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Abstract. Visual navigation is the ability of an autonomous agent to
find its way in a large and complex environment based on visual informa-
tion. It is indeed a fundamental problem in computer vision and robotics.
In this paper, we propose a deep reinforcement learning approach which
is able to learn to navigate a scene to reach a given visual target, but
anticipating the possible collisions with the environment. Technically, we
propose a map-less-based model, which follows an actor-critic reinforce-
ment learning method where the reward function has been designed to
be collision aware. We offer a thorough experimental evaluation of our
solution in the AI2-THOR virtual environment, where the results show
that our proposed method: 1) improves the state of the art in terms of
number of steps and collisions; 2) is able to converge faster than a model
which does not care about the collisions, simply searching for the short-
est paths; and 3) offers an interesting generalization capability to reach
visual targets that have never been seen during training.

Keywords: visual navigation, deep reinforcement learning, robotics, com-
puter vision

1 Introduction

We need robots to learn to navigate as we humans do: taking into account the
environment and objects that surround us. This is the main objective of our work.
The problem of navigation has been addressed in great depth in recent years.
Most of the navigation solutions are considered as map-based methods, that is,
a map of the environment is needed in order to make decisions for navigation
(e.g. [1,2]). Others autonomously reconstruct a map of the environment on the
fly and use it to navigate, e.g. [3,4,5], or use a human-guided experience to build
the map, e.g. [6,7]. Finally, we find the map-less approaches, e.g. [8], which do
not require a map as they do not have any assumption on the landmarks of the
scenes.

Our approach follows this map-less principle, and we present a visual naviga-
tion solution which combines recent advances in deep and reinforcement learning.
The main goal of our work is to boost robotic navigation towards a human-like
behaviour. With this aim, the next question immediately arises: how does a hu-
man learn to navigate within an indoor environment? Look at Figure 1. Would
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Fig. 1. Would a human in the virtual environment shown in the figure opt to follow
the blue or the green path? We propose a deep reinforcement learning model which
is designed to learn to navigate towards a visual target in a human-like way. Our
model has to look for short trajectories, but also for paths where the collisions can
be anticipated, maintaining a reasonable separation margin with the objects in the
surroundings.

a human follow the blue or green path to reach the lamp? We believe that we hu-
mans tend to navigate avoiding possible collisions, anticipating them. In other
words, we move trying to maintain a margin of separation with the possible
obstacles of the environment that surround us.

In this paper we propose a deep reinforcement learning approach which is
designed to navigate towards visual targets selecting the shortest path that is
separated from possible obstacles. The scientific contributions of this work
are as follows: 1) We introduce a deep reinforcement learning collision aware
solution, by the appropriate design of a novel reward function, which possibili-
tates to minimize the number of steps and to anticipate and avoid the collisions;
2) Our thorough experimental evaluation shows that our solution improves the
state of the art in the AI2-THOR virtual environment in terms of number of
steps and collisions; 3) Furthermore, results confirm that the proposed collision
aware solution exhibits a better generalization capability and that is able to
converge faster than a model which does not explicitly consider collisions during
learning.

2 Related work

The evolution of technology in the field of computer vision has seen breathtaking
changes, many of which have to do with the use of reinforcement learning based
methods. Reinforcement Learning (RL) has experienced an increasing use in
different applications. In [9], a RL-based solution is proposed for the real world
problem of elevator dispatching. In [10], it is made use of RL to facilitate an
autonomous flight. In [11], a vision-based method using RL is used to teach a
robot to shoot a ball into a goal. In [12], it is investigated this type of algorithms
in order to provide to a four-legged robot a walking behaviour.
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We have also the family of methods that combine deep learning with RL.
In [13], the authors make use of these methods to learn control policies from
high-dimensional sensory inputs to play ATARI games. In [14], it is developed
a system able to detect objects within a scene, in which the agent can find a
specific bounding box by using deep reinforcement learning during the agent’s
training. In [8], the authors introduce a visual-based algorithm for learning how
to navigate in indoor scenarios by using a virtual environment to train the mod-
els. Our approach directly leverages the model described in [8], to propose a novel
visual-navigation solution able to anticipate collisions, hence providing the agent
the knowledge to navigate in a secure way. We do this by integrating a collision
aware reward function into an actor-critic deep RL model.

3 Navigation with Collision Anticipation

3.1 Navigation problem

The navigation solution proposed in this work is inspired by the hypothesis that
we humans navigate trying to maintain a margin of separation with the possible
obstacles of the environment that surround us (see again Figure 1).

In this work, we propose a system with this ability. We make use of deep
reinforcement learning, designing a reward function which is able to transfer to
the agent the policy knowledge that maps the visual sensory input into actions
in a 3D world, so that both the number of steps and the number of collisions are
minimized.

