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Abstract. Automatic segmentation from indoor images has several ap-
plications for mobile platforms. We address the problem of corridor seg-
mentation and propose an approach by combining floor and ceiling detec-
tion. However, different difficulties may limit the accuracy of the system.
To overcome these difficulties, a strategy is used in this paper to evaluate
the degree of consistency of ceiling and floor guidelines. The method is
based on computing the disparity between the hypothesized vanishing
points by intersecting the boundaries par-wise. The approach is evalu-
ated in a novel dataset. Our experimental validation confirms that the
integration of floor and ceiling detection with the consistency model per-
forms effectively and robustly. Because of the simplicity of the method,
the image processing is quite fast and robust.

Keywords: Semantic segmentation · Corridor structure · Vanishing point.

1 Introduction

In indoor environments mobile platforms have to navigate along corridors to
reach a room in order to perform a specific task. For this reason, the extraction
of visual information can provide rich knowledge. The importance of scene un-
derstanding is a core computer vision problem for robot navigation in corridors.
By inferring labels each pixel is associated with the class of its enclosing region
(floor, ceiling or wall). A fundamental part of the indoor segmentation process
is the floor detection step. However, several difficulties appear in visual floor
detection associated to common specular reflections. The reflections on the floor
may come from the ceiling lights, outdoor lighting from windows and doors, that
even make it difficult sometimes for a human observer to distinguish the floor
area. We tackle these problems as a challenge to propose a model based on the
complementary detection of the floor and the ceiling in order to ensure a valid
model for the corridor structure. How can we efficiently integrate both detections
into the model? This is the question we want to answer with this work.

In man-made environments, such as corridors, sets of parallel lines intersect at
points at infinity. Their projections in an image are called vanishing points (VPs).
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In this paper we use a priori knowledge about the 3D scene in the sense that
the corridor guidelines (wall-floor and wall-ceiling boundaries) intersect in the
image at the vanishing point, which is located somewhere along the horizon line.
Our objective is to estimate the common image intersection for the four corridor
guidelines. Due to the noisy detection the imaged boundaries will generally not
intersect in an unique point and the VP can be computed by intersecting the
boundaries par-wise. The disparity of these points is an indicator of the degree
of validation of the detected boundaries.

The paper is structured as follows. In Section 2, a review of related works
is introduced. Section 3 addresses our proposed method of detecting floor and
ceiling. Section 4 discusses an algorithm to verify the consistency of candidate
corridor guidelines. Section 5 demonstrates the experimental results with real
images and Section 6 draws the final conclusions about the research performed
in this paper.

2 Related Work

Existing literature contains several works on indoor floor segmentation based on
computer vision, which can be easily classified depending on whether they use
a purely appearance or geometric/homographic standpoint or those which com-
bine both. In those approaches based on appearance, multiple visual clues from
the environment are used for detection. In [1], a combination of color and gradi-
ent histograms to distinguish free navigable space is used. Due to over reliance
on color based descriptors, the approach fails in homogeneous environments.
A different approach in [2] uses a combination of vertical edges, thresholding
and segmentation to approximate the wall-floor boundaries and then classify
horizontal edges that lie on that boundary. This approach gives good results,
robustly dealing with specular reflection on floor which is common in indoor
environments. Nevertheless, it fails either when vertical edges are missed in the
lower half of the image or when side walls are close to the robot.

Different approaches based on geometry exploit the ground plane constraint
and focus on just finding the ground plane [3–6]. In [3], the motion between
two images is modeled by a homography constraint as a criterion for ground
plane detection. Optical flow is also used in [4] for ground plane detection. Both
researches [3, 4] used a monocular camera, while dense point correspondences re-
lied on stereo homographies in [5]. More recently, in [6] a combination of sparse
optical flow and planar homography for ground plane detection is used. Afore-
mentioned methods are computationally intense.

While purely appearance based approaches fail under homogeneity of ap-
pearance, geometric methods are robust enough at detecting features that de-
fine the floor. However, geometry based approaches need extra hints to segment
the boundary that include the floor features. The approach of [7], which applies
one of the methods that encompasses both geometry and appearance, is able
of developing geometrical reasoning by searching the best fitting model, which
is transformed into a full 3D model. Other interesting strategy [8] creates valid
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box layout hypotheses by using detected line segments and virtual rays from
orthogonal vanishing points. With the same approach of considering geometric
backgrounds to improve scene interpretation, a method for supporting relations
of indoor scenes from an RGBD (Red-Green-Blue-Depth) image is proposed in
[9].

