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We present a new impulse noise removal technique based on Support Vector Machines (SVM). Both classification and regression
were used to reduce the “salt and pepper” noise found in digital images. Classification enables identification of noisy pixels, while
regression provides a means to determine reconstruction values. The training vectors necessary for the SVM were generated
synthetically in order tomaintain control over quality and complexity. Amodifiedmedian filter based on a previous noise detection
stage and a regression-based filter are presented and compared to other well-known state-of-the-art noise reduction algorithms.The
results show that the filters proposed achieved good results, outperforming other state-of-the-art algorithms for low and medium
noise ratios, and were comparable for very highly corrupted images.

1. Introduction

Nowadays the well-known machine learning tools (Support
Vector Machines, Neural Networks, etc.) are used in high
level digital image processing applications with high success.
These high level applications include, for example, face
recognition [1], traffic sign detection [2, 3], medical imaging
[4], and more. However, the use of these tools in low level
image processing is less extended. In this work we want to
show how one of these tools, Support Vector Machines, can
be used successfully in a low level image processing task as
impulse noise removal.

Noise removal is one of the most important areas within
digital image processing. One type of noise that can appear
in images is impulse noise, which can be produced during
image acquisition, storage, or transmission and can affect
later stages of processing if not removed properly while
preserving the details [5–7]. This problem arises in many
fields, from medical imaging [8] to the analysis of satellite
images [9].

Impulse noise appears when some of the pixels in
the image are replaced by outliers while the rest remain
unchanged. Outliers can have a fixedminimum ormaximum
gray-scale value or may vary within that range. The first type
is known as “salt and pepper” and is the one analyzed in this
paper.

Since reducing this noise presents a classical image
processing problem, a great number of methods to reduce
it have been proposed. In some methods every pixel in the
image is restored regardless of whether it was originally noisy
or not.The general scheme of this type of filtering is the use of
amaskwhich is normally centered around the pixel of interest
for computational reasons. The mask is used to sweep the
image and perform some operations with the pixels inside it
in order to obtain the reconstruction value.

This group includes the median filter, which is the
classical solution for removing impulsive noise.This has been
followed by a modification of the median filter, known as the
center weighted median (CWM) filter [10, 11] which repeats
the central pixel a number of times before ordering. To
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improve median performance, several authors (see [12, 13])
have proposed a filter which is closely related to the latter,
called the adaptive median filter (AMF). This filter improves
the performance of the CWM by using different mask sizes
when the noise ratio is high.

An alternative to the filters using median may be pre-
sented in [14] known asminimum-maximum exclusivemean
(MMEM) that is intended to be used in high noise ratios and
is based on the mean of the neighbor values that are not
considered as noisy in a 3 × 3 or 5 × 5 window.

The main advantage of these schemes is their simplic-
ity, but the disadvantage is blurring, especially when the
percentage of noise is high. This effect occurs because the
filter changes both noisy and nonnoisy pixels. To prevent this
problem, a previous noisy pixel detection or decision stage is
required.

The scheme with a previous detection is commonly
known as the switching scheme [5]. In this scheme only those
pixels detected as noisy are reconstructed in any way, while
the nondetected ones are maintained unchanged. Thus, the
reconstruction effort is only applied to a reduced set of pixels
and the process is quicker and more effective.

Most of the algorithms proposed in the literature are
based on this scheme, since reconstruction is only applied
to noisy pixels and the results are improved by reducing the
blurring.The variousmethods proposed in this category vary
the type of detector used and the means by which the noisy
pixels are replaced.

Detection can be understood as a classification between
noisy and nonnoisy pixels and has been implemented in
several ways in state-of-the-art algorithms. Some of the
proposed algorithms are based on median filtering [15, 16]
like progressive switching median filter (PSMF) [17]. Rank
ordered mean (ROM) filters are modifications of median
filters used in [5, 18].

Recently some decision filtering methods are proposed
like Decision Based Algorithm (DBA) [20] or modi-
fied decision based unsymmetric trimmed median filter
(MDBUTMF) [24]. They are based on a decision scheme
with no explicit classification. These approaches, that use
local information, make that the restored image for high
density noise contain several noisy spots. Other methods are
based on similarity between pixels in a window to perform
classification like [25]. An important group of detection-
based schemes uses fuzzy logic [21, 22] or neural networks
[26, 27].

This paper presents new impulse noise removal filters
for application to “salt and pepper” noise. These filters use
the switching scheme and the SVM, both for noise detection
using classification and for reconstruction using regression.

Although the use of some training has been used in
previous work [5], normally this training is based on real
images or portions of them. The use of these real images can
bias the results obtained and training cannot be controlled
in every aspect. This is the reason why we propose the use
of synthetic images for training. The synthetic images are
potentially adaptable to the noise reduction problem.

The use of SVM is due to its good features in training and
generalization.This is not the only classification tool available

but the fact that the classification function obtained is unique
for a given data train and that the machine complexity is
obtained in the training process instead of given a priori
size (like in neural nets) [28] makes the SVM a good choice
for this type of problem. Another important feature that
is desirable for this task is the generalization ability of the
SVM when the training data are limited. In this way we can
generate few training patterns, but expect a good degree of
generalization with reduced training time.

