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2 KU Leuven, ESAT - PSI, iMinds, Leuven, Belgium

Abstract. This paper describes a Hough Forest based approach for fast
head pose estimation in RGB images. The system has been designed for
Human-Computer Interaction (HCI), in a way that with just a simple
web-cam, our solution is able to detect the head and simultaneously
estimate its pose. We leverage the Hough Forest with Probabilistic Lo-
cally Enhanced Voting model, and integrate it into a system with a skin
detection step and a tracking filter for the head orientation. Our imple-
mentation drastically speeds up the head pose estimations, improving
their accuracy with respect to the original model. We present extensive
experiments on a publicly available and challenging dataset, where our
approach outperforms the state-of-the-art.
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1 Introduction

Human-Computer interaction (HCI) is gradually getting more and more atten-
tion. As people interact by means of many different channels, including body
posture and head pose, an important step towards more natural interfaces is the
visual analysis of the user movements by the machine. Besides the interpretation
of full body movements, as done by systems like the Kinect for gaming, new in-
terfaces would highly benefit from an automatic and fast estimation of the head
pose, as the one presented in this work.

Recent state-of-the-art methods based on the principle of Hough Forests
(HFs) [14] have proved to be very successful detecting and estimating the pose
of the head (e.g. [11,12,18,19]). All these methods train a Random Forest (RF)
[13] for a joint classification and regression. For inference, patches are densely
sampled from the image and the model determines for each patch whether it
belongs to the face or the background. Additionally, for head patches, the model
performs a regression to localize the center of the head and to estimate its pose.
However, while the methods presented in [11,18,19] require depth images, the
HF with Probabilistic Locally Enhanced Voting (PLEV) described in [12] has
achieved state-of-the-art results using only 2D imagery.

Here we leverage the HF with PLEV model [12], and design an approach to
get a fast head pose estimation (see Figure 1). Our solution is able to perform
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Fig. 1: Our approach is able to jointly estimate the localization and the contin-
uous pose of the head. We start performing a skin-color filtering, and then we
follow a HF + PLEV regression voting [12], in conjunction with a tracking step
to consolidate the final head orientation estimations.

the detection and estimation using a simple web-cam. We incorporate into the
system a skin-color filtering and a tracking stage to refine the pose estimations.
Our implementation has been completely developed in C++, which makes our
model dramatically faster than the original approach of [12]. Furthermore, our
experimental validation shows that the proposed solution is able to outperform
the state-of-the-art results in the Biwi Kinect Head Pose Database (Biwi) [11]
using only RGB images.

The rest of the paper is organized as follows. In the next section, a review
of related work is given. Section 3 introduces the proposed system. Section 4
presents the experimental evaluation. We conclude in Section 5.

2 Related Work

The literature contains several works on head pose estimation [20], which can be
conveniently divided depending on whether they use RGB images, depth data
or both.

In general, approaches that use RGB images are sensitive to illumination
and the lack of distinctive features. Therefore, some of the recent works use
depth as the primary cue. Breitenstein et al. [8], first compute hypotheses of
nose locations from high-resolution depth images, and then minimize an error
function between these hypotheses and the reference pose images. Lately, some
works propose to use a RF combined with a Hough voting strategy to solve
the problem [11,12,18,19]. Fanelli et al. [19] introduce the use of RF for real
time head pose estimation from high quality range scans. The approach was
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later adapted to depth data from consumer depth cameras [11,18]. In [12], the
authors propose to extend the HF voting with the concept of Probabilistic Locally
Enhanced Voting (PLEV), a regression strategy which consists in modulating the
regression with a kernel density estimation to consolidate the votes in a local
region near the maxima detected in the Hough space. Schulter et al. [1] have
improved the RF proposing the novel Alternating Regression Forest, which are
able to minimize a global loss to obtain better generalization, in contrast to
the local minimization process employed during the learning of traditional RF.
Finally, Riegler et al. [16] describe a method that combines convolutional neural
networks with the idea of Hough Forests for a continuous head pose estimation.

