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Abstract. In this paper we study the challenging problem of seafloor
imagery taxonomic categorization. Our contribution is threefold. First,
we demonstrate that this task can be elegantly translated into a Struc-
tured SVM learning framework. Second, we introduce a taxonomic loss
function in the structured output classification objective during learning
that is shown to improve the performance over other loss functions. And
third, we show how the Structured SVM can naturally deal with the
problem of learning from data imbalance by scaling the cost of misclas-
sification during the optimization. We present a thorough experimental
evaluation using the challenging and publicly available Tasmania Coral
Point Count dataset, where our models drastically outperform the state-
of-the-art-results reported.
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1 Introduction

Autonomous Underwater Vehicle (AUV) systems have recently been shown to
be effective tools for rapidly and cost-effectively delivering a vast amount of
high-resolution, accurately geo-referenced, and precisely targeted optical and
acoustic imagery of the seafloor [1]. Processing of this vast amount of collected
imagery to label content is difficult, expensive and time consuming. Because of
this, typically only a small subset of images are labeled, and only at a small
number of points. In order to make full use of the raw data returned from the
AUV, this process needs to be automated.

There are, however, many challenges associated with processing images cap-
tured underwater. Natural scene illumination may be very poor, and there is
often little regular structure with which to delineate objects.

Despite these challenges, there have been many recent advances in the pro-
cessing of imagery from underwater scenes (e.g. [2,3]). These advances have
implications in a diverse range of application areas, including marine ecology,
archeology, geology as well as industrial and defense applications.
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Fig. 1. Overview of our approach. Given a taxonomy, our objective is to classify the
image patches according to this. We demonstrate this task can be elegantly translated
into the Structured SVM learning framework.

In this paper, we address the task of studying ecosystems and populations
from seafloor images. To facilitate this task, we propose an approach to provide
marine scientists quantitative data on bottom-dwelling organisms and physical
morphology derived from large image archives collected by AUV systems.

For such applications, the state-of-the-art consists of taking a small subset of
images, manually labeling the content, and extrapolating to assess distribution
and coverage over wider geographical areas, as it has been described in [4].
Essentially, this is a imagery taxonomic categorization problem, see Figure 1,
where we are given a pre-determined taxonomy, and the objective is to classify
the image patches adhering to this taxonomy.

In this study, we show that this problem can be elegantly translated into a
structured learning framework [5], paying special attention to the design of the
loss function and potential imbalance in the data set. The main contributions
of this paper are: a) We propose a Structured SVM (SSVM) based approach
to seafloor imagery classification, and perform a thorough experimental evalua-
tion of a set of taxonomic loss functions; b) We formulate the novel Weighted
Hierarchical Difference (WHD) loss, which is able to report the best classifica-
tion results; c) We show how the Structured SVM can naturally deal with the
problem of learning from data imbalance by scaling the cost of misclassification
during the optimization; d) We demonstrate that taxonomy-based learning using
SSVM yields improved results when hierarchical losses are used, outperforming
both standard multi-class SVMs and other hierarchical SVM ensembles [6]; e) A
thorough experimental evaluation is reported, using the challenging and publicly
available Tasmania Coral Point Count dataset [4], where our models drastically
outperform the state-of-the-art-results.

The rest of the paper is organized as follows. In the next section, a review
of related work, within the context of seafloor image categorization, is given.
Section 3 introduces the proposed solution. Section 4 presents the results. Our
conclusion is given in Section 5.
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2 Related work

There has been substantial research on classification of seafloor species. In [7],
starfish detection results from underwater imagery are reported. Approaches for
classification of kelp have been also described, e.g. [4]. Multi-class classification
has also been attempted, focused mainly on the categorization of different coral
species [8,3].

Common for all these approaches is a choice of one or more image-based
descriptors and a (collection of) flat classifier(s). More recently, [6] have taken
advantage of the taxonomical hierarchy of the species for classification. In a
hierarchy with 19 classes, a large framework of 19 binary classifiers, one per node,
is employed. The authors presented an in-depth analysis of various training and
testing methodologies and have shown state-of-the-art results on their data set.

