi

hi
(hi − hi+1) = wi − wi+1 = �Zx

i , (26)

that is, the computed depths for the x and y coordi-
nates are the same, as desired. However, if the aspect
ratio is not maintained, the last equation does not hold,
and so, the depth shifts for the horizontal and vertical
reconstructions do not coincide.
The aspect ratio of an imaged object is only main-

tained when considering planar rigid objects that move
without rotating. But even in this hypothetical case,
errors in object annotations will generally result in the
bounding box aspect ratio not being maintained. When
annotating non-rigid objects, the problem gets worse.
For instance, consider a person standing up in one key
frame, and the same person crouching in the next key
frame. In that situation, the bounding box height will
halve, whereas the width will be the same, or even
increase.
In order to improve performance, we need to take such

aspect ratio variations into account. Again, consider the
object annotations given in Fig. 12. As we saw before,
one of the factors that make the height and width of the
object change is depth variation. If we denote by kdi the
size variation from ti to ti+1 due to the change in depth
and compute it from the geometrical mean of its width
and height,

kdi =
√
hi+1 · wi+1
hi · wi

, (27)

the variation in height will be

hi+1 = kdi · khi · hi, (28)

and similarly for its width. In the last equation, khi (and kwi
for the width) is the variation in height not included in the
size variation due to the change in depth kdi . This factor
can be computed by

khi = hi+1

kdi · hi
=

√
wi · hi+1
wi+1 · hi (29)

for the height, and

kwi = wi+1

kdi wi
=

√
wi+1 · hi
wi · hi+1

= 1
khi

. (30)

That is, the factors are inversely proportional. Thus, to
complete the system, we only have to take into account the
last variable khi along the trajectory, modifying the width
and height of the bounding box of the annotated rectan-
gle correspondingly. Since its value can change along the
different segments of the trajectory, interpolation of this
variable between key frames needs to be considered to
eliminate abrupt size changes between segments.

3.5 Bounding box interpolation
The process described so far allows us to perform, up to
a scale transformation, a three-dimensional reconstruc-
tion of the annotated trajectory. The last step is the design
of the interpolation schema to compute the bounding
box coordinates for any frame. First of all, thanks to the
reconstruction process described, the interpolation is not
performed over the image plane coordinates but over
the reconstructed spatial coordinates. Once we have the
interpolated 3D coordinates, we project them over the
image plane to get the new bounding box coordinates. In
Section 3.1, we chose the camera to have its center of pro-
jection at the origin of the system of coordinates, with its
principal axis the Z axis and with focal length equal to 1.
Since this is the camera employed in the reconstruction, it
will be the one to project the interpolated coordinates to
the image plane.
In order to model the actual object motion, instead of

using linear interpolation between key frames, we use
cubic spline interpolation, as can be seen in Fig. 13.
Since we are using spatial coordinates, the three coordi-
nates X, Y, and Z need to be interpolated. Furthermore,
to eliminate abrupt changes in object size, the aspect
ratio correction khi also needs to be interpolated. So, a
four cubic spline interpolators need to be implemented.
Algorithm 1 summarizes the whole process needed to
interpolate bounding box coordinates from a sparse set of
annotations.

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 9 of 13

Algorithm 1: Algorithm for the interpolation of
bounding box coordinates combining 3D recon-
struction and cubic splines.

1 function Interpolation (T , j);
Input : T =[b0,b1, . . .bN] where

bi =[xi, yi,wi, hi]: list of N + 1 bounding
box annotations for a given trajectory
j: Required interpolation time

Output: bj: bounding box coordinates for time j
2 if bj ∈ T then
3 return bj
4 else
5 Perform 3D reconstruction to obtain

T′ =[B0,B1, . . .BN], where
Bi =[Xi,Yi,Zi.khi]

6 Compute Bj =[Xi,Yi,Zi] from T′ using a 4
cubic spline interpolator

7 Project Bj to the image plane to obtain bj,
using projection matrix P =[I|0]

8 return bj
9 end

Although cubic splines can accurately model general
object motion, they are not able to model abrupt motion
changes, like a ball bouncing on the floor. This can easily
be solved by allowing the user to insert trajectory breaks at
these points, so that the interpolation is computed inde-
pendently at either side of the break. Figure 14 shows the
improvement when breaks are included in the trajectory
annotation.

4 Results and discussion
In order to test the interpolation schema described in this
paper, the proposed algorithm has been implemented in
Python, using OpenCV. For the cubic spline interpolation,
we used the functions implemented in the SciPy library
[19]. For comparison purposes, the following algorithms
have been implemented and tested:

Fig. 13 Comparison between linear and spline interpolation over the
reconstructed spatial coordinates

1. Geometric cubic spline interpolation (GC): This is
the algorithm described in this paper.

2. Geometric interpolation (GI): A simplified version of
the algorithm described, without using cubic spline
interpolation.