Impulse noise detection using SVM is presented in
Section 2, while in Section 3 a method to recover noisy pixels
using SVM regression is presented and discussed. Section 4
presents three new filters based on the classification and
regression explained in the previous sections, and some
experiments and results are then presented in Section 5. This
section also describes how training affects detection and
regression, enabling us to improve the results in our previous
studies, and presents a comparison with some other state-
of-the-art methods, confirming the quality of the proposed
filters. Finally, some conclusions are discussed in Section 6.

2. Impulse Noise Detection Using
SVM Classification

Following the switching scheme, we propose using a specifi-
cally designed classification algorithm to detect noisy pixels.
SVMwere chosen because of their capacity for generalization
from a reduced set of training examples and better perfor-
mance than other classification methods [29]. Preliminary
versions of this idea were previously presented in [30], where
we applied a modified median filter, which was then com-
binedwith regression in [31]. Due to the good results obtained
in these previous studies, herewe present a combined study of
both noise detection and regression. Our proposal works by
scanning the image using a window of a given size (usually
3 × 3) around the pixel to be classified as noisy or not. This
3 × 3 window is mapped left-to-right and top-to-bottom in
a 1D vector of 9 components. Then, this vector is classified
according the previously trained SVMclassification function.

2.1. Synthetic Training Images for Noise Detection. In this
study, the training vectors were generated from synthetic
images (scanned as explained above), which have been
designed to represent a wide range of gray values and
edges of different levels. The optimization of the design of
these training images is still an open question. The only
requirements that must be met are the presence of a wide
range of gray values and, at least, one edge. The objective was
to generalize the training obtained to real images.

Figure 1 gives an example of these synthetic training
images. As shown, they can be subdivided into two sim-
ilar subimages with an edge between them. Several edge
configurations were tested and the best results have been
obtained with the nonfix edge shown in Figure 1. There
are two parameters to be configured in the training image
generation process.

(i) Image Height (H). The image height (in pixels) mod-
ifies the different gray levels since these levels were
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(a) (b)

Figure 1: Example of training images for classification. The added
impulse noise is 20%. (a) Training image to detect white pixels; (b)
training image to detect black pixels.

obtained with a step between values equal to 256/𝐻.
Bigger images have a wider gray range which is more
realistic.

(ii) Percentage of Added Noise (N). We can add noise in
different ratios (%) to best fit the real ratio in the
image to be reconstructed.

These parameters can be tuned to obtain the best classifi-
cation results with the minimum number of support vectors.
Section 5.5 details the results obtained after an exhaustive
tuning process, and Figure 2 shows examples of noise detec-
tion described in more detail in Section 5.4.

3. Impulse Noise Reconstruction Using
SVM Regression

Once the noisy pixels have been detected, a reconstruction
method can be implemented. One option would be to use a
median filter or any of its modifications [30]. However, as
presented in [31, 32], SVM regression is another option to
recover image pixel values.

The regression scheme proposed uses only those pixel
values around the pixel detected as noisy and excluding this
one.The reason for using SVM regression is its good capacity
for generalization from a reduced training set. The window
size (neighborhood) was empirically fixed to 3 × 3, since this
yielded the best results. Once again, the image is scanned
using a window read top-to-bottom and left-to-right yielding
an 8-components 1D vector.

In order to simplify the regression problem, only white
pixel reconstruction is used since, in initial experiments,
mixed white and black noise was difficult to recover, increas-
ing the number of support vectors required and reducing the
quality. The black pixels, once detected, are moved to white if
regression is used.

3.1. Synthetic Training Images for Regression. The regression
training is again based on synthetic images (similar to
those used for classification and with the same 𝐻 and 𝑁
parameters). However, in this case two images are needed,
one without noise which is used to obtain reconstruction
values and one with noise which is used to obtain the training
vectors. One example of these images is shown in Figure 3.
These images contain gray values from 0 to 255 and a central
edge and, as in classification training, the range of gray
values depends on the image size. The main difference with
classification training is that the original image is necessary

Table 1: Example of regression training vectors (LIBSVM format)
taken from images in Figure 3.

4 1 : 255 2 : 255 3 : 8 4 : 255 5 : 255 6 : 0 7 : 4 8 : 8
8 1 : 255 2 : 8 3 : 12 4 : 255 5 : 12 6 : 4 7 : 8 8 : 12
12 1 : 8 2 : 12 3 : 16 4 : 255 5 : 16 6 : 8 7 : 12 8 : 16
16 1 : 12 2 : 16 3 : 20 4 : 12 5 : 20 6 : 12 7 : 16 8 : 255
20 1 : 16 2 : 20 3 : 255 4 : 16 5 : 255 6 : 16 7 : 255 8 : 24

and that the central edge was fixed white-to-black since the
best results were obtained using this configuration. Once
again, the optimization of these synthetic images is an open
question.

Table 1 shows some lines in a file used for regression
training in LIBSVM [33] format. Each line represents a
training vector and its associated value. The first column
is the original nonnoisy pixel, that is, the desired value
for reconstruction. This value is obtained from the training
images without added noise (see Figure 3(a)). The other
columns are the vector components (numbered 1, 2, etc.)
where the first one corresponds to the upper left pixel in a
3 × 3 window and so on. These vectors are obtained from the
noisy image (see Figure 3(b)).