Within the 2D image-based algorithms, we focus here on appearance-based
methods. In contrast to our model, a common appearance-based approach is to
discretize the head poses and learn a separate detector for each of them, e.g.
[2,3,9,17]. Several works rely on statistical models of the face shape and appear-
ance, e.g., Active Appearance Models [4] and their extensions [5,6,7], but their
focus is usually on detection and tracking of facial features. These methods rely
on coarse quantizations of the poses for multi-view face detection, instead of con-
sidering that the pose estimation is ultimately a continuous problem. Recently,
Demirkus et al. [21] have proposed a hierarchical temporal graphical model to
estimate a continuous head pose angle from real-world videos. The introduced
methodology provides a probability density function (PDF) of head poses for
each video frame, rather than a single decision. However, only the yaw angle is
considered, while our solution performs estimations simultaneously for the pitch,
yaw and roll angles.

We build our approach on the work described in [12]. So, ours is also a
HF based strategy. However, unlike [1,11,18,19], we present a model which does
not need depth information but RGB images. Specifically, we have developed
a compact implementation of the HF+PLEV [12] using C++. In order to get
a fast system for HCI, we have extended the HF+PLEV [12] to work with a
preprocessing filter for selecting face candidate regions, implementing a skin-
color detection step. This preprocessing speeds up the pose estimations. Finally,
we feed a tracking model only with the pose estimations of the face candidate
regions to improve the predictions. We evaluate the use of two tracking solutions:
a Kalman Filter [22] and the Condensation algorithm [23]. All these extensions
let us build a final model which is faster than the original HF+PLEV [12], and
also more precise – our results show that our implementation improves the results
reported in [12].

3 The model

3.1 Learning a HF for Head Pose Estimation

A typical RF [13] is an ensemble classifier consisting of a set of randomized
decision trees. During training, a binary weak classifier is learned for each non-
leaf node. At runtime, test samples are passed through the trees, and the output
is computed by averaging the distributions learned at the reached leaf-nodes.
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HF [14] are a generalization of the Hough transform within the RF framework.
The randomized trees are trained to learn a mapping from sampled d-dimensional
features to their corresponding votes in a Hough space H ∈ RH .

We build on the approach of Redondo-Cabrera et al. [12]. As it is described in
[12], in the HF F , we aggregate a set of T binary decision trees Tt(P) : P → H,
where P ⊆ Rd is the d-dimensional feature space and H ⊆ Rh describes the
Hough space where the hypotheses are encoded. This Hough space lets us recover
hypotheses for the location and the continuous pose of the head at multiple
scales. Each head hypothesis h ∈ H can be defined as h = (xh, yh, θh, sh), where
xh and yh encode the face center (in our case, the tip of the nose), θh ∈ Rp
represents the continuous pose, and sh identifies the scale.

Each of the decision trees Tt is built using a set of sampled patches Pi =
{(Ii, ci, di, θi)}, where Ii =

{
I1i , I

2
i , ..., I

N
i

}
defines the appearance of the training

image, Iji is the jth appearance channel, ci ∈ C : {0, 1} is a class label (0 for a
background sample and 1 for a head sample), di = (xi, yi) encodes the relative
2D location of the face center to the sampled patch. And θi defines the continuous
pose of the head. Training a single decision tree involves recursively splitting each
node such that the training data in newly created child nodes is pure according
to class label, relative 2D location and pose.

In our case, as in [12], the split function f(Ii; τ1, τ2, {Ri}4i=1) is character-
ized by the following parameters: the appearance channel specified by τ1 ∈
{1, 2, ..., N}, four asymmetric rectangles defined within the patch {Ri}4i=1, and
a threshold τ2 ∈ R for the difference of average values of the rectangular areas.
We then define

f(Ii; τ1, τ2, {Rr}4r=1) =

{
0 if fa(Ii; τ1, {Rr}4r=1) < τ2,
1 otherwise.

(1)

with fa(Ii; τ1, {Rr}4r=1) = |R1|−1
∑
q∈R1

Iτ1i (q)−
4∑
r=2

(
|Rr|−1

∑
q∈Rr

Iτ1i (q)

)
.