In this paper we propose the use of an SSVM formulation for the task of
taxonomical hierarchical classification. Our approach differs with the approach
of [6] in several ways. Firstly, since we are employing a single linear classifier,
in the form of an SSVM, it is a much leaner setup with a simplified training
and testing strategy. This also signifies, that the amount of training data (and
time) is considerably reduced. Secondly, in [6] the hierarchical taxonomy is used
outside of the classifier through a decision tree. However, we incorporate the
taxonomical hierarchy inside the loss function of the structured classifier.

Within the same context, i.e. taxonomic categorization, other learning meth-
ods have been already proposed to make use of specialist-imposed taxonomies
[9,10,11]. Interestingly, in [11], the authors show that the performance of an
SSVM [5] based approach can be improved by using an ensemble of local SVMs
in some data sets. In our work, we claim that a SSVM with an appropriate hier-
archical loss function can efficiently solve the problem, even improving complex
ensembles of SVMs [6]. Several hierarchical loss functions are proposed in [9,10],
but they differ from the novel Weighted Hierarchical Difference (WHD) loss pro-
posed in this work. In particular, the hierarchical loss in [10] only considers a
penalization based on the common ancestor, while our WHD accumulates a loss
through the whole hierarchy.

3 Seafloor Imagery Taxonomic Categorization

We formulate the problem of seafloor imagery taxonomic categorization as a
structured output prediction problem. We first describe our model, which we
propose for solving the taxonomic classification of benthic images using an SSVM
[5]. Then, we describe the learning algorithm and introduce the taxonomic loss
functions to be evaluated. In order to further improve the performance of the
prediction, we propose the novel Weighted Hierarchical Difference (WHD) loss
function. Finally, to deal with the problem of learning from data imbalance, we
describe a learning strategy, that consists of scaling the misclassified structured
predictions during the optimization.
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3.1 Model formulation

Using SSVMs, we are able to generalize the SVM to the case of the complex
interdependent output space defined by the problem of seafloor imagery tax-
onomic categorization. Let us assume we are given a collection of N training
image patches I = {(x1, y1), . . . , (xN , yN )} ∈ X ×Y, where xi ∈ Rd encodes the
image appearance, and yi represents the ground truth label of the image in the
corresponding taxonomy with a total of C nodes, i.e. yi ∈ {1, 2, . . . , C}.

With an SSVM we are able to learn a model w associated to a score function

f(xi, ŷ) =< w,φ(xi, ŷ) > , (1)

which is able to assign a scalar value that indicates how the structured prediction
ŷ fits the appearance encoded in xi. Note that during training the objective is to
find the classifying hyperplane w for the combined feature representation φ(xi, ŷ)
[5].

The specific form of φ(, ) depends on the nature of the problem. Similar to [9],
when Y is taxonomically structured, φ(xi, ŷ) decomposes as φ(xi, y) = λ(y)⊗xi,
where λ(y) is a binary vector that encodes the hierarchical relationship between
classes, and ⊗ is the Kronecker product, thus φ(xi, y) ∈ RC×d. In particular,
the taxonomy is defined to be an arbitrary lattice (e.g. the tree in Figure 2a),
where all its elements correspond to categories. It is important to note, that in
other taxonomic approaches [9,11] only the minimal elements, i.e. the leaves in
the tree, correspond to the categories. In our approach, however, we allow the
prediction to be cast at any level of the tree structure. We assume one unique
root node, and for every node y in the taxonomy, we define the set of nodes
on the path from the root to the node y by Ω(y). For instance, for the class
10:Algae, in the taxonomy shown in Figure 2a, Ω(10) = {0, 4, 10}. We then
encode this information in a binary vector λ(y) for each node y, where the ith

element is given by

λi(y) =

{
1 if i ∈ Ω(y)
0 otherwise.

(2)

The corresponding binary vector for class 10:Algae in the taxonomy is

λ(10) = {1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}.

3.2 Learning

Our objective is to learn a mapping from sampled features xi to their corre-
sponding output in the structured output space Y, i.e. the taxonomy. That is,
for a set of training images I = {(x1, y1), . . . , (xN , yN )}, we want to train a
linear model w that given an image xi, tends to cast the true structured output
for the taxonomy ŷ = yi. We formulate this as the following regularized learning
problem:

arg min
w,ξ

1

2
w>w +

C

n

n∑
i=1

ξi s.t. ∀i , ξi > 0 , (3)
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∀i ,∀y ∈ Y\yi : φ(xi, yi)− φ(xi, y) ≥ ∆(yi, y)− ξi , (4)

where ∆(, ) is the loss function. The constraint from (4) specifies the following.
Consider the ith training image xi and its corresponding true structured label
yi. We want the true label to score higher than all other hypothesized labellings
y.