3.2 Model formulation

To achieve our goal we use a model based on deep reinforcement learning. This
section details the different components of our approach to provide a solution
that anticipates collisions in indoor environments while the agent moves.

As it is shown in Figure 1, the inputs to our model are just two images.
Technically, we feed a deep siamese network, i.e. with shared weights, with both
agent’s observation and navigation goal images. This way, the target is implicitly
in the input data.

We now define the three key parts of our deep reinforcement learning ap-
proach: i) action space; ii) observation and goal; and iii) reward function.

Action space. The objective of our visual navigation model is to map a
high-dimensional 2D input into an action in a 3D space. Here we define the
actions that our agent will take according to the input data. All the indoor
environments used in this work have been discretized, so that, a grid of the
world is created. For each cell within this grid, the agent is able to take four
different actions: move forward, turn right, turn left, move backward.

Observation and goal. The agent is provided with a first-person-view cam-
era. Note that each of the observations of the agent represents a state st at time t
of all possible states S within the environment. The agent must navigate towards
the position where the target image has been taken.
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Reward. In reinforcement learning, the reward is defined as the feedback
by which the success or failure of an agent’s action is measured. Every time the
agent selects an action, the environment returns a reward rt at time t. In this
work we propose a collision aware reward function, so that the agent is able to
learn to anticipate collisions while it navigates. We first define the four main
states that guide our reward assignment process. Our first state is called sstep,
which corresponds to every time the agent executes an action in the navigation
environment, i.e. it moves to a position in the grid, but considering the following
exceptions. If the agent arrives to the target, the state is called sterminal. If the
agent is in a cell with an object or wall that could cause a collision by moving
forward or backward, the state is named scollision. Finally, if the agent is in a cell
previous to a scollision state, i.e. in two cells before a collision could occur, we
call it scollision−1. Note how these last two states allow the agent to anticipate
possible collisions with objects in the environment.

Our reward must be collision aware. Therefore, we design the following reward
function that returns a different numerical value depending on the new state
induced by the action taken by the agent at a certain time, i.e. st:

f(st) =


10 if st = sterminal

α if st = sstep
β if st = scollision
γ if st = scollision−1

. (1)

The terminal state receives the maximum reward, indicating to the algorithm
that the agent has arrived to the target. For the rest of states we assign different
negative small values, being α = −0.01, β = −0.02 and γ = −0.011. Note
that for the collision anticipation states their associated negative values are
higher than for the step stage. Our intention is that the agent learns to navigate
away from those scollision−1 and scollision states. In other words, the agent learns
to anticipate the states where a collision could occur, which results in a safer
navigation. Another way to understand the function of these states is shown in
Figure 1. There, one can observe the top-view of a scene, where there are some
red-shadowed areas. These are the zones we do not want our agent to navigate.
This fact does not mean that the agent cannot navigate through those states,
since the proposed algorithm of deep RL uses cumulative rewards. That is, we
want the agent to find the combination of states that, at the end of the episode,
arises the highest reward as possible. In other words, in certain situations the
agent will decide to navigate through these states previously mentioned, so that
the target will be achieved earlier. Thus we leave it to the RL model to decide
which is the best option autonomously.

According to the model described, at each time step t, our agent receives
a representation of the state of the environment, i.e. st ∈ S. Based on that
information the agent selects an action, at ∈ A(st), where A(st) represents all
possible actions for state st. As a consequence of the action taken, the agent
receives a reward, rt ∈ R, and discovers a new state st+1. The way an agent
selects an action according to the current state follows a learning policy, which
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Fig. 2. Here it is shown the deep siamese network used in our work, which is fed by the
agent’s observation and the navigation target. Siamese layers are ResNet-50 features
(truncated the softmax layer) pre-trained on ImageNet. ResNet parameters are frozen
during the training stage. It can be appreciated the shared weights updated by each
of the trained agents in the global network. At the right side of the figure, we have
the specific network layers, which output the policy and value according to the visual
sensory input for each particular type of scene.

is denoted by πt. Therefore, πt(st, at) indicates the probability of the agent
selecting the action at if the agent’s state is st. The agent changes its policy
through a reinforcement learning method, so that the agent gets the best amount
of reward in each training episode.

Technically, we propose to follow an actor-critic learning model known as
Asynchronous Advantage Actor-Critic (A3C) [15]. A3C is able to use multiple
independent agents (in our case, deep networks) with their associated weights.
These agents interact in parallel with different copies of the learning environ-
ment. In our case, each agent learns to navigate in the same environment but
to a different target. Therefore, every agent is trained in parallel and updates in
an asynchronous way the weights of a global network, which holds the shared
parameters. Specifically, for the deep network of the agent we follow the siamese
architecture proposed in [8], see Figure 2. Our objective is to use a deep siamese
actor-critic network to capture the relations between the current agent’s loca-
tion and the target’s location, by projecting them to the same embedding space.
Therefore, we need the inputs of the two siamese networks to be the observation
of the agent and the visual target. The features learned by the siamese networks
are fused to build the joint representation that is used by the final scene specific
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layers, which are in charge of generating the policy and value outputs of the
actor-critic A3C algorithm.

