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Abstract. The action proposals problem consists in developing efficient
and effective approaches to retrieve, from untrimmed long videos, those
temporal segments which are likely to contain human actions. This is a
fundamental task for any video analysis solution, which will struggle to
detect activities in a large-scale video collection without the proposals
step, needing hence to apply an action classifier at every time location,
in a temporal sliding window strategy, a pipeline which is clearly unfea-
sible. While all previous action proposals solutions are supervised, we
introduce here a novel strategy that works in an unsupervised fashion.
We rely on an online agglomerative clustering algorithm to build an ini-
tial set of proposals/clusters. Then a novel filtering approach is proposed,
which uses the dynamics of the proposals discovered by the clustering, to
measure their actioness, and proceeds to filter them accordingly. Our ex-
periments show that our model improves the supervised state-of-the-art
approaches when the number of proposals is controlled.

Keywords: action proposals, unsupervised learning, clustering, com-
puter vision, action recognition

1 Introduction

In this work, we focus on the problem of localizing temporal segments in untrimmed
videos that are likely to contain human actions. This is the well-known prob-
lem of action proposals, e.g. [1,2,3,4,5,6]. These proposals can speed-up activ-
ity recognition and detection tasks, as well as retrieval and indexing in long
videos. Interestingly, in the last ActivityNet challenge [7], all the methods for
the task of action localization [6,8,9] have tackled the problem following a two-
stage pipeline, where the first step always consists in using an action proposal
method. So, action proposals are important.

Typically, all action proposals solutions follow a supervised approach dur-
ing learning. That is, models are trained using fully annotated datasets, such
as THUMOS-14 [10], where for each video the time slots corresponding to each
action are specified. However, the problem has not been addressed from an unsu-
pervised perspective, where action proposal models can be trained without using
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Fig. 1: We propose an unsupervised approach for action proposals. It is based
on an online clustering model which works on deep features designed for object
recognition. These cluster are later refined by their sizes and dynamics, using a
rank-pooling based mechanism.

this information. This new approach offers significant benefits. The first one is
that it is not necessary to annotate videos to perform the training. Moreover,
the training data becomes unlimited, and data sources such as YouTube can
be used, a factor that will lead to solutions that will be able to offer a better
generalization capability.

Therefore in this paper we explore if such an unsupervised perspective is vi-
able, offering the following contributions. 1) We propose an action proposals
pipeline which starts with an online agglomerative clustering algorithm (Sec-
tion 3.2). Just using pre-computed deep features for object recognition for every
video frame, our hypothesis is that we can localize actions finding clusters in
this feature space. For doing so, our clustering solution must work online, i.e.
grouping contiguous frames if they are visually similar. 2) We then propose two
filtering mechanisms to be performed over the clusters (Section 3.3). One is sim-
ply based on the size of the clusters/proposals. The other uses the dynamics
of the proposals identified. Dynamics should represent the video-wide tempo-
ral evolution of the appearance of the frames. In this paper we introduce an
unsupervised approach. It leverages rank pooling based dynamics [11] to build
an actioness module which can be used to further filter and refine the obtained
proposals/clusters. 3) Our last contribution consists in offering a thorough exper-
imental evaluation using the THUMOS’14 [10] dataset, with a clear evaluation
protocol. This is done in Section 4, where we first compare the performance of
our unsupervised model with state-of-the-art supervised solutions. Interestingly,
when in the evaluation we control the number of proposals methods can produce,
our solution reports the best results. We then analyze the precision of the action
proposals, this being an aspect that has not been considered in depth before,
even by supervised action proposal models, which generally tend to maximize
the recall.
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2 Related work

Temporal action proposal generation has recently become of much interest since
it has been demonstrated to be a crucial step for temporal action detection [12],
as well as helpful at other video understanding tasks [13].

Different types of solutions have been proposed to solve this problem. On
the one hand, there are works based on classifying thousands of varied-length
candidate segments, being these segments extracted using the sliding window
technique. Then, several classification methods have been suggested to consoli-
date proposals, for example the multi-stage C3D [14] network used by [15], or the
dictionary-based method proposed in [1]. Additionally, the works [4,16] propose
to refine segment boundaries using temporal regression to generate more precise
proposals.

On the other hand, Zhao et al. [6] propose to build candidate segments group-
ing features based on their actionness score. In [3,17] we find approaches that can
generate proposals in a single video pass using recurrent networks. Besides, very
recent models, e.g. [18,19], produce proposals from temporal boundary points,
instead of candidate segments. These points are combined to generate precise
temporal boundaries.