Recently, more and more computer vision tasks such as image classification
have been solved by Convolutional Neural Network (CNN). As an example of
application to indoor environments, we can find the work of Hazirbas [10]. This
technique broadly surpasses other conventional approaches in terms of accuracy
but it usually needs more proccessing time and memory. Therefore, further effort
is required to explore new architectures in order to make semantic segmentation
more efficient.

3 Floor and ceiling detection

This section describes a completely automated process of floor and ceiling de-
tection in the image. The stages include detection of line segments, clustering
and detection of boundaries.

3.1 Detection of line segments

Edges convey essential information for distinguishing separations. The popu-
lar Canny detector is used for this purpose in this work. Probabilistic Hough
transform is then applied to the resulting edge image.

Unlike some previous work [2], which establishes an unique set of values for
parameters, the proposed line extraction consists of two detectors. If no lines are
extracted with the first detector, a new detection is applied with more flexible
conditions. The second detector focuses on no remarkable lines. We tune the
Canny threshold, t, in order to maintain a compromise between accuracy and
robustness to noises and outliers. As the value of this parameter decreases, no
remarkable lines can be detected but instead outliers may appear.The existence
of outliers provoke a major dispersion of crossing points between pairs of lines.
In figure 1 we plot the dispersion of crossing points and the percentage of images
without detection and as functions of the Canny threshold. In terms of compro-
mise, this parameter has been set to t1 = 30 for the first detector and t2 = 15
for the second one. By applying the above procedure, we obtain a set of line
segments L = {l1, l2, ..., lN} defined by their two endpoints.

Man-made environments include a lot of regularities due to their intrinsic
structure. Detected lines in corridor images can be grouped into three categories
regarding to the angle range: vertical lines, transversal lines and horizontal lines.
The last ones are discarded for our purpose. Vertical lines correspond, in gen-
eral, to walls boundaries such as doors and windows whereas transversal lines
identify, in general, wall-floor and wall-ceiling boundaries. The angle ranges have
been established by considering the appearance of imaged wall-floor and wall-
ceiling boundaries with the camera fixed at different heights from the ground.
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Fig. 1. The impact of Canny threshold on the accuracy of line detectors. We show (a)
the average dispersion of crossing points between pairs of lines and (b) the percentage
of images without detection as a function of the Canny threshold.

(a) (b)

Fig. 2. Line extraction and classification: vertical (green), floor (blue) and ceiling (red).

At this point the transversal lines are classified in four sets: Cl and Cr includes,
respectively, the line segments which correspond to potential left and right ceil-
ing boundaries whereas the sets Fl and Fr include, respectively, the potential
left and right floor boundaries. Figure 2 shows two examples of line detection,
where the color of each line represents its category. It is worth noting that, in
general, detected transversal lines include spurious edges. The sets Fl and Fr
may contain line segments as effect of reflections, shadows and tile joints. Beside
this, the sets Cl and Cr may include segments from the structure of the ceiling,
upper doorframes and ceiling lights.

3.2 Clustering

Once detected the meaningful line segments, an agglomerative clustering scheme
is used for each one of the four sets. Clustering is based on two features: slope and
bias of each segment. In order to compute the bias it is considered the intersect-
ing points of the detected segments with the borders of the image. Specifically,
intersections of floor segments with the bottom image border and, on the other
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(a) (b)

Fig. 3. Illustration of the clustering process where each cluster is depicted with a
different color.

hand, intersections of ceiling segments with the upper image border. Both fea-
tures slope and bias are integrated in a function to compute pairwise distances
between two clusters Cm and Cn as:

dCm,Cn
=

1

NCm

1

NCn

∑
i∈Cm

∑
j∈Cn

√(
∆θij
π

)2

+

(
∆xij

W

)2

(1)

where ∆θij is the angle difference between each pair of line segments li and lj
with range of values [−π, π], ∆xij is the X-coordinate step between intersection
points of li and lj with the image borders and W is the width of the image. The
parameters 1

NCm
and 1

NCn
are the number of points of Cm and Cn.

The two clusters with the smallest distance are merged in each iteration and
the operation is repeated until the distance dCm,Cn

between the two closest clus-
ters is larger than a certain threshold, which has been adjusted experimentally.
Thus, the final clusters C = {C1, C2, ..., CN} are obtained and each cluster Cj is
characterized by a prototype line tj . In order to compute each cluster prototype,
we give more relevance to longer lines. The slope and the bias of each tj are com-
puted as the weighted average of the segments of the cluster Cj . Figure 3 shows
the resulting clusters for two examples, where lines of each cluster are depicted
with the same color. The prototype lines of the different clusters become the
candidate floor and ceiling boundaries for the following stage (see Figure 4).