3. Linear interpolation (LI): A linear interpolator, as
defined in Eq. (2). This is the interpolation used in
ViPER [12].

4. LabelMe (LM): Although the original work was
designed for general polygonal annotations [14], the
algorithm can be easily adapted to work with
rectangles. For the computation of the vanishing
point pv, we used the cross point between the lines
defined by the top-left and the bottom-right corners
of consecutive rectangles. Velocity and point
coordinates are computed according to (4) and (3).

5. Cubic spline interpolation (CS): Following the
original work by Lee et al. [15], the center
coordinates of the bounding box and the rectangle
size in the image plane as well are interpolated
between key frames using the cubic spline functions
implemented in the SciPy library.

To test the performance of the interpolation algorithms,
19 short (a few seconds long) video clips were selected
and manually annotated. The clips were extracted from
surveillance and broadcasted video and personal cam-
eras. All the videos, annotations, source code, and a
Python application can be downloaded from the project
web page [20]. The objects were carefully annotated in
every frame (which can involve more than one hun-
dred frames each). Table 1 summarizes the main prop-
erties of the videos selected for the test. The selection
includes different object and/or camera motion types (see
column motion type in this table), to check the algo-
rithms against a number of situations. These include the
following:

(a) Rigid object moving in straight path, static camera
(b) Rigid object moving in curved path, static camera
(c) Static object, with camera panning
(d) Static object, with camera translation
(e) Static object, with camera zoom
(f) Non-rigid objects

Also, Fig. 15 shows some sample images of the video
data set.
The accuracy of the bounding box interpolation has

been evaluated by a decimation followed by a further
interpolation of the decimated samples, according to the
following process. Once a complete trajectory is read, one
half of the samples (the odd or the even samples) are
removed, and their coordinates are interpolated using the
implemented algorithms. For each computed bounding
box bi, we calculate the overlap error as

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 10 of 13

a b
Fig. 14 Comparison of trajectories using cubic spline interpolation a without and b with trajectory breaks. Normal key frames are marked with black
circles, while breaks are marked with white circles

ei = (
bpi ∪ bgi

) − (
bpi ∩ bgi

)
(31)

where the first term denotes the union of the interpolated
bounding box with the annotated one (or ground truth)
and the second their intersection. For a given trajectory,
the interpolation error is computed as the average of all
partial overlap errors:

en = 1
M

∑
M

ei (32)

Table 1 Video data set summary

Motion Resolution (W × H) Trajectory length Bounding box size (h · w)
type (pixels) (frames) Min (pixels) Max (pixels)

a 352 × 240 41 560 12,212

a 352 × 240 28 616 4888

a 352 × 240 53 660 1856

b 352 × 240 55 1440 5508

b 352 × 240 76 1392 4800

b 352 × 240 52 7488 16,020

b 352 × 240 188 2912 17,472

c 640 × 360 34 6030 7056

c 960 × 540 29 12,920 15,675

c 640 × 360 17 3942 5270

d 720 × 576 89 240 4640

d 640 × 480 164 1176 6360

d 640 × 360 47 432 2480

d 640 × 480 97 440 2808

e 640 × 360 67 680 3936

e 640 × 480 33 13,720 57,200

f 640 × 360 69 2072 3192

f 640 × 360 69 2184 4292

f 640 × 360 198 9396 33,200

See text for the description of the column motion type

where the subscript n indicates the interval between a
pair of key frames. In this case, since we removed one
half of the samples of the trajectory, n = 1 sample. Note
that since we have to remove one half of the samples, we
can create one test trajectory by removing the odd sam-
ples and a second one removing the even samples. So, the
computation of e1 is finally obtained as the mean value of
e01 and e11, where the superscript 0 means the error when
the test trajectory is obtained by keeping the even sam-
ples (that is, we start keeping the sample in 0, remove the
sample in 1, keep the sample in 2, and so on), and sim-
ilarly for the superscript 1. Likewise, e2 is computed by
constructing a new test trajectory removing n = 2 out
of three samples. In this case, we can have e02, e12, and e22,
and so the error e2 is computed as the mean of these three
values. We performed this computation until the interval
n = 20.
In Fig. 16, we can see the overall performance of the

interpolators evaluated as a function of the interval n. In
this case, the error has been computed as the average of
the error e for all the videos used in this experiment. Note
that, for n = 1, an error is present for all the interpo-
lators. This error is mainly due to the process employed
to annotate the videos manually, which adds a random
shift to the object trajectory. Obviously, as the interval n
increases, the average error also increases. However, the
best performance is achieved for the interpolators based
on depth recovery to compute the interpolated bounding
boxes, since many of the objects annotated exhibit great
variations of depth. In this sense, the algorithm proposed
in this paper (GC) yields the best performance. The algo-
rithm proposed by Yuen et al. (LM) and the simplified ver-
sion of the algorithm proposed in this paper without cubic
spline interpolation (GI) obtain worse results. In fact, for
most of the cases, both algorithms are quite similar, since
they are based on depth recovery and straight interpo-
lation between key frames. Lastly, those algorithms not