All previous methods share the fact that they solve the proposal generation
task from a supervised perspective. That is, they need the temporal ground truth
information during training. However, our method is the first one that operates
in an unsupervised fashion. We only rely on video features to generate proposals,
hence addressing and proposing a more challenging task.

3 Action Proposals Generation

We here detail our novel solution for the generation of action proposals in videos.
Figure 1 shows the main steps of the introduced approach: 1) video frames feature
extraction; 2) online hierarchical clustering; and 2) a rank pooling dynamics
based filtering.

3.1 Feature Extraction

The input of our action proposal model is a video stream. Therefore, given a
video of n frames V = {v1, v2, v3, ..., vn}, we proceed to extract, for each frame
vi ∈ V , a deep feature, using any pre-trained deep model for image recognition,
such as AlexNet [20]. So, a video V is mapped to a set of high-dimensional deep
features, having V = {f1, f2, f3, ..., fn}.

3.2 Online clustering for Action Proposals

Our solution to generate action proposals is based on a clustering algorithm.
The intuition behind this approach is that action video frames share a visual
similarity that can be captured by deep learning features trained for object
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Algorithm 1: Frame by frame (FBF) online clustering for AP

Input: video V = {f1, f2, f3, ..., fn} ;
1 threshold δ;

2 struct {float vec; int id;} leafnode;
Output: Cluster

3 //Create a list of leafnodes with the features in V
4 features← load(V );
5 L← [leafnode(v ← array(f), id← i)for i, f in enumerate(features)]

//Initialization

6 Cluster ← {}; ni ← L[0]; Cluster.append([ni]); newvec← ni.vec;

7 for j ← 1 to n− 1 do
8 nj ← L[j];
9 d← L2dist(newvec, nj .vec)

10 if (d < δ) then
11 Merge(Cluster[−1], nj) // Merge nj with the last node of Cluster

newvec← Cluster[−1].vec
12 else
13 //Create new cluster

14 Cluster.append([nj ]); // nj is appended as a new cluster
newvec← nj .vec;

15

16 return Cluster

recognition. Therefore, we can localize actions finding clusters in the feature
space where the video frames have been mapped to.

For doing so, it is fundamental that the solution guarantees two properties:
1) the implemented clustering must be online, in the sense that it tends to favour
clusters with temporally close or contiguous frames; and 2) a filtering mechanism
for discarding non-action clusters has to be designed. In this section, we focus
on the online clustering implemented solution.

The input for our clustering solution is the set of deep learning features used
to characterize every frame of a given video, i.e. V = {f1, f2, f3, ..., fn}. We then
proceed to execute our online frame by frame (FBF) clustering algorithm in the
following fashion.

First, we create a list L where each frame is assigned to a node ni of the class
leafnode. This class is implemented with an structure containing and index list
id, which identifies all the features belonging to it, and a vector vec, which is the
centroid of the cluster represented by the node. The algorithm decides whether
to merge two consecutive pairs of nodes ni and ni+1 using a distance based
criterion computed over the centroids of the nodes, i.e. ni.vec and ni+1.vec.
Technically, we join two consecutive nodes if dist(ni.vec, ni+1.vec) ≤ δ. In our
experiments the Euclidean distance is the one reporting the best results.
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Note that our objective is to identify in the video action proposals regions.
Following our online clustering solution, we consider that the frames merged in
a cluster define an action proposal, the centroid being thus its representative.

If two consecutive nodes do not meet the union criterion, the cluster already
formed in the first node is assigned to an action proposal. The algorithm starts
again with the last analyzed node. We keep merging nodes until we go through
all the frames of the video clip. Finally, our algorithm returns a list of clusters,
which define the action proposals for the given video. For a detailed description
of the FBF approach, we include the Algorithm 1.

Note that our online FBF model shares some similarities with an Unweighted
Pair-Group Method using Centroid averages (UPGMC) for hierarchical cluster-
ing. Technically, we also follow a centroid linkage criterion. However, we do not
need to perform any hierarchical search. Instead, we process the video frames in
an online fashion, building clusters as soon as they occur. In our experiments, we
tried other clustering approaches, like standard hierarchical clustering solutions
[21] or HDBSCAN [22], but our FBF model reported the best results.

3.3 Filtering proposals

As a result of our online FBF model, every video frame gets assigned to an Action
Proposal (AP). In other words, our model fully covers the whole video with
proposals. This is due to the unsupervised nature of our approach, in contrast
to all the state-of-the-art models for the same problem, which are all supervised
approaches. Therefore, we need to incorporate a filtering step with the objective
of discarding those incorrect proposals, but again in an unsupervised way.