This is an automatic and configurable training (noise and
size) but the results obtained are good with basic training
parameters. For example, using a Gaussian kernel with 𝛾 =
3 ⋅ 10

−5, 𝐶 = 1000, and 𝜀 = 10−3 (see Section 5.7), we can
obtain results like those shown in Figure 4 for Albert image.
In these examples only regression was applied and we can see
a certain degree of blurring [32]. This effect prevents the use
of regression alone to reduce noise in images (especially for
high noise ratios) although, as shown, the differences with
original images are minimal. The differences appear in edges
and in black or white homogeneous zones, since previously
reconstructed values are used to obtain new ones. A detailed
tuning process of the parameters is described in Section 5.7.

4. Proposed Filters Based on SVM
Detection and Regression

Having described the detection and regressionmethods using
SVM, we now propose some impulse noise reduction filters
based on these methods. The filters proposed use SVM noise
detection and the reconstructionmethod used establishes the
differences between them.

In addition, there are two possible methods for imple-
menting the proposed filters.

(i) Recursive Implementation. In this case, the pixels
reconstructed previously are used to obtain new
reconstruction values. In a 3 × 3 window this means
that the first 4 values have been previously recon-
structed while the last 4 have not. Thus, only one
image sweep is required to eliminate noise.

(ii) Nonrecursive Implementation. Only the gray values in
the noisy image are used to obtain reconstruction
values. In this case, it is possible to obtain isolated,
unreconstructed noisy pixels. This effect is increased
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(a) Lenna 20% (b) Detected noise (c) False detected pixels 0.04%

(d) Albert 20% (e) Detected noise (f) False detected pixels 0.26%

(g) Bridge 20% (h) Detected noise (i) False detected pixels 0.76%

Figure 2: Examples of noise detection for images Lenna and Albert.

with high noise ratios. Thus, to obtain good results
the noise reduction proceduremust be applied several
times in an iterative way. The iteration procedure is
maintained until a 0.1% noise percentage is reached.
This procedure is possible since our system gives the
noise ratio actually present in the image.

4.1. Modified Median Filters. In these filters, the median is
used to obtain the reconstruction values. The median is
applied to the pixels around the detected noisy pixel or to a
subset of them. Thus we have two possibilities.

(1) The median is applied to the pixels detected as noisy
and the central pixel is excluded since it is known to
be noisy.This idea was presented previously in [5] and
used with SVM in [30]. This method is called SVM-
M1.

(2) Since we can classify the pixels as either noisy or
nonnoisy, when using the median, only the pixels
detected as nonnoisy are included and, this way,
isolated noisy pixels after reconstruction are reduced.
This method is called SVM-M2.
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(a) (b)

Figure 3: Example of a regression training image with a height of
128 and 20% added noise. (a) Nonnoisy image taken as model. (b)
Noisy image with 20% white impulses.

The main difference between these is that when using
SVM-M1, only one sweep is needed since detection and
reconstruction are performed in the same step. However,
with SVM-M2, one sweep is needed for detection and an
additional sweep is required for reconstruction. The quality
obtained using SVM-M2 is higher since only nonnoisy pixels
are used in the median. Both methods obtain best results
using the nonrecursive method; that is, these methods are
applied in an iterative way as shown previously.

4.2. Regression Based Filters. The regression method was
presented previously in Section 3.The regression-based filters
use SVM regression to obtain the reconstruction values.
Although regression alone can be used as a reconstruction
method, some blurring is present when only regression is
used. To reduce the blurring effect, a previous noise detection
stage is required and the SVM are used to perform this
detection, as explained in Section 2.

The regression method is called SVM-R and only the
recursive implementationmethod is used since the nonrecur-
sive one gave poor results and the process was extremely slow.

5. Experiments and Results

Having defined the noise reconstruction filters, we will now
present some results on reconstruction quality and conduct
a comparison with other previously proposedmethods. First,
we define the measures of quality to be used and then we will
present the reconstruction results obtained.

5.1. Quality Measures. It is pertinent at this point to define
the quality measures used to adjust SVM detection and
regression and to compare our proposed filters with other
state-of-the-art filters.

Reconstruction Quality. In the field of image reconstruction
several quality measures have been identified to determine
whether the filter used is more or less efficient. Some of these
measures include the following.

(i) Mean Squared Error (MSE). Better reconstruction
gives lower values and zero indicates perfect recon-
struction.

(ii) Peak Signal to Noise Ratio (PSNR). This is a measure
related to the previous one. It is a logarithmic mea-
sure widely used in image processing. Higher values
indicate better quality.

(iii) Structural SIMilarity (SSIM). This is a measure of
quality that not only measures the difference between
two images but also measures a number of structural
parameters to check the similarity. These structural
parameters are measured independently of local dif-
ferences or the illumination changes of the image. A
detailed description can be found in [34].
In this measure, a value near 1 indicates good quality,
falling towards 0 as the quality decreases. The main
advantage of this quality index is that it does not give
so much importance to specific reconstruction errors
but does give importance to the structural quality
as a whole, besides having a direct relation to the
subjective assessment of quality.