Intuitively, violating a margin constraint involving a y 6= yi with high ∆(yi, y)
should be penalized more severely than a violation involving an output value with
smaller loss. This can be accomplished by re-scaling the margin accordingly, as
it is shown in Equation (4). The formulation in equations (3) and (4) is often
called margin re-scaling [5]. The optimization for the training problem outlined is
solved following the cutting plane algorithm in the SVMStruct software package
[12].

3.3 Taxonomic Loss Functions

In the formulated structured output taxonomic prediction, different loss func-
tions ∆(, ) can be considered. In this section, we describe all the loss functions
that are evaluated in this work. We also introduce the novel Weighted Hierar-
chical Difference (WHD) loss.

Standard Taxonomic Loss Functions. Given the ground truth label y
and the corresponding prediction ŷ, and considering that Y is taxonomically
structured, we can define the following standard hierarchical loss functions.

We consider three distinct loss functions: 1) the distance to the nearest ances-
tor in the tree ∆n(ŷ, y); 2) the classical distance through the tree ∆t(ŷ, y) [13];
3) and the hamming distance ∆h(ŷ, y) =

∑
i |λi(ŷ) − λi(y)| [11], which counts

the number of non-shared nodes on the path between the true class y and the
prediction ŷ

We also consider it important to analyze the performance of taxonomic loss
functions, that explicitly incorporate the hierarchical statistics for true positives
(tp), false positives (fp), false negatives (fn) and true negatives (tn). These
can be efficiently obtained from the taxonomy and with y and ŷ. Once these
hierarchical statistics are computed, we proceed to define the following taxo-
nomic loss functions: ∆precision(ŷ, y) = tp/(tp+fp), ∆recall(ŷ, y) = tp/(tp+fn),
∆accuracy(ŷ, y) = tp/(tp+ fp+ fn), ∆hier.hamming(ŷ, y) = (tp+ tn)/(tp+ fp+
fn+ tn) and ∆f1(ŷ, y) = (2 · tp)/(2 · tp+ fp+ fn).

Finally, one simple loss, which can be incorporated to our approach, is the
standard 0/1 loss function

∆0(ŷ, y) =

{
0 if ŷ = y
1 otherwise.

(5)

Note that ∆0(ŷ, y) transforms our taxonomic classification problem into a
standard multi-class prediction problem (with each node of the taxonomy rep-
resenting a different, and unrelated, class).
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Weighted Hierarchical Difference. One of the main limitations of the
hamming distance ∆h(ŷ, y) [11], is that it does not penalize an error higher up
the hierarchy more severely; an aspect we consider fundamental for taxonomic
categorization problems. Consider a classifier mistaking a Yellow Labrador (Ca-
nis lupus familiaris) to a Persian Cat (Felis catus) or mistaking the Yellow
Labrador with a Golden Retriever. The former is obviously a bigger mistake and
should incur a greater penalty.

To highlight this difference, in this paper, we propose the following loss, which
we call the Weighted Hierarchical Difference (WHD) loss,

∆WHD(ŷ, y) =
∑
i

|Ψ(λi(ŷ))− Ψ(λi(y))| . (6)

Essentially, this WHD computes the L1-norm of the difference of vectors
Ψ(λ(ŷ)) and Ψ(λ(y)). We define Ψ() as a weighting function, which divides
each component i of the binary vector λ(y) by the level it belongs to. For in-
stance, in the taxonomy shown in Figure 2a, for the class 10:Algae, we have that
Ψ(λ(10)) = (1, 0, 0, 0, 1/2, 0, 0, 0, 0, 0, 1/3, 0, 0, 0, 0, 0, 0, 0, 0, 0).

We have incorporated all these loss functions to the SVMStruct package [12].
A reference implementation of the code has been made publicly available4.