We first proceed to filter the proposals by their size. The idea is simple, it
technically consists in filtering those proposals whose temporal length is shorter
than a certain threshold αt.

Once we have discarded the shorter APs, which typically correspond to video
fragments that do not contain actions, we proceed with a novel filtering mech-
anism, which is based on the computation of the dynamics of the remaining
proposals.

The dynamics of a video sequence are defined as the video-wide temporal
evolution of the appearance of the frames. Dynamics have been previously used
for action recognition, e.g. [11,23]. They can be seen as video representations to
train a classifier for categorizing each video with an action label. We, instead,
propose to use them to measure the actioness of a video segment, i.e. how likely
the video is to contain an action.

For doing so, we start our reasoning with the following hypothesis. Given a
video segment Vi, we can compute its corresponding dynamics vector Di. We
now define V̂i as a randomly ordered set of frames of Vi. D̂i vector represents the
dynamics of this random version of Vi. If we now compute the distance between
Di and D̂i, as d(Di, D̂i), we make the basic assumption that this distance will
be higher for those video segments that contain actions than for those that just
represent background.
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Following this hypothesis, we can filter our action proposals in an unsuper-
vised way. Technically, we proceed as follows. Let Pi be one of the proposals
constructed with the FBF approach. For each proposal Pi, we build its ran-
domly ordered version P̂i. Then, as in the rank-pooling model [11], we proceed
to model the video dynamics of each of these proposals solving a constrained op-
timization pairwise-learning-to-rank formulation [24]. In particular, we opt for
a linear Support Vector Regression (SVR) based formulation. Given the set of

ordered features for Pi, i.e. Pi = {f (i)1 , f
(i)
2 , f

(i)
3 , . . . , f

(i)
ni }, we seek a direct map-

ping from the input feature vectors f
(i)
t to a time variable t using a linear model

with parameters w(i), as follows,

w(i) = arg min
w(i)

∑
t

|t− w(i) · f (i)t | . (1)

This SVR approach is known to be a robust point-wise ranking formulation
[24]. In summary, to encode the dynamics of proposal Pi, we use the model

parameters vector w(i). For P̂i we also compute its corresponding dynamics ŵ(i),
following the same SVR based procedure.

Once the dynamics are computed, we proceed to filter the proposals according
to the Euclidean distance between these dynamics vectors. If di(w

(i), ŵ(i)) < ∆,
then the associated proposal is discarded, because it is considered to belong to
a non-action video segment.

4 Experiments

4.1 Experimental Setup

For the experiments we use the challenging dataset THUMOS-14 [10]. It con-
tains 213 untrimmed test videos with temporal annotations of 20 sport action
categories. Note that this dataset is also used by all state-of-the-art supervised
AP methods, which allows for a direct comparison of our unsupervised model
with them.

In particular, we directly compare with the following supervised AP models:
DAPs [3] and Sparse-prop [1]. The authors of these papers publicly release their
proposals results using THUMOS-14.

With respect to the evaluation metrics, we use two. The first one is the
Average-Recall versus the Average-Number of Proposals per Video (AR-AN).
This is the standard metric used by all AP models. Technically, we follow the
evaluation procedure detailed in [3], where the Average Recall curve is gener-
ated for a set of Intersection over Union between 0.25 to 0.5, as a function of
the number of proposals. The second metric we propose for the experimental
validation is the Average Precision of the Precision-Recall curves. We follow
the official implementation of Average Precision released with the THUMOS-14
benchmark [10] for action detection. Note that while with AR-AN the temporal
precision of the proposals is not considered, i.e. just the recall is evaluated, we
aim to focus the attention on the fact that precision also matters. A method
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(a) 50 (b) 100

Fig. 2: Comparison of FBF with the state of the art using the AR-AN metric.
Our FBF is able to improve in terms of AR when 50 and 100 average number of
proposals per video are considered.

that throws thousands of action proposals for each video can get an excellent re-
call, but very low precision, because many of those action proposals will fall into
background zones, or will overlap with each other. However, our unsupervised
online solution tends to generate fewer and more precise proposals, an aspect
that will be shown by the Average Precision experimental evaluation.

With the aim of making our results reproducible, we detail the parameters
of our solution. For the feature extraction, we proceed to extract for each video
frame the last fully connected activation layer of the AlexNet CNN architecture
[20], named FC7 (4096-dimensional), which has been pre-trained using the Im-
ageNet database [25]. For the FBF clustering, δ = 100, and we use an Euclidean
distance. Then, for the filtering steps, αt = 10 and ∆ = 10000. Note that we
tried to avoid any kind of manual parameter tuning as this could be considered
a violation of the unsupervised character of our solution. Instead, we selected
reasonable parameters in advance and held them fixed for all of the experiments.