Noise Detection Quality. To assess detection quality, we
proposemeasuring the accuracy defined in the next equation:

Accuracy = 100 ⋅
𝑡
𝑝

+ 𝑡
𝑛

𝑡
𝑝

+ 𝑓
𝑝

+ 𝑓
𝑛

+ 𝑡
𝑛

, (1)

where 𝑡
𝑝

is the number of true positives, 𝑡
𝑛

is the number of
true negatives, 𝑓

𝑝

is the number of false positives, and 𝑓
𝑛

is
the number of false negatives.

This measure is given in percentage and, ideally, should
be 100%. This ideal case is obtained when nor false positives
neither false negatives are detected.

Noise Regression Quality.When regression is applied to every
pixel in the image, the result is an approximation that can
be directly compared with the original image. The better the
reconstruction, the lower the error between the original and
the approximated image. This error is measured using the
𝑀𝑆𝐸 function described earlier.

5.2. Images Used in the Tests. We have used 10 well-known
test images used in several noise reduction studies [5, 22,
35]. Four of them have been used in the classification and
regression tests as well as in the quality results. Lenna is
widely used to compare denoising algorithms and presents
no major problems. It serves to conduct a comparison with
the many other algorithms that use it. Albert is challenging
due to the texture of the suit, but mostly because of the
white collar where detection of noise becomes more difficult.
Bridge presents some problems in two areas, one near the
white bridge and the bridge itself and one black area which
is the result of a bad scan. Barbara is quite challenging due
to the large number of repeated textures and patterns it
contains. Reconstruction of the lines is very difficult for all
noise reduction algorithms.

The set is completed with 6 other known images like
Airfield, Baboon, Boats, Goldhill, Lake, and Peppers.

5.3. Tuning SVM Classification Parameters. The first training
step consists in defining the SVM kernel and its related
parameters [28, 36]. Several kernels were tested, but only
Gaussian kernels yielded competitive performances and a
reduced set of support vectors. Thus, the parameters to be
adjusted were 𝛾 and the regularization parameter (𝐶).
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(a) (b) (c)

Figure 4: Regression example. (a) 20% noisy image; (b) reconstructed image; (c) difference with original (to improve visualisation, the darker
values correspond to higher differences).

In the noise detection training, 𝐶 was established regard-
ing the final number of support vectors since it is clear that the
effect on classification is less relevant than this from 𝛾. The
value selected was 𝐶 = 1000, since lower values increased
the number of support vectors and higher values did not
represent any improvement. 𝛾 appears in Gaussian kernel
expression:

𝑘 (x, y) = exp (−𝛾󵄩󵄩󵄩󵄩x − y
󵄩󵄩󵄩󵄩

2

) . (2)

Several classification tests were performed to adjust the
value of 𝛾. In these tests we used training images with𝐻 = 32
and 𝑁 = 40%. In Figure 5 we show the results obtained
for different values of 𝛾. The best results were obtained for
𝛾 = 2 ⋅ 10

−6 since for the entire range of noise the accuracy is
not less than 99.5% for Lenna, 99.1% for Albert, 98.5% for
Bridge, and 99.4% for Barbara. Obviously, different images
gave different results and, for example, in our case the results
for Albert or Bridge were worse than those for Lenna or
Barbara. But we would like to highlight the fact that the worst
result reached an accuracy of 98.5%. It must be noticed that
the result obtained is independent from the images used to
show the results.

5.4. Comparison of SVMDetection inDifferent Images. At this
point, we can showhow the proposed impulse noise detection
performswith noisy images. Figure 6 shows the results for the
images used in our tests. It is clear that the results for Lenna
and Barbara were better than those for Albert and Bridge.
It is noticeable that for Bridge even without noise a certain
percentage of noisy pixels were detected, although for the
other images, where no noise existed, no pixels were detected
as noisy (Albert and Barbara) or only very reduced set was
detected, as in the Lenna image.

An explanation of what is happening in the detection is
given in the previously presented Figure 2. Figure 2(a) shows
the Lenna image with a 20% added noise and Figure 2(b)
shows (marked as white pixels) the pixels detected as noisy.
It is clear that the detection proposed performs well and

there is no obvious correlation between image information
and the noise detected. Figure 2(c) shows which detected
pixels are not actually noisy (false positives), which in this
case only represented 0.04% of the entire image. The noise
added to the Albert image (Figure 2(d)) was detected as
well (Figure 2(e)), but there are some areas in the image
that present a clear correlation with the original image,
namely, some parts of the white collar. This effect is clearly
evident in Figure 2(f), which shows falsely detected pixels.
Nevertheless, these falsely detected pixels only represented
0.26% of the whole entire image. Thus Figure 2 shows that
most of the noisy pixels were correctly detected and that the
method proposed ensures a good detection ratio. For Bridge
(Figure 2(i)), the results were worse due in part to central
white areas but mainly to a black area near the bottom edge.
Even so, the falsely detected pixels only represented the 0.76%
of the image pixels.

Thus Figure 2 shows that most of the noisy pixels were
correctly detected and that the method proposed ensures a
good detection ratio.

5.5. Effect of Training Image Noise and Size on Detection.
When we defined the training images, we stated that they can
be varied in size and percentage of noise added. These two
parameters are critical for detection quality and execution
time. The greater the size, the larger the number of gray
values and the higher the number of noisy pixels and hence
the greater the number of example vectors required for
training. Larger images are closer to real examples but entail
an increased number of support vectors. The percentage of
noise added to training images implies that a greater number
of noisy pixels appear and, therefore, training will be more
complete. However, the amount of noise should not be too
great because, otherwise, noisy pixels can appear grouped
together without any gray pixel nearby, which worsens rather
than improves the results.