3.4 Dealing with imbalanced taxonomies

Data imbalance is a typical problem of taxonomic data sets. The larger the
number of classes in the hierarchy, the more difficult it is to guarantee that all
classes are assigned a similar number of samples when collecting the data. In
this section, we show that learning from highly imbalanced data is a problem
that can be naturally addressed employing a weighting strategy for the cost of
a misclassification during learning of the SSVM.

Learning from imbalanced data is problematic. As it is shown in [14], an SVM
learned with an imbalanced data set can be skewed and become unfavorable to
the minority class. Different techniques have been proposed to deal with this
problem.

Oversampling is a data preprocessing technique, that balances the data set
before training [15]. Basically, the minority classes are oversampled in order to
get a data set where all classes have similar number of samples. However, both the
training time and the memory requirements of the algorithm naturally increase.
Furthermore, if non-linear kernels are used, the test time might increase too.

In order to solve these oversampling problems, we formulate an SSVM ap-
proach where, we propose to dynamically weight the taxonomic loss function
during the optimization according to the number of samples per class. This
weighting is chosen such that a misclassification of a small class is penalized
more.

We proceed to define different error costs for the different classes in our
taxonomy. In a standard binary SVM classifier, this is accomplished by adjusting

4 https://github.com/nourani/Seafloor_SSVM

https://github.com/nourani/Seafloor_SSVM
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the cost parameter to C+ = α+ ×C and C− = α− ×C, where C is the original
cost parameter and α+/α− are weight constants for the large and small classes,
respectively. These weight constants are often set to the inverse of the class size
ratios.

In our SSVM formulation, the cost of a misclassification can be adjusted by
adding a weight penalty αi to the loss, i.e. ∆(yi, y)/αi. So, (4) is transformed as
follows,

∀i ,∀y ∈ Y\yi : φ(xi, yi)− φ(xi, y) ≥ (∆(yi, y)/αi)− ξi . (7)

We define αi as the penalty for an incorrect classification of label yi. In
our experiments we follow the standard procedure of setting the penalty to
the inverse of the class instance ratios: αi = ni/N , where ni is the number
of instances in class i and N is the total number of training instances in the
taxonomy. For small classes, αi will be small and the loss for misclassification
will become larger, compensating for the lack in training instances.

The experimental validation shows that our weighting strategy outperforms
the oversampling method, both in classification accuracy and runtime.

4 Results

4.1 Experimental Setup

For our experimental validation, we use the publicly available Tasmania Coral
Point Count data set, introduced in [4], which consists of 1258 images labeled by
expert marine scientists, with each image containing 50 labels at 50 randomly
selected pixels, adhering to the taxonomical hierarchy shown in Figure 2(a).
There are more than 130 different species labels in the data set, which have been
collapsed to 19 classes (c.f. Figure 2(b)) with the guidance of marine scientists.

From Figure 2(b) it can be seen that the data set is extremely unbalanced.
Some of the parent nodes contain no instances, while other parent nodes do
contain labels. What this signifies is that not all labels go to the leaf nodes. It
is necessary to formulate a classification strategy, that both takes into account
the unevenness and the labeling philosophy of the data set.

For all the experiments, the data set is divided into 80% training samples and
20% test samples following the experimental setup in [4]. Exponential grid search
in the range 10−2 − 102 is used to find the cost parameter, C, for the SSVM
classifier proposed, by training on 2/3 of the training samples and validating on
the last 1/3. For the visual features, we follow [6] and for each image patch (of
31 × 31 pixels) we compute the Histogram Fourier Local Binary Patterns [16]
(LBP-HF) descriptor. We evaluate the performance of our solutions using the
modified hierarchical F1-score introduced in [6].

4.2 Seafloor Imagery Taxonomic Categorization

We start the experimental validation assessing the performance of the different
taxonomic loss functions proposed. We compare our results with the baseline
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Fig. 2. a) The hierarchy, and b) number of instances per class in the Tasmania Coral
Point Count data set.

Table 1. Performance of the 10 loss
functions on the Tasmania data set.

Loss H-F1mod Accuracy Precision Recall

∆0 88.67 67.58 16.41 17.99
∆WHD 89.06 67.58 17.19 22.66
∆f1 89.06 67.58 16.40 15.23
∆precision 88.28 66.02 13.28 15.63
∆recall 87.50 62.89 17.58 16.02
∆accuracy 89.06 67.58 16.79 17.19
∆hier.ham 89.06 67.19 16.02 22.27
∆n 77.73 50.00 18.36 17.97
∆t 84.38 67.19 15.63 15.63
∆h 84.38 67.58 15.23 15.63

Table 2. Comparison with a flat multi-
class SVM classifier scheme and the
state-of-the-art.