4 Experiments

4.1 Experimental Setup

Dataset. We obtain the data to train and evaluate our model from AI2-THOR
[16]. It is a framework that provides environments that look similar to real world
scenes: a total of 120 different scenes covering four different categories (kitchens,
living rooms, bedrooms, and bathrooms). It also includes actionable objects that
an AI agent can interact with. For our learning to navigate objective, AI2-THOR
results an excellent resource to provide our learning model with photo-realistic
pictures of indoor domestic environments where our agent can learn to move.
Technically, we follow the experimental setup released in [8], which comprises 4
different scenes, one for each room category.

Evaluation metric. To evaluate the navigation performance, we use, as in
[8]: 1) the number of steps needed by the agent to reach the targets; and 2)
the number of collisions during the navigation. For both metrics, the lower the
better. We also propose a generalization experiment where we aim to evaluate if
the agent is able to navigate to unseen targets during training. For this second
experiment we use the success score (sc). This score is defined as follows. Given
a scene and a target for that scene, with a fixed number of episodes, we compute
sc as the number of episodes for which the agent is able to reach the target with
a number of steps that is lower than 500. Since for each target we test the model
one hundred times, the resulting sc measures the percentage of times that the
agent reaches the goal below a fixed threshold of 500 steps.

4.2 Navigation results

Navigation experiment. We compare our collision anticipation model with the
state-of-the-art navigation model of Zhu et al. [8]. Note that in [8] the authors do
not consider collisions during learning, optimizing the agent to find the shortest
paths towards the targets only. Table 1 shows the main results.

First, one observes that the number of collisions considerably decreases (an
order of magnitude) following our approach. This fact validates the proposed
reward function integrated in the reinforcement learning approach. However, it
is worth to note that our solution not only minimizes the number of collisions,
but also the number of steps. In other words, our model is able to jointly seek
the shortest trajectories with the fewest collisions.

In Figure 3 we show how the number of collisions and number of steps are
accumulated over 100 navigation episodes. For both methods (ours and Zhu [8])
we show the best and the worst cases. In terms of number of steps, we can
conclude that both models obtain similar solutions. Since the agent starts the
training in random positions within the scene, and taking into account the size
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Scene Bathroom Bedroom Living room Kitchen Average

Zhu [8]
Steps 7.17 14.82 15.2 21.38 14.7

Collisions 0.04 0.12 0.25 0.2 0.15

Ours
Steps 7.33 14.81 14.9 20.83 14.47

Collisions 0.03 0.04 0.15 0.12 0.082
Table 1. Navigation results.
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(a) Bathroom scene.
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(b) Bedroom scene.
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(c) Living room scene.
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(d) Kitchen scene.

Fig. 3. Number of steps and collisions accumulated during the evaluation phase for
each scene. We show the best and worst cases for each model.

of the scenes, which differs among the different categories, to outperform the
state-of-the-art model proposed by Zhu et al. [8] in terms of number of steps is
more complicated. However, our model is below this result as reported in table
1. But if collisions are considered, our agent clearly performs better, even for the
worst cases. Finally, we show qualitative results in the following video1.

1 https://www.youtube.com/watch?v=Eyxw-FY-iM0

https://www.youtube.com/watch?v=Eyxw-FY-iM0
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Fast convergence experiment. While training our model we are able to
examine how the reward function evolves over time, and there is a fact that
catches our attention: our model is capable of converging at least to a sub-
optimal solution much faster than the approach of Zhu et al. [8].

To prove this in a quantitatively way, we proceed to evaluate the navigation
performance of the models for 5 millions and 10 millions training frames. Figure
4 shows the average for the number of steps and collisions. One can conclude
that our approach learns faster. Interestingly, in our model the number of steps
reported for 5M is pretty close to the final one reported for 10M. And with
respect to the collisions, it is worth to note that although the model of Zhu et
al. [8] is able to also indireclty minimize them, our model drastically reduces
them even for the initial stages of the learning process. As a conclusion: our
collision anticipation navigation solution not only outperforms the results in
terms of steps and collisions, but also learns faster.
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Fig. 4. Average steps and collisions for the fast convergence experiment.