Finally only 𝑃𝑆𝑁𝑅 and𝑀𝑆𝑆𝐼𝑀 were used since 𝑃𝑆𝑁𝑅 is
useful to compare the results with other studies which used
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Figure 5: Noise detection results for different values of 𝛾. The parameter presented is the accuracy that is related to the percentage of noise
in the image. The results are shown for the Lenna, Albert, Bridge, and Barbara images.

𝑃𝑆𝑁𝑅 or𝑀𝑆𝐸 and𝑀𝑆𝑆𝐼𝑀 gives a near subjective measure
of quality.

Figure 7 shows the classification results for the Lenna
image using different training image sizes and different
percentages of noise in training images.The SVMparameters
used were the best of those obtained in Section 5.3. It is clear
that the best results for 𝑁 were obtained 40% and 50% and
that the best size was𝐻 = 128 pixels (although the difference
with the other heights was not significant).With these results,
the choice should be𝐻 = 128 and𝑁 = 50%. But this choice
gives a high number of support vectors, as shown in Table 2.

5.6. Detection Complexity. One of the known disadvantages
of SVM is the computational cost specially using a kernel
like in this case. The number of operations needed to apply

Table 2: Number of support vectors for different training image
noise ratios and sizes. These numbers include support vectors for
detecting both black and white noisy pixels.

𝐻
𝑁

30% 40% 50%
32 57 101 118
64 162 204 226
128 487 543 515

the trained classifier can be extracted by analyzing the
classification function obtained:

𝑓 (x) =
𝑁SV

∑

𝑖

𝛼
𝑖

𝑦
𝑖

exp (−𝛾󵄩󵄩󵄩󵄩x𝑖 − x
󵄩󵄩󵄩󵄩

2

) . (3)
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Figure 6: Detection results for the images used in our test.

If we call 𝑁
𝐹

the number of features of the vector to
classify and 𝑁SV the number of support vectors obtained,
for the evaluation of this classification function we need, for
every support vector:

(i) 𝑁
𝐹

differences,
(ii) 𝑁

𝐹

products,
(iii) 𝑁

𝐹

− 1 additions,
(iv) 2 products and an exponential that can be irrelevant

compared to previous operations.

Then the number of operations needed is

#Ope ≈ 𝑁SV × 3 × 𝑁𝐹. (4)

This is the reason why sometimes [37] it is said that the
run-time complexity of kernel methods using an RBF kernel
is𝑂(𝑁SV×𝑁𝐹). Remember that in our case𝑁

𝐹

is the window
size used in our algorithm and thus this size has been elected
3× 3. It is clear that the greater the number of support vectors,
the higher the execution time.

Obviously, the overall execution time is influenced by
the image size (the classification function is applied over
every pixel) and by the actual noise present. More noise
implies more reconstruction operations that, in the case of
the median, has a worst case complexity of 𝑂(𝑁

𝐹

) and in
the case of SVM regression has, once again, a complexity of
𝑂(𝑁SV × 𝑁𝐹).

Thus, our training choice must take into account a
tradeoff between detection quality and speed. Looking for
a reduced number of support vectors while obtaining good
reconstruction results, more different training examples can
improve detection but at the expense of a higher execution
time.

There are a number of well-established techniques to
reduce dimensionality (PCA, LDA, etc.) [38] that could be
used in this case but at the expense of some lost information.
To reduce the number of support vectors is important the
correct tunning of C and gamma parameters, not only for

good classification results but looking the smallest number
of support vectors possible.

5.7. Tuning SVM Regression Parameters. As with classifica-
tion, in SVM regression the training parameters must be
tuned [39], including the kernel parameters. We summarize
our choices below.

(1) Kernel. Several kernels were explored, including
Gaussian, ERBF (exponential radial basis function),
𝜒
2, and splines [39]. However, the results indicated

that only Gaussian and ERBF would be useful given
the reconstruction results and the number of support
vectors obtained.

(2) Regularization Parameter C. After an analysis with the
selected kernels, it was clear that, by increasing 𝐶,
the quality is increased until 𝐶 = 100 and then it is
reduced. The number of support vectors required is
affected by 𝐶 and is reduced as 𝐶 is increased. Thus,
we chose 𝐶 = 1000 because this value yields a similar
quality to 𝐶 = 100 but implies a reduction of nearly
10% in the amount of support vectors necessary.

(3) Insensibility Parameter 𝜀.There is no noticeable differ-
ence between the reconstruction results for different
values of 𝜀. The only effect is on training speed and to
increase this speed, the value chosen was 𝜀 = 10−3.

(4) Kernel Parameter 𝛾. In Figure 8, reconstruction
results are shown for different values of 𝛾 in Gaussian
and RBF kernels. The best value for the Gaussian
kernel was 𝛾 = 3 ⋅ 10−5 and for the ERBF it was
𝛾 = 5 ⋅ 10

−5. The results for the ERBF kernel are
slightly better than for the Gaussian kernel, the only
difference being that the number of support vectors is
greater with the ERBF kernel.