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 11 of 13

a b c

d e f
Fig. 15 a–f Sample images of the video data set used in the experiments. See text for description

based on depth recovery but on interpolation from image
coordinates, (LI) and (CS), yield the worst results. Table 2
shows the numerical results for the overall performance of
the interpolators for different values of the interval n.
In order to make a more detailed analysis of the per-

formance of the interpolators, we next present partial
results considering the different types of object and cam-
era motions. Figure 17 shows the mean error using only
the trajectories of rigid objects moving in a straight
path with great depth variations. In this case, the algo-
rithms using depth recovery performed similarly and
better than those using interpolation from the image
coordinates.

Fig. 16 Overall interpolation error

However, when the object follows a curved path,
algorithms using cubic splines can model the object
motion better. As can be seen in Fig. 18, the inclu-
sion of a cubic spline interpolation improves the per-
formance. In this case, the algorithm proposed in this
paper (GC) yields the best results, since the objects also
exhibits depth variations. The algorithms which com-
pute straight paths between key frames decrease their
performance.
When considering static objects but non-static cameras,

the results are quite similar. If we analyze the trajectory
on the image plane of a static object recorded with an
on-board camera, we get the results shown in Fig. 19.
In this case, the situation is equivalent to an object in
front of a static camera moving in the opposite direc-
tion, so that the same comments made before are valid
here, that is, the algorithms using depth recovery perform
better than those interpolating from image coordinates.
However, since the videos are recorded with on-board
cameras, camera vibration adds a random shift to the
object trajectories, which degrades the performance of all
the interpolators.

Table 2 Overall interpolation error en (pixels)

Interval n (samples) GC GI LI LM CS

5 332.9 356.0 362.5 360.3 331.3

10 610.2 612.5 649.7 623.8 588.2

15 815.5 832.0 937.9 840.8 889.4

20 890.4 910.9 1083.2 946.4 1035.6

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 12 of 13

Fig. 17 Results for straight paths with depth variations, static camera

Next, we obtained results for a static object while
the camera is panning. In this case, since neither the
object depth nor the size changes significantly, the algo-
rithms based on image plane interpolation perform bet-
ter than those based on depth recovery, as can be seen
in Fig. 20. The main reason that makes the algorithms
based on depth recovery decrease their performance
is the nature of the annotations. In this case, although
the object size in the image plane does not change,
the annotations do, because they were done manually.
This random change degrades the performance of those
algorithms.
Next, we analyze the performance when the camera is

zooming. In this case, the variation in the image plane
of the object size due to the change in the camera’s focal
length is not equivalent to the change in depth. In fact,
an alternative study to the one developed in this paper
can be done to model this type of trajectory. Nevertheless,
Fig. 21 shows that it can be modeled accurately with the
algorithms which use depth recovery (GC, GI, and LM).

Fig. 18 Results for curved paths, static camera

Fig. 19 Results for static object, with camera translation

The algorithm proposed in this paper is mainly intended
to work with rigid objects. On the other hand, when
working with non-rigid objects, like humans, geomet-
ric assumptions do not hold, and the results get worse.
This is due to the fact that a change in object size is
erroneously interpreted as a change in object depth, and
non-rigid objects can change their size in the image with-
out changing their depth in space. For instance, the image
of a man while crouching can reduce its bounding box
height while maintaining the same distance from the cam-
era. In order to analyze the performance for non-rigid
object annotation, Fig. 22 shows the results for this kind
of object. As can be seen, the results are a little worse than
before, although all interpolators analyzed perform simi-
larly, with a small advantage for the algorithms based on
cubic splines.

5 Conclusions
In this paper, we have presented an alternative method
that interpolates the bounding box annotations between

Fig. 20 Results for static object, with camera panning

Gil-Jiménez et al. EURASIP Journal on Image and Video Processing (2016) 2016:8 Page 13 of 13

Fig. 21 Results for static object, with camera zoom

key frames for video labeling. The method is based on a
3D reconstruction of the bounding box using the provided
annotations, based on the geometric properties of the ele-
ments involved. Once the 3D coordinates are computed,
the interpolation of the bounding box for the remaining
frames is performed in spatial coordinates, using cubic
spline interpolation, and finally projected onto the image
plane. The algorithm has been evaluated using a selected
set of video clips that includes different types of object
and camera motions and compared with other interpo-
lation algorithms proposed in the literature. The results
show a good performance, especially when considering
rigid objects moving in trajectories with great variation in
depth, where the accuracy of the interpolated bounding
boxes is higher than the other evaluated algorithms. Since
bounding box interpolation is a specific part of any anno-
tation tool, we believe that the proposed algorithm can be
a good alternative for all these tools when accurate object
annotations are required.