Method H-F1mod %

Flat multi-class 66.67
MPS0.5 [6] 80.24
∆WHD (Ours) 89.06

methodology, which consists of a multi-class SSVM [5] employing a 0/1-loss, i.e.
∆0. We have used the code available for multi-class classification at [12].

Table 1 shows the performances of the loss functions in terms of the hierar-
chical F1-score, accuracy, precision and recall. We observe that the new WHD
loss function is performing the best. We also compare our method to a flat multi-
class SVM classifier and the state-of-the-art reported on the same data set by [6]
(see Table 2). The authors of [6] presented a one-classifier-per-node hierarchical
approach employing max probability switching with thresholding, MPS0.5. For
the flat SVM classification scheme, we have trained a standard multi-class linear
SVM, using the LibSVM [17] package. Table 2 shows that our SSVM approach
significantly improves both the baseline and the state-of-the-art MPS0.5.

The results reported illustrate some important outcomes. Firstly, employ-
ment of SSVM has greatly improved the performance over the one-node-per-
classifier approach of [6] from 80.24% to 89.06%. Secondly, this large improve-

Table 3. Main results analyzing the data imbalance on the sampled test set.

Method Prec. Rec. H-F1mod Samples [n] Time [s] Mem [GB]

Std. SSVM 16.41 7.42 69.53 48,181 544 0.5
Std. SSVM + Oversampling 15.39 13.00 72.27 305,474 3259 5.2
Weighted SSVM 18.48 9.13 73.05 48,181 228 0.5
Weighted flat SVM (LibSVM) 7.27 3.30 51.32 48,181 11887 1.0
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a b c
Fig. 3. Qualitative results. The location of the ground truth label is shown with a ◦
marker and green text. Red marker indicates incorrect classification. a) One of the
worst results on the test set. b-c) Two of the best classification results.

ment of 8% has come in addition to a considerably simplified methodology and
setup. We can conclude that taxonomy-based learning using SSVM yields im-
proved results when hierarchical losses are used, outperforming both standard
multi-class SVMs and other hierarchical SVM ensembles [6]. Finally, Figure 3
shows some qualitative results.

4.3 Learning from imbalanced data

Here we propose an experimental validation to analyze the influence of the data
imbalance on the described solutions. We start evaluating the performance of a
standard SSVM with and without oversampling. We also evaluate the proposed
approach, described in Section 3.4, named Weighted SSVM. For the sake of
comparison, we also report the performance of a weighted flat multi-class SVM.
Note that, to ensure a proper evaluation, we oversample the test data and draw
an equal number (847) of instances for each class, while maintaining the overall
total number of test samples (11854). When an SSVM is used, we report the
performance obtained using our novel WHD loss function.

Table 3 shows the main results. All times reported are on a 2.3GHz i7 pro-
cessor. We observe that the proposed Weighted SSVM obtains the best results
in terms of the H-F1 score and precision. This has been accomplished by increas-
ing both the precision and the recall by ∼ 2% compared to the Std. SSVM. Our
Weighted SSVM also finishes the training in almost half the time of the Std.
SSVM. The SSVM with oversampling does not outperform our Weighted SVM
even though it uses 5× as much training data, resulting in a ten-fold increase
in both processing time and memory usage compared to the proposed Weighted
SSVM. Our weighted approach is clearly the best approach for dealing with
imbalance in the training data.

5 Conclusion

A novel approach to seafloor imagery taxonomic categorization has been de-
veloped. We have evaluated the incorporation of the taxonomy inside the loss
function of an SSVM formulation. We have also introduced the novel WHD
loss function, whose results show a significantly better performance compared
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to the state-of-the-art on a new challenging underwater data set. We have fur-
ther demonstrated that it is possible to follow a weighting strategy in the SSVM
optimization to alleviate imbalance in the training data set.

Acknowledgements. The authors acknowledge the Australian National Re-
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and the Australian Centre for Field Robotics for gathering the image data.
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