3.3 Detection of boundaries

Given a set of candidate boundaries {tj}Nj=1 generated by the clustering step,
the goal is to find a function which estimates the strength of each candidate. In
order to deal with this problem, it is proposed a weighted sum of scores based
on two individual visual aims for each prototype line ti of Fl and Fr:

φ(ti) = w1φ1(ti) + w2φ2(ti)) (2)
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(a) (b)

Fig. 4. Prototype lines and their intersection points with vertical lines.

where w1 and w2 are the weights and φ1 and φ2 are the individual scores which
we describe in the following items:

– Intersections with vertical lines (φ1). It is inspired by the fact that low end-
points of vertical lines delimit theoretically the floor boundaries in the im-
age. Thus, the algorithm favours transversal lines with a higher number of
intersections with vertical lines in the proximity of their low endpoints. As
intersections of transversal lines with vertical lines may extend beyond the
floor boundaries, due to reflections or shadows, a tolerance margin for inter-
sections needs to be defined.

– Length of the prototype line (φ2). Intuitively, very short line segments are
frequently noisy, hence, their contribution should be constrained by compari-
son with long segments. This score favours longer line segments as candidates
to floor boundaries.

In a similar way, the weighted sum of scores for the sets Cl and Cr introduces
an extra visual aim (φ3) corresponding to the maximum angle. The objective
of φ3 is to give more relevance to those line segments with higher slope. The
slope of ceiling boundaries in the image is higher than the corresponding to
those spurious line segments from upper doors or windows sides in the walls.
Figure 4 shows the prototype lines of the different clusters and their intersection
points with vertical lines. The output of this stage returns an array of weights
associated to each one of the four sets (Cl, Cr, Fl and Fr). Then, it can be
defined the boundary b as the candidate line whose weighted sum φ(tj) is the
highest among all candidates being also higher than certain threshold T :

b = t∗j = argmax
φ(tj)>T

(φ(tj)) . (3)

This process is applied independently for each one of the four sets Cl, Cr,
Fl and Fr. Then the left and right floor boundaries, denoted, respectively, as b1

and b2, and the left and right ceiling boundaries, denoted, respectively, as b3

and b4, are obtained. Figure 5 illustrates the four detected boundaries.
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(a) (b)

Fig. 5. Examples of detection of wall-floor and wall-ceiling boundaries.

4 Consistency of boundaries

Ideally, assuming perfect imaging condition and line segment extraction, parallel
lines should intersect at a dominant VP as is shown in Figure 6(a). However, in
the real world, there are pixel noise, image distortion, discretization errors, and
line segment extraction errors, which make the problem much more challenging.
In addition, an incorrect detection of floor and ceiling boundaries could cause
disparity over all possible VP locations (see Figure 6(b)). From the four bound-
aries b1,b2,b3,b4, we can compute the VP and use it for validating the floor
and ceiling boundaries. Each pair of boundaries bi and bj defines a hypothesis
VP as vij = bi×bj . Then, six VP estimations can be determined, denoting the
set as V = {v1,v2, ...,v6}.

It is proposed a new strategy which models the impact of an incorrect bound-
ary detection and is able to correct it. That is, the method detects whether one of
the four boundaries does not fit well to the candidate VP. The strategy is based
on building four partition sets {S1, S2, S3, S4}, where each one of them does not
take into account one of the four boundaries. Thus, we define S1 = {b2,b3,b4},
S2 = {b1,b3,b4}, S3 = {b1,b2,b4} and S4 = {b1,b2,b3}. For each one of the
four sets the algorithm determines three VP hypotheses for each pair of bound-
aries (see Figure 6(c)-6(f)). Let {d1, d2, d3, d4} be the sum of distances among the
three VP hypotheses associated respectively with the partitions {S1, S2, S3, S4}.
In case of having a boundary bj not parallel to the other ones, its impact is
included in all the partitions except in the partition Sj . Due to the method

relies on distances to identify the incorrect boundary, if all distances {di}4i=1

with i 6= j are greater than a fixed fraction of dj , the corresponding boundary
bj would be replaced by the prototype line with the second highest weighted
sum φ. We apply recursively the procedure until reaching a dominant VP. The
method ensures that the four boundaries that define the corridor structure are
parallel.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Hypothesis VP based on detected boundaries. (a) Example with parallel bound-
aries. (b) Example with a not parallel boundary respect to the remaining ones. (c)
Partition S1. (d) Partition S2. (d) Partition S3. (e) Partition S4.