Fig. 22 Results for non-rigid objects

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This research was supported by projects CCG2014/EXP-055 and
TEC2013-45183-R.

Received: 26 May 2015 Accepted: 7 February 2016

References
1. M Everingham, LV Gool, C Williams, J Winn, A Zisserman, The PASCAL

visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338
(2010)

2. J Deng, W Dong, R Socher, LJ Li, K Li, L Fei-Fei, in IEEE Conf. Computer Vision
and Pattern Recognition. ImageNet: a large-scale hierarchical image
database (IEEE, New York, 2009)

3. B Russell, A Torralba, K Murphy, W Freeman, LabelMe: a datadata and
web-based tool for image annotation. Int. J. Comput. Vis. 77(1), 157–173
(2008)

4. L von Ahn, L Dabbish, in Proceedings of the Conference on Human Factors
in Computing Systems. Labeling IImage with a computer game (ACM, New
York, 2004)

5. A Sorokin, D Forsyth, in IEEE Conference on Computer Vision and Pattern
RecognitionWorkshops. Utility data annotation with Amazon Mechanical
Turk (EEE, 2008), pp. 1–8

6. M Kipp, in Proceedings of the 7th European Conference on Speech
Communication and Technology. Anvil - A generic annotation tool for
multimodal dialogue (INTERSPEECH, Aalborg, 2001), pp. 1367–1370

7. C Vondrick, DCR Patterson, Efficient scaling up crowdsourced video
annotation. Int. J. Comput. Vis. 101(1), 184–204 (2012)

8. V Badrinarayanan, F Galasso, R Cipolla, in IEEE Conf. on Computer Vision and
Pattern Recognition. Label propagation in video sequences (IEEE, New
York, 2010)

9. C Liu, WT Freeman, EH Adelson, Y Weiss, in IEEE Conference on Computer
Vision and Pattern Recognition. Human-assisted motion annotation (IEEE,
New York, 2008)

10. A Agarwala, A Hertzmann, DH Salesin, SM Seitz, in ACM Transactions on
Graphics. Keyframe-based tracking of rotoscoping and animation (ACM,
New York, 2004)

11. Z Kalal, K Mikolajczyk, J Matas, Tracking-learning-detection. Pattern Anal.
Mach. Intell. 34(7), 1409–1422 (2012)

12. D Doermann, D Mihalcik, in Int. Conf. on Pattern Recognition. vol. 4. Tools
and techniques for video performance evaluation (IEEE, New York, 2000)

13. MA Serrano, J García, MA Patricio, JM Molina, in Distributed Computing and
Artificial Intelligence. vol. 79. Interactive video annotation tool
(Springer-Verlag, Berlin - Heidelberg, 2010), pp. 325–332

14. J Yuen, B Russell, C Liu, A Torralba, in IEEE Int. Conf. Computer Vision.
LabelMe video: building a video database with human annotations (IEEE,
New York, 2009)

15. JH Lee, KS Lee, GS Jo, in Proceedings of the International Conference on
Information Science and Applications (ICISA). Representation method of
the moving object trajectories by interpolation with dynamic sampling
(IEEE, New York, 2013), pp. 1–4

16. KS Lee, AN Rosli, IA Supandi, GS Jo, Dynamic sampling-based
interpolation algorithm for representation of clickable moving object in
collaborative video annotation. Neurocomputing. 146, 291–300 (2014)

17. M Unser, Splines: a perfect fit for signal and image processing. Signal
Process. Mag. 16(6), 22–38 (1999)

18. R Hartley, A Zisermann,Multiple View Geometry in Computer Vision, 2nd ed.
(Cambridge University Press, Cambridge, 2003)

19. E Jones, T Oliphant, P Peterson, et al., SciPy: Open source scientific tools
for Python (2001). http://www.scipy.org/. Accessed 15 Feb 2016

20. P Gil-Jiménez, TrATVid annotation tool. http://agamenon.tsc.uah.es/
Investigacion/gram/papers/Annotation. Accessed 16 Nov 2015

http://www.scipy.org/
http://agamenon.tsc.uah.es/Investigacion/gram/papers/Annotation
http://agamenon.tsc.uah.es/Investigacion/gram/papers/Annotation

	Abstract
	Keywords

	Introduction
	Related works
	Available software

	Geometric interpolation
	Two-dimensional camera model
	Reconstruction for a single segment
	Reconstruction from multiple segments
	Three-dimensional case
	Bounding box interpolation

	Results and discussion
	Conclusions
	Competing interests
	Acknowledgements
	References