Hard targets experiment. For all the previous navigation experiments we
strictly follow the original experimental setup provided by Zhu et al. [8], using
the fixed set of 5 different targets per scene selected by the authors. We here
propose to perform an evaluation when a different set of targets is considered.
We choose the new set of targets, with the aim of giving robustness to the main
objective of our work: collision anticipation for visual navigation systems. For
this purpose, in this experiment we select 5 targets per scene, which in terms of
collisions and navigation, are harder to reach.

The results obtained for this experiment are shown in Table 2. Interestingly,
the performance of both models, in terms of steps and collisions, decreases, a fact
that confirms that the selected targets are actually harder than the original ones.
Note that for the evaluation, the agent is thrown into random positions on the
scenes, and we measure the number of collisions and steps until he reaches the
target. The living room scene contains different objects (sofa, table, chairs, etc.)
that difficult the navigation of both models, clearly. One can observe that the
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Scene Bathroom Bedroom Living room Kitchen Average

Zhu [8]
Steps 7.43 13.76 1323.88 19.17 341.06

Collisions 0.06 0.15 247.78 0.30 62.07

Ours
Steps 7.29 14.63 568.78 18.89 152.39

Collisions 0.03 0.08 61.66 0.25 15.5
Table 2. Evaluation of the model for the hard targets navigation experiment. 10M
training frames.

performance of our model for the living room class is much better, making the
difference between Zhu’s model and ours. However, the number of steps needed
for this scene is higher than 500 for our model. Overall, there is a huge gap
between our model and Zhu et al. [8]: the trajectories obtained by our model are
shorter and contain less collisions on average. If the methods want to report a
similar performance to the original one (shown in Table 1, for the original easy
targets), they must be trained for twice as many iterations (for 20M), as Table
3 reveals.

Scene Bathroom Bedroom Living room Kitchen Average

Zhu [8]
Steps 7.46 13.92 18.12 18.03 14.38

Collisions 0.04 0.12 0.2 0.19 0.14

Ours
Steps 7.16 14.15 17.73 17.86 14.225

Collisions 0.01 0.03 0.05 0.07 0.04
Table 3. Evaluation of the model for the hard targets navigation experiment. 20M
training frames.

4.3 Target generalization experiments

The generalization ability of deep reinforcement learning models is an interest-
ing aspect to evaluate. So, the question here is: are our agents able to navigate
towards targets that have not been considered during training? We design the
following experiments with the objective of evaluating whether our collision an-
ticipation navigation model generalizes appropriately.

We propose two different experiments. The first one evaluates the navigation
of our model toward targets that are at 1, 2, 4 and 8 steps away from the
original trained targets. In other words, what we have done here is to use the
model trained for the original targets, whose results were reported in Table 1,
but now, the evaluation is performed using only the new set of unseen targets.
We measure the sc of the four scenes, and provide the average.

Figure 5 shows the main results. As expected, the higher the number of steps
with respect to the trained targets, the lower the success score, since the problem
becomes more difficult. If we compute the average for the 4 situations (1 step, 2
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Fig. 5. Success score of the target generalization experiment.
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Fig. 6. Evolution of the success score obtained as the number of trained targets is
increased.

steps, 4 steps and 8 steps) for every method, the model proposed by Zhu et al.
[8] obtains sc = 57, 4%, while our model reports sc = 58, 1%.

Our second experiment aims to evaluate how the number of objectives used
during training affects the ability to generalize. Technically, we select five dif-
ferent fixed targets per scene to evaluate the model. Then, we proceed to train
our model for 5, 15, 25, 35 and 45 targets that are incrementally generated. We
guarantee that the test targets are never included in the training sets, i.e. they
always remain unseen during learning.

Figure 6 shows the sc of our model as the number of training targets in-
creases. As expected, the sc increases when more and more training targets are
considered. In conclusion, the generalization ability of the proposed deep RL
navigation model needs of some improvements. A simple solution could consist
on enriching the training set of targets, as this last experiment has confirmed.
But, in any case, further efforts will be necessary in order that the agents achieve
new targets, requiring a minimum adjustment of the parameters, or even that
they can navigate in scenes never seen before.
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5 Conclusions

This work proposes a deep RL approach whose main goal is to learn to navigate
towards visual targets selecting the shortest path that is separated from possible
obstacles, and hence anticipating collisions. According to the results shown in
this work, we expose the following contributions. We have introduced a deep RL
collision aware solution, by the appropriate design of a novel reward function.
We have done an extensive experimental evaluation showing that our solution
improves the state of the art in the AI2-THOR virtual environment in terms
of number of steps and collisions. Results also confirm that our model is able
to learn faster than a model which does not explicitly consider collisions during
learning. Finally, the results show that the proposed collision aware solution
exhibits a generalization capability that has to be improved to incorporate both
new targets and scenes in the navigation.
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