5.8. Effect of Training Image Noise and Size on Regression.
Size and percentage of noise are important parameters for
the training images. Size increments increase the number
of training vectors and the range of gray values, so better
results are to be expected. However, the number of support
vectors will also be increased and thus speed will be reduced.
The effect of the noise added to training images is not clear,
but similar noise ratios to those in corrupted images can be
initially chosen.

To obtain the best sizes and noise ratios for training
images, several results for regression were obtained. In these
tests, either size or noise was fixed and the other parameter
was swept. Figure 9 shows the results obtained for the Lenna
image. To obtain noise results,𝐻 was set at 32, whilst for size
results,𝑁 was fixed at 30%, since these were the best choices
in each case. The results for size showed that size increments
increased quality, but that this increase in quality occurred
at the expense of increasing the number of support vectors.
For example, with𝐻 = 32 we obtained 1192 support vectors,
whereas using 𝐻 = 64 these vectors increased to 3184.
However, the quality did not increase by the same amount.
The figures for noise showed that a ratio between 30% and
40% gave similar results. The support vectors obtained for
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(c) H = 128

Figure 7: Noise detection results for different noise ratios using the Lenna image.The results are presented for different training image sizes.

these ratios were 1192 for 30% and 1396 for 40%; thus both
of these ratios would be useful and there is no clear choice.
The complexity issues discussed previously for classification
apply for regression too.

5.9. Comparison between State-of-the-Art Methods and the
Proposed Filters. The methods chosen to conduct the com-
parison were the following.

(i) DBAIN: a decision based filter for highly corrupted
images [20].

(ii) MMEM: dpecifically designed for “salt and pepper”
noise and high noise ratios [14].

(iii) Modified median filters: ACWM [19], AMF [12],
PSMF [17], SDROM [5], and MDBUTMF [24].

(iv) Fuzzy filters: filters based on fuzzy classification and
reconstruction like DSFIRE [21], NAFSM [23], or
FIDRM [22].

These methods, together with those proposed in this
paper, have been used to reconstruct noisy images at different
noise ratios, and reconstruction quality was measured using
𝑃𝑆𝑁𝑅 and𝑀𝑆𝑆𝐼𝑀. The results are shown in Tables 3 and 4.
These results have been obtained using 10 different test images
and varying the noise ratios from 10 to 90%. We present
the mean value for each method in the whole image set at
each noise ratio and, finally, the mean value in all ratios and
images.

From an analysis of these data, we can draw the following
conclusions.

(1) None of the methods proposed in the literature
presents a better performance in all scenarios, that is,
for different added noise ratios or for all the images
evaluated.

(2) There is a correlation between 𝑃𝑆𝑁𝑅 and 𝑀𝑆𝑆𝐼𝑀
as regards the quality of reconstruction (poor 𝑃𝑆𝑁𝑅
implies a poor𝑀𝑆𝑆𝐼𝑀, but the best 𝑃𝑆𝑁𝑅 is not the
best 𝑀𝑆𝑆𝐼𝑀), although there are slight variations.
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Figure 8: Mean square error for different values of 𝛾 in Gaussian and ERBF kernels.
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Figure 9: Regression results for different sizes and percentages of noise in training images. Size results were obtained with 𝑁 = 30% and
noise results were obtained using𝐻 = 32. The image used was Lenna and the SVM used the Gaussian kernel.

Nevertheless, both provide information for verifica-
tion of quality.

(3) The best method when the noise is high (or very
high) is the MMEM and for low and medium is
MDBUTMF.

(4) The results obtained for the filters proposed in this
paper were superior to those reported in the literature
for a wide range of noise ratios. Specifically, for low
and medium ratios, they outperform most methods
compared.The results for high noise ratios were supe-
rior to those obtained for MDBUTMF and were close

to those obtained using MMEM, which is specifically
designed for high noise ratios.

(5) The best total mean values were obtained by some
of the proposed methods showing that their perfor-
mance is maintained along the whole ratios.

Some reconstruction examples are shown in Figure 10
where MDBUTMF and MMEM are compared to SVM-
M2 and SVM-R (more results for different methods and
different images can be found in http://agamenon.tsc.uah
.es/Investigacion/gram/papers/Noise/).
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Table 3: Table results in mean PSNR for different impulse noise reduction methods. The mean is obtained for different noise ratios in 10 test
images. Total column reflects the total mean for all ratios and images.