5 Results

In order to check the performance of the proposed approach, we have generated a
test dataset from different locations within the Politechnic School of the Univer-
sity of Alcala. The dataset consists of 106 frames distributed in three sequences
through the corridors of the building. For the camera, a 1024x768 resolution is
selected.

Figure 7 shows the output results of some images from our dataset. Each
corridor image is segmented into four possible regions corresponding to floor,
ceiling and walls (left and right). Each one of these regions is enclosed by two
boundaries and represented by a polygon of three vertexes: the points in which
both boundaries intersects with the borders of the image and the vanishing
point. Different colors are used to identify these regions. The black point is the
detected vanishing point in which converge the four boundaries. We test the
algorithm under different conditions. Thus, Figure 7(e)-(f) shows the robustness
of the algorithm to changes of perspective. The performance of the system has
been tested with partial occlusions in presence of persons (Figure 6(g)-(h)). It
is noticeable that even when the ceiling-wall boundary is occluded partially,
the weight of the occluded boundary is even greater than the corresponding
to remaining candidates. Figure 7(m)-(n) includes two images with different
distances to the end of the corridor. In addition, we have tested the robustness
of the system to images captured with different camera heights and figure 7(m)-
(n) shows two examples. On the other hand, some isolated images in different
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 7. Output segmentation results (Best viewed in color): floor (red), ceiling (blue),
left wall (green) and right wall (orange). First and third rows are the original images.
Second and fourth rows are the output images. (a), (b), (e), (f) Different perspectives.
(c), (d), (g), (h) Occlusions of boundaries due to the presence of persons. (i), (j), (m),
(n) Different distances to the end of the corridor. (k), (l), (o), (p) Images captured
with different heights of the camera from the floor.
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environments, such as hospitals, have been tested with the same approach. Figure
8 illustrates some results.

When the robot is close to side walls (Figure 9(a)-(d)), the ceiling region is
reduced or does not exist in the image. It may cause errors as in Figure 9(e)-
(f)), where several guidelines are incorrectly detected. However, two criteria have
been established in order to validate the ceiling detection: 1) ceiling area in the
image must be more reduced than floor area and 2) ceiling boundaries must
extend to both sides of the vertical line that passes through the vanishing point.
If the ceiling detection does not follow one of both conditions, ceiling detection
is not valid. In these cases, the system only depicts the floor region, as we can
see in Figure 9(g)-(h).

In order to obtain quantitative results, we have labelled the ground truth of
floor and ceiling in the images of the dataset. For this purpose we have devel-
oped an application Python that allows to define manually the ceiling and floor
boundaries. In the test phase a mask is generated for each image by compar-
ison of both manual and automatic segmentation, as we can see in Figure 10.
Blue pixels represent those ones that were classified correctly, red correspond to
misclassified pixels and green are not detected pixels with respect to the ground
truth. On average, 93.3% of ceiling and floor pixels labelled manually were clas-
sified correctly in our dataset and only 4.15% of the pixels of the image were
incorrectly segmented.

All processing steps have been implemented in Python, making use of the
Numpy package and the OpenCV library. In order to decrease the processing
time, we have reduced the image size to 512×384 while keeping the same results
reported above. On an Intel Core i5-7500 CPU, the implementation takes only
30.78 ms on average per image.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Output segmentation results in different corridor environments. Top row: orig-
inal frames. Second row: segmentation results.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Examples of views close to side walls. Top row: original frames. Second row:
segmentation results.

(a) (b) (c)

Fig. 10. Example of segmentation mask. (a) Original image. (b) Segmentation. (c)
Output mask: correct segmentation (blue), incorrect segmentation (red), not detected
(green).

6 Conclusions

In this paper we have presented a corridor segmentation algorithm based on a
combined floor and ceiling detection. An important advantage over traditional
floor-based detectors is the fact that ceiling detection can help to correct floor
detection in some cases. The disparity of vanishing points hypotheses is used as
indicator of the degree of validation of the boundaries that define the corridor
structure. The quantitative experiments in a novel and challenging dataset are
conducted to validate the effectiveness of the proposed method.
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