Each node chooses the best splitting function by optimizing one of the follow-
ing three impurity measures,M∗(S), which are chosen randomly during training.
The class label impurity is measured as in [15] by

Mc(S) = H(S)−
∑

child∈(left,right)

Schild

S H(Schild), (2)

where H(S) is the entropy given by H(S) = −
1∑
c=0

p(c|S) log(p(c|S)), and p(c|S)

indicates the empirical distribution over classes within the set S.
The impurity of the relative 2D patch location, as in [14], is defined by

Md(S) =
∑

child∈(left,right)

∑
j:cj=1

||dj − 1
|Schild|

∑
k:ck=1

dk||2. (3)

And the impurity of the head pose is computed as in [12]:

Mp(S) =
∑

child∈(left,right)

∑
j:cj=1

(
min{(||θj−θθθA||),360◦−(||θj−θθθA||)}

180◦

)2
, (4)
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where θAθAθA is the viewpoint angle average over all foreground patches in the set
Schild and it is computed taking the cyclic nature of pose angles into account.

3.2 Fast Head Detection and Pose Estimation for HCI

Given a test image, see Figure 1, we start performing a pixel-based skin detection
method. This can be considered a preprocessing step to find candidate face
regions.

Our pixel-based skin detector uses a thresholding method to classify skin and
non-skin pixels [10]. This kind of skin detector defines the boundaries of the skin
cluster in certain color spaces using a set of fixed skin thresholds.

After the skin detection step, image patches are sampled only from the can-
didate regions identified. We also incorporate a stride parameter, which controls
how densely patches are extracted, thus easily steering speed and accuracy of
the regression.

These patches traverse the learned trees and cast votes to the multidimen-
sional Hough voting space H ⊂ R2+p based on the location and pose distri-
butions stored in the leaves. Note that p is the number of angles that defined
the continuous pose of the face. The forest-based estimate is then computed
by aggregating votes from different patches at different scales {s1, s2, . . . , sS}.
Following a standard HF regression approach [14], votes are accumulated in
an additive way into the corresponding Hough voting spaces {H1,H2, . . . ,HS},
where Hi ∈ R2+p. Then, these Hough spaces are stacked and scaled, so the
maxima can be jointly localized at multiple scales. For finding these maxima, we
use the procedure described in [12] named PLEV, where a local Hough region

(H ĥ
r ⊂ Hi), rather than a single Hough maximum, is considered for the regres-

sion of the pose. PLEV aggregates all pose votes received in H ĥ
r , obtaining a

global distribution gĥr in the Hough region, which can be computed as,

gĥr =
∑

vi∈Hĥ
r

( ∑
Lj→vi

p(c=1|Lj)
|Lj | p(θ|Lj , vi)

)
, (5)

where p(c = 1|Lj) and |Lj | encode the foreground likelihood and the number of
patches in leaf Lj , respectively. p(θ|Lj , vi) is the distribution of poses associated

to the patches in leaf Lj which cast a vote in H ĥ
r , which we denote as Lj → vi.

We finally perform a Gaussian KDE on gĥr distribution in order to obtain a
smooth probability density function for the pose estimation,

fgĥr
(θ) = 1

|gĥr |

∑
∀gĥr (i)

1√
2π

exp(
(θ−gĥr (i))

2

2h2 ) , (6)

with h the bandwidth and |gĥr | the total number of voting positions considered.

At last, our final hypothesis for the pose θ̂ is obtained as arg maxθ̂ = fgĥr
(θ).
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3.3 Head Pose Estimation Tracking

The approach in [12] works on each frame independently. Here we propose to
refine the pose estimation with a tracking solution (see Figure 1). Our aim is

to improve the accuracy of the predictions for head pose values θ̂, avoiding
noisy results. For doing so, we integrate into the system a tracking approach to
obtain the refined estimations θ̂∗. In our model, the tracking is done for each
of the angles of the face (pitch, yaw and roll) independently. We experimentally
validate the use of two off-the-shelf trackers: a Kalman filter (KF) [22] and a
Particle filter (PF) [23].

We perform a validation process which affects to the initialization and con-
figuration parameters of each of the tracking filters. This validation phase is
based on a triple tuning process, one for each angle to estimate in θ̂, as they are
tracked with separated filters.