Method Noise percentage
10 20 30 40 50 60 70 80 90 Total

ACWM [19] 31.24 27.49 22.82 18.48 14.89 12.10 9.78 7.94 6.47 16.80
AMF [12] 32.17 30.45 28.77 27.18 25.59 23.97 21.87 18.03 12.03 24.45
DBAIN [20] 36.58 32.97 30.51 28.50 26.61 24.80 22.90 20.85 18.05 26.86
DSFIRE [21] 34.14 30.13 25.69 21.10 17.14 13.93 11.30 9.23 7.60 18.92
FIDRM [22] 36.28 32.53 30.12 28.29 26.76 25.39 23.89 22.08 19.68 27.23
MMEM [14] 27.77 30.46 29.52 28.71 27.84 26.88 25.76 24.45 22.59 27.11
NAFSM [23] 34.26 31.31 29.54 28.17 27.05 26.03 25.01 23.81 21.22 27.38
PSMF [17] 26.35 25.84 25.08 23.97 21.95 18.91 14.98 9.67 7.61 19.37
SDROM [5] 30.92 28.93 27.07 25.19 22.97 20.53 17.62 14.34 10.79 22.04
MDBUTMF [24] 37.22 33.86 31.62 29.82 27.94 25.53 22.45 18.83 15.05 26.92
SVM-M1 (32-40) 35.49 31.96 29.32 26.53 24.69 22.33 19.76 13.07 5.96 23.23
SVM-M1 (64-40) 35.57 32.15 29.49 26.87 25.10 22.80 20.12 13.28 5.97 23.48
SVM-M2 (32-40) 36.02 32.96 30.86 29.19 27.74 26.42 25.14 23.80 22.09 28.25
SVM-M2 (64-40) 35.96 32.90 30.81 29.14 27.69 26.37 25.11 23.77 22.06 28.20
SVM-R (32-40) 35.63 32.71 30.76 29.14 27.70 26.25 24.71 22.71 19.63 27.69
SVM-R (64-40) 35.47 32.59 30.68 29.10 27.67 26.23 24.70 22.71 19.63 27.64

Table 4: Table results in mean MSSIM for different impulse noise reduction methods. The mean is obtained for different noise ratios in 10
test images. Total column reflects the total mean for all ratios and images.

Method Noise percentage
10 20 30 40 50 60 70 80 90 Total

ACWM [19] 0.930 0.876 0.734 0.502 0.277 0.141 0.069 0.033 0.014 0.397
AMF [12] 0.922 0.909 0.884 0.847 0.800 0.742 0.653 0.466 0.139 0.707
DBAIN [20] 0.978 0.951 0.918 0.877 0.825 0.761 0.677 0.570 0.427 0.776
DSFIRE [21] 0.961 0.905 0.783 0.575 0.348 0.183 0.088 0.040 0.016 0.433
FIDRM [22] 0.977 0.948 0.912 0.870 0.821 0.767 0.696 0.597 0.456 0.783
MMEM [14] 0.943 0.918 0.893 0.868 0.837 0.801 0.754 0.693 0.596 0.811
NAFSM [23] 0.968 0.938 0.904 0.868 0.828 0.784 0.732 0.665 0.538 0.803
PSMF [17] 0.856 0.836 0.802 0.754 0.671 0.509 0.272 0.045 0.019 0.529
SDROM [5] 0.925 0.883 0.829 0.754 0.645 0.508 0.343 0.179 0.067 0.570
MDBUTMF [24] 0.979 0.956 0.930 0.897 0.851 0.765 0.608 0.384 0.178 0.728
SVM-M1 (32-40) 0.978 0.950 0.912 0.859 0.802 0.723 0.617 0.366 0.077 0.698
SVM-M1 (64-40) 0.978 0.950 0.912 0.860 0.803 0.725 0.619 0.369 0.077 0.699
SVM-M2 (32-40) 0.978 0.954 0.926 0.893 0.853 0.807 0.752 0.685 0.585 0.826
SVM-M2 (64-40) 0.978 0.954 0.925 0.892 0.852 0.806 0.751 0.684 0.584 0.825
SVM-R (32-40) 0.976 0.953 0.926 0.894 0.854 0.803 0.735 0.636 0.478 0.806
SVM-R (64-40) 0.976 0.953 0.926 0.894 0.854 0.803 0.735 0.636 0.479 0.806

For medium noise ratio (50%) MDBUTMF yielded the
best mean results although as shown in Figure 10 the results
can vary depending on the image. For a high noise ratio
(90%), the image was reconstructed by MMEM and SVM-
M2 but the recursive nature of SVM-R yielded poor results.
It is clear that our methods maintain quality in a wide range
of noise ratios.

5.10. Robustness of the Algorithm. One important issue that
must be addressed when some kind of training is used is

the robustness of the algorithm proposed since this training
could give divergent results with slight changes.

To prove robustness of our proposed SVM algorithms
we present some data in Table 5 where we show, for two
different images (Lenna and Albert), the mean and the
standard deviation measuring MSSIM and PSNR for 10
different noise patterns. Obviously, changes in noise patterns
produce different results. But these results have a reduced
standard deviation showing the robustness of our proposed
algorithms.
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Table 5: Table results in PSNR and MSSIM for SVM methods. The model used in all cases is with 𝐻 = 32 and 𝑁 = 40%. 𝜇 represents the
mean and 𝜎 represents the standard deviation obtained using 10 different noise patterns.