4.2 Comparison with the state of the art

We start with a direct comparison of our unsupervised model, with the supervised
state-of-the-art models DAPs [3] and Sparse-prop [1]. Figure 2 shows the AR-AN
curves for 50 and 100 average number of proposals per video.

Our model reports a higher AR when both 50 or 100 average number of
proposals per video are considered. Note that the average number of annota-
tions per video in the THUMOS-14 dataset is of just 15! So, this means we are
giving enough margin to the models. DAPs model starts to approach to our
performance (AR = 42.43) when we allow it to cast 100 proposals per video.
Interestingly, Figure 2b shows that our solution saturates at ∼ 70 proposals per
video maintaining an AR > 46. This saturation is mainly due to the cluster-
ing parameter δ used. Increasing this threshold will produce more (imprecise)
proposals.
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Fig. 3: Comparaison of the FBF with the state of the art using Precision-Recall
curves with different Intersection over Union thresholds. Our approach is able to
report the best Average Precision for most of them, being trained without any
supervision.

The next question that arises is: how precise are the action proposals? In
other words, are the AP methods casting action proposals in temporal localiza-
tions of the videos where there are actually actions occurring? For performing
this analysis, we show in Figure 3 the Precision-Recall curves for our FBF ap-
proach and for the rest of the state-of-the-art methods. As one might expect,
state-of-the-art models have been designed to maximize the recall, being their
precision low. Note that we have incrementally augmented from 0.1 to 0.5 (the
standard value for the object detection problem) the Intersection Over Union
overlap criterion used in the Precision-Recall formulation to consider a true pos-
itive. This means that for 0.1, for instance, an AP is considered a true positive
if the area of overlap between the predicted proposal and the ground truth an-
notation is at least of 10%. The higher this criterion, the more precise in terms
of temporal location the proposals should be to be considered as correct.

DAP offers a fixed AP of 2.5% for all the overlap criteria considered, which
means that the method is not able to report proposals with an overlap with
the ground-truth higher than 1%. We also observe that our approach is able to
report the highest Average Precision for most of the overlap criteria, all this in
an unsupervised fashion, while the rest of methods are supervised.

Overall, according to the experimental evaluation designed, using the two
metrics, the results show that our approach outperforms the supervised models
when the number of proposal is controlled (under 100). Finally, in Figure 4
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we show some qualitative results of the action proposals obtained by our FBF
method.

Fig. 4: Qualitative results. Set of action proposals discovered by our FBF model.
The illustrative example concerns the video number 62 of the THUMOS’14
dataset which contains two actions of “Long jump” category. The first one starts
from frame number 42 up to frame number 153. The second starts from frame
number 308 up to frame number 436. Note that our solution FBF + Fsize +
FRankPooling correctly covers the ground truth.

4.3 Ablation study

What is the performance of our clustering based solution when no filtering mech-
anism is used? Do implemented filtering mechanisms really help to increase ap-
proach recall? We conclude the experiments section with an ablation study where
we address these question.

Figure 5 shows the effects of the incorporation of the different filtering mech-
anisms in terms of AR. A first observation is that the FBF alone is able to report
a decent AR. This gives us confidence that such a clustering based approach is
an appropriate solution for the action proposals problem. In other words, one
can use deep learning features trained for object recognition to identify groups
of frames that belong to an action. Incorporating a filtering by size technique is
also beneficial, note how the AR increases for FBF+Fsize. However, the greatest
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improvement in terms of recall is achieved thanks to the filtering based on the
use of the described dynamics (+FRankPooling in Figure 5).

Fig. 5: Ablation study. This figure shows how the AR increases when we
incorporate to our clustering solution (FBF) the filtering step using the
size of the proposals (FBF+Fsize) and also the rank-pooling dynamics
(FBF+Fsize+FRankPooling).

5 Conclusion

To generate action proposals is a difficult task which has not been studied from
an unsupervised perspective. In this work we have presented the first attempt, to
the best of our knowledge, to cast action proposals in an unsupervised fashion.

For doing so, we have introduced an approach which jointly integrates an
online agglomerative clustering algorithm with a filtering mechanism that uses
the dynamics of the clusters as an actioness measurement.

Our experimental evaluation shows that our model is able to outperform
the average recall of supervised state-of-the-art approaches when the number
of proposals is limited for all the methods. We have also shown that although
our solution is unsupervised, the precision of the action proposals we generate is
better than for the fully supervised models. Finally, an ablation study confirms
our hypothesis and the adequateness of the designed approach.
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