We first take the trained HF+PLEV F , and choose a set of training images to
tune the tracking parameters. With the PF, we have performed the validation
to tune the following parameters: a) the number of samples generated by the
filter (N), b) the number of iterations, and c) the characteristic parameters of
the dynamical model (A, x̄, B), which is of the following form:

xt − x̄ = A(xt−1 − x̄) +Bwt, (7)

where wt are independent vectors of independent standard normal variables, xt
is the state-vector, x̄ is the mean value of the state, and A and B area matri-
ces representing the deterministic and stochastic components of the dynamical
model, respectively.

For the KF, the validation step consists in adjusting the initialization for
the following matrices: a) process noise covariance (Q), b) measurement noise
covariance (R), c) posteriori error estimate covariance (P ) and d) measurement

(H) [22]. We initialize the first predicted state of the KF according to θ̂.

4 Experiments

4.1 Experimental Setup

Data set. We report the performance of our model using only the RGB images
provided in the dataset Biwi Kinect Head Pose Database (Biwi) [11]. It contains
over 15K images of 20 people. The head pose range covers about ±75 degrees
yaw and ±60 degrees pitch. Ground truth is provided in the form of the 3D
location of the head and its rotation. Following [11], we split the database into
two sets: a testing and training set of respectively 2 (subjects 1 and 12) and 18
subjects. We use the training subject 24 for validation.

Implementation details. We have developed the complete system in C++,
porting all the Matlab functions of the original HF+PLEV [12].

During training, the positive examples are cropped and rescaled to the same
size, chosen so that the largest bounding box dimension is equal to 100 pixels.
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20 positive and 20 negative patches, with size of 32 × 32 pixels, are randomly
extracted from each training image. Our forests have 15 trees with a maximum
depth of 20. In each node, 20.000 binary tests are considered during learning.
For the PLEV we consider a neighborhood size of 11× 11 pixels. We use the 32
feature channels used in [14].

For the skin-color detector, we apply an image conversion to the YCrCb
color space. The color filter restrictions allow to recognize as skin pixels those
complying: Y∈ [15, 235],Cb∈ [60, 122],Cr∈ [135, 170]. A filtering of all the can-
didate regions is performed, discarding regions whose area in pixels is out of
the interval [4000, 40000], or whose aspect ratio (heightwidth ) does not belong to the
interval [0.5, 3]. Following the validation process described for the tracking filter
parameters, these are values chosen. For the PF: N = 1300, Niterations = 500,
x̄yaw = 0.1, x̄pitch = 0.15, x̄roll = 0.15, Ayaw = 0.5, Apitch = 7, Aroll = 0.5,
Byaw = 0.079, Bpitch = 0.3, Broll = 0.079. For the KF: H = I, Q = I10−4,
Ryaw = I10−1, Rpitch = I104, Rroll = I103, Pyaw = I101, Ppitch = I108,
Proll = I105. I denotes the identity matrix.

4.2 Face detection and head pose estimation results

Results are reported in Table 1, offering a comparison between the state-of-the-
art using depth and RGB images.

First, it is worth mentioning that our estimations for the pitch, yaw and
roll reduce the error with respect to [12], even for a lower missed frames ratio
(1.4%). Moreover, our model, using the same trained forest than in [12], and
considering that the tracking is only done for the pose estimations (not for the
face localizations), achieves a face detection performance slightly higher than in
[12]. Results show that the KF is able to mainly reduce the pitch and roll errors.
The PF lets us reduce all the pose errors, and especially those associated to the
roll. We experimentally observe that the PF casts a slightly superior accuracy
than the KF. In conclusion, our approach outperforms both the face detection
and head pose estimation state-of-the-art results reported in [12] when only RGB
images are used.

Note that our model, using simply RGB data, outperforms the results of
methods which need depth images, such as [18,1,16]. It is relevant that our error
for the roll estimation is the lowest reported using this dataset. Regarding to the
yaw and pitch errors, the increment of our errors is 1.5◦ and 1.7◦, respectively,
compared to the winning methods using depth. For the nose direction error, our
method is far from [18], but note that their missed frames ratio is higher. For
a comparable missed frames ratio, i.e. [16], our method offers a slightly better
nose direction estimation. As a conclusion, we can claim that our model is able
to improve the state-of-the-art-results for the problem of head pose estimation
from RGB images, which is an important contribution. Qualitative results are
provided in Fig. 3.