(a)

PSNR results: Albert

Noise % SVM-M1 SVM-M2 SVM-R
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

10 37.806326 0.081000 37.634073 0.095187 37.806326 0.081000
20 34.012864 0.077311 34.247895 0.100104 34.012864 0.077311
30 31.334875 0.075222 32.111316 0.096603 31.334875 0.075222
40 28.782425 0.080101 30.524735 0.041627 28.782425 0.080101
50 27.047406 0.054255 29.098885 0.054799 27.047406 0.054255
60 24.689836 0.179538 27.809312 0.058029 24.689836 0.179538
70 22.478286 0.124136 26.584962 0.067960 22.478286 0.124136
80 15.891552 0.149735 25.358707 0.047150 15.891552 0.149735
90 8.109299 0.022287 23.885132 0.045141 8.109299 0.022287

(b)

PSNR results: Lenna

Noise % SVM-M1 SVM-M2 SVM-R
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

10 40.210190 0.220927 40.647102 0.137564 40.483306 0.123692
20 35.529780 0.412996 36.987532 0.152243 37.014919 0.148138
30 32.294158 0.230317 34.537564 0.092911 34.751509 0.085640
40 28.576325 0.381850 32.600946 0.062708 32.823432 0.055126
50 26.726578 0.183652 30.849589 0.072874 31.000031 0.114136
60 23.778253 0.182517 29.311999 0.071502 29.154773 0.102010
70 20.483630 0.121690 27.827742 0.055517 27.053785 0.074279
80 12.017827 0.171127 26.298444 0.065581 24.520623 0.047364
90 4.453599 0.014529 24.109759 0.068257 20.390460 0.101721

(c)

MSSIM results: Albert

Noise % SVM-M1 SVM-M2 SVM-R
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

10 0.970160 0.000260 0.970334 0.000257 0.969802 0.000227
20 0.932638 0.000469 0.936817 0.000381 0.936707 0.000548
30 0.884381 0.000755 0.899063 0.000610 0.900619 0.000888
40 0.821351 0.000890 0.855522 0.000718 0.860015 0.000879
50 0.756570 0.001241 0.804625 0.000673 0.813316 0.000822
60 0.672137 0.002908 0.746005 0.000909 0.758855 0.001158
70 0.579394 0.003105 0.679557 0.000984 0.691942 0.001030
80 0.368391 0.006010 0.604714 0.001191 0.604779 0.001498
90 0.093756 0.001267 0.510287 0.001127 0.476452 0.002035

(d)

MSSIM results: Lenna

Noise % SVM-M1 SVM-M2 SVM-R
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

10 0.985231 0.000228 0.985689 0.000188 0.985842 0.000181
20 0.964831 0.000407 0.969028 0.000366 0.969652 0.000358
30 0.936021 0.000549 0.949325 0.000391 0.950161 0.000462
40 0.891417 0.003147 0.925923 0.000477 0.926024 0.000398
50 0.847043 0.001220 0.896965 0.000344 0.893932 0.000713
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(d) Continued.

MSSIM results: Lenna

Noise % SVM-M1 SVM-M2 SVM-R
𝜇 𝜎 𝜇 𝜎 𝜇 𝜎

60 0.777944 0.002245 0.862579 0.000881 0.850796 0.001099
70 0.679344 0.002105 0.820914 0.000564 0.788319 0.001127
80 0.386960 0.004851 0.768412 0.000831 0.693430 0.001324
90 0.046905 0.000822 0.687110 0.000864 0.526401 0.002583

(a) Lenna 50% (b) MDBUTMF (30.95 dB) (c) SVM-M2 (30.90 dB) (d) SVM-R (31.06 dB)

(e) Barbara 50% (f) MDBUTMF (25.45 dB) (g) SVM-M2 (25.20 dB) (h) SVM-R (26.40 dB)

(i) Lenna 90% (j) MMEM (23.96 dB) (k) SVM-M2 (24.13 dB) (l) SVM-R (20.33 dB)

(m) Barbara 90% (n) MMEM (20.92 dB) (o) SVM-M2 (20.54 dB) (p) SVM-R (19.31 dB)

Figure 10: Reconstruction results for the Lenna and Barbara images with 50% and 90% of “salt and pepper” noise, using the MDBUTMF
(50%), MMEM (90%), SVM-M2, and SVM-R methods.
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6. Conclusions

In this paper we have presented a series of impulsive noise
reductionmethods based on SVM that can be applied to gray-
scale images. We have studied their ability to detect noisy
pixels using synthetic images for training and the possibility
of reconstruction using regression based on SVM training
and, again, synthetic images.

After checking the detection and reconstruction ability
of the SVM, several filters have been proposed for detection
or reconstruction or both. The proposed methods were
compared both against each other and with state-of-the-art
methods.

It has been shown that the proposed methods are a valid
alternative and may even outperform other methods in the
literature for a larger range of noise levels.

A great advantage of our proposed filters is that since the
training samples are generated automatically, the training is
customizable and furthermore it is easy and fast.The training
based methods allow flexibility since adapting the training to
the context can improve the results.

The use of SVM and the underlying well-funded proba-
bility relation between classification function and probability
estimation [40] gives us a tool to apply this noise reduction
method to other noise types. If the noise added is random
valued or Gaussian, the probability estimation can give the
degree of noise contamination instead of a classification
label. This degree obtained can be used in the reconstruction
process as in some fuzzy noise reduction methods.

On the other hand, the proposed scheme has a computa-
tional complexity higher than others compared in this paper.
As an example, MMEM is really simple and a training is not
needed to obtain good results for high noise ratios. The need
of complex arithmetic operations in SVM implementation
makes our scheme slower than other Decision Based Algo-
rithms with less requirements.

However, we think that the proposed scheme is opened to
be improved in several ways including training, implementa-
tion, and application to other noise types and currently can
be successfully applied to the salt and pepper noise problem.
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