Our model has been designed to perform a fast estimation for HCI, while
the accuracy does not degrade. In the following experiment, we evaluate the
performance of our approach as a function of the stride parameter. Recall this
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Table 1: Results using the Biwi Kinect Head Pose Database.
Images Model Position Direction Yaw Pitch Roll Missed

Error (mm) Error (◦) (◦) (◦) (◦) (%)

Depth

[16] 8.1 ± 5.3 9.8 ± 8 3.8 ± 3.73.8 ± 3.73.8 ± 3.7 6.7 ± 6.6 4.3 ± 4.9 1
[1] 10.8 ± 6.1 12.2 ± 9 5.5◦ ± 5.8◦ 7.8◦ ± 7.9◦ 5◦ ± 4.4◦ 3
[12] 7.2 ± 12.17.2 ± 12.17.2 ± 12.1 7.3 ± 5.9 4.1◦ ± 6.9◦ 3.9◦ ± 4◦ 3.2◦ ± 3◦ 5
[11] 12.2 ± 22.8 5.9 ± 8.15.9 ± 8.15.9 ± 8.1 3.8 ± 6.5◦ 3.5 ± 5.8◦3.5 ± 5.8◦3.5 ± 5.8◦ 5.4 ± 6.0◦ 6.6
[18] 14.7 ± 22.5 – 9.2 ± 13.7◦ 8.5 ± 10.1◦ 8 ± 8.3◦ 1

Images Model Position Direction Yaw Pitch Roll Missed
Error (pixels) Error (◦) (◦) (◦) (◦) (%)

RGB
[12] 3.2 ± 1.4 9.8 ± 6.8 5.8 ± 5.9 5.8 ± 4.8 3.5 ± 3.4 2.4

Ours + KF 3 ± 1.43 ± 1.43 ± 1.4 9.4 ± 7.5 5.8 ± 6.4 5.1 ± 4.6 3.1 ± 3.3 1.4
Ours + PF 3 ± 1.43 ± 1.43 ± 1.4 9.1 ± 6.9 5.3 ± 6.3 5.2 ± 4.4 2.8 ± 2.92.8 ± 2.92.8 ± 2.9 1.4
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Fig. 2: (a) and (b) quantitative results as a function of the stride pixel parameter.
(a) Errors for nose direction. (b) Frames per second (FPS). Frame accuracy of
our method for different success thresholds of (c) the head position in mm and
(d) the head pose in degrees.
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parameter controls the spatial sampling of the patches to be extracted within an
input candidate region identified by the skin detection step. It can be tuned to
find the desired trade-off between accuracy and runtime of the process. Figure
2(a) shows how the direction error varies with respect to the stride. We can
observe that our model with PF systematically reports better results than our
implementation without the tracking. This reveals that the tracking solution
implemented really improves the performance of the system. Figure 2(b) shows
the frames per second of our implementation for different stride values. It is
relevant to note that our approach is able to process up to 3 frames per second,
using the PF, reporting a direction error lower than 11◦.

Finally, we report the accuracy as a function of the success threshold for the
head localization error and for the pose estimation error in Figures 2(c) and
2(d), respectively. We can observe (see Figure 2(c)) that our model gives a good
performance for all success thresholds in the head position regression. It achieves
a 87.24% for the most restrictive threshold of 10 mm. With respect to the angle
error threshold used to evaluate the pose estimation, Figure 2(d) shows that the
tracking with PF improves the accuracy of the model. It is worth to mention
that for a restrictive threshold of 10◦, our implementation with tracking reports
a 68.2% of accuracy, compared to the 65% of our approach without the tracking
stage.

Fig. 3: Qualitative results. Ground truth in blue, good estimations in green and
wrong estimations in red.

5 Conclusion

We have proposed a fast HCI solution to estimate the location and continuous
pose of the head. We combine the HF+PLEV model with a preprocessing step for
the skin detection. Then the pose estimations are refined employing a tracking
methodology. Our model simply needs RGB images, and it is able to report
state-of-the-art results, while not relying on the availability of depth information.
Acknowledgements. This work is supported by projects CCG2013/EXP-047,
CCG2014/EXP-054, TEC2013-45183-R, SPIP2014-1468, ERC Starting Grant
COGNIMUND and the MECD Collaboration Grants 2014/15.
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