
Towards Clear Evaluation of Robotic Visual
Semantic Navigation

Carlos Gutiérrez-Álvarez∗, Sergio Hernández-Garcı́a†, Nadia Nasri∗‡,
Alfredo Cuesta-Infante† and Roberto J. López-Sastre∗

∗University of Alcalá, Department of Signal Theory and Communications, Alcalá de Henares, Spain
Email: {carlos.gutierrezalva, nadia.nasri, robertoj.lopez}@uah.es

†Rey Juan Carlos University, Superior Polytechnic School of Computer Science, Móstoles, Spain
Email: {sergio.hernandez, alfredo.cuesta}@urjc.es

‡University of Alicante, Institute for Computer Research, Alicante, Spain

Abstract—In this paper we address the problem of visual
semantic navigation (VSN), in which a robot needs to navigate
through an environment to reach an object having only access to
egocentric RGB perception sensors. This is a recently explored
problem, where most of the approaches leverage last advances
in deep learning models for visual perception, combined with
reinforcement learning (RL) strategies. Nonetheless, after a
review of the literature, it is complicated to perform direct
comparisons between the different solutions. The main difficulties
lie in the fact that the navigation environments in which the
experimental metrics are reported are not accessible, and each
approach uses different RL libraries. In this paper, we release a
publicly available experimental setup for the VSN problem, with
the aim of providing a clear benchmark. It has been constructed
using pyRIL, an open source python library for RL, and two
navigation environments: Miniwolrd-Maze from gym-miniworld,
and one 3D scene from HM3D dataset using AI Habitat simulator.
We finally propose a state-of-the-art VSN model, consisting in a
Contrastive Language Image Pretraining (CLIP) visual encoder
plus a set of two recurrent neural networks for producing
the discrete navigation actions. This model is evaluated in the
proposed experimental setup, with a careful analysis of the
main VSN challenges, namely: the sparse rewards problem;
and the exploitation-exploration trade-off. Code is available at:
https://github.com/gramuah/vsn.

Index Terms—navigation, reinforcement learning, robot, deep
learning

I. INTRODUCTION

One of the most important tasks that humans perform in
their daily lives is semantic and goal-oriented navigation.
This ability to navigate like a human towards a target in
the environment is considered one of the “holy grail” goals
of intelligent robots. There are countless applications that
could be supported by a robotic platform with this capacity.
From assistive robots that can accompany a person to perform
a specific task, to platforms that navigate autonomously in
complex work environments, such as logistics centers.

In this work, we address the problem of visual semantic
navigation (VSN). The goal is to make a robot capable of
navigating through an environment to reach a particular object

This research was funded by projects: AIRPLANE, with reference
PID2019-104323RB-C31; EYEOT, with reference PID2021-128362OB-100;
and POLLUTWIN, with reference TED2021-129162B-C22 from the Ministry
of Science and Innovation of Spain.

Fig. 1: Can an agent pinpoint a target in a maze using a
visual semantic navigation (VSN) model based on state-of-
the-art RL and deep learning models? We explore and analyze
the solutions for the main challenges in VSN, i.e. unknown
environments, visibility of targets and path planning.

(the target) in the surroundings, such as a chair, mainly
using vision-based sensors. Technically, a VSN approach is
a learning-based navigation model, where no geometry-based
traditional techniques are applied. Nor the map of the envi-
ronment is known a priori, neither the map is built on the
fly. The majority of methods integrate reinforcement learning
(RL) techniques with current developments in deep learning
models for visual perception.

The main questions we want to address in this work are: Is
it possible to offer accurate experimental evaluation settings so
that different RL-based VSN models may be clearly compared
to one another?; What are the main challenges associated to
these RL-based VSN models? With respect to the former,
after reviewing the literature, we come to the conclusion that
it is difficult to make direct comparisons between the many
solutions provided. The key challenges are that the navigation
settings in which the experimental metrics are given are not
available, and that each technique employs a separate set of
RL libraries. With respect to the second question, three are the
main challenges that every VSN model needs to tackle. See
Figure 1.

https://github.com/gramuah/vsn

Is it possible for an agent to localize a target in a maze with
a VSN model based on state-of-the-art deep learning and RL
models? To begin with, it must be taken into consideration that
the environment is, or might be, unknown to the agent. In our
experiments, we expose our agent to different mazes. In this
situation, the robot would need to explore the environment to
learn more about it. Second, how does the agent deal with the
visibility of the targets? For a VSN model, the object we have
to navigate to may not be visible at the beginning or during
navigation. How does the agent learn a search strategy to find
the object in the maze? And third, even if the target is visible,
the robot must devise a feasible route to reach it.

The main contributions of our work are as follows:
1) We propose a VSN model which leverages state-of-

the-art Contrastive Language Image Pretraining (CLIP)
encoders [1]. Technically, we have designed a model that
combines a CLIP encoder with a set of two recurrent
neural networks for producing the discrete navigation
actions that our agent needs to take (Section III).

2) The agent is trained following a RL paradigm for
VSN. We propose to evaluate the impact of each of
the VSN challenges mentioned above, using different
techniques that have been proposed in the literature:
reward shaping [2], [3] to deal with the sparsity of
the reward signal naturally associated to the navigation
problem; and ε-greedy [4] as a mechanism to balance
exploitation and exploration.

3) We have designed a thorough experimental evaluation
setup (Section IV) with which we aim to offer a clear
experimental environment in which to compare differ-
ent VSN approaches. It has been implemented using
pyRIL [5], an open source python library for RL, and
two navigation environments: a maze navigation setup
of Miniwolrd-Maze from gym-miniworld [6]; and a
navigation through a 3D photorealistic scan indoor space
provided by HM3D dataset [7] in Habitat [8] simulator.
We release the codes to reproduce our experiments, as
well as the whole experimental setup, so that others can
compare their work with our results.

II. RELATED WORK

Visual Semantic Navigation. We can identify in the lit-
erature the following groups of works for the VSN problem,
depending on the learning paradigm. In the first group, there
are those works that focus on the task of navigating to an ob-
ject in realistic indoor environments, e.g. [3], [9]–[11], using
simulators and an agent based on CNNs as visual encoders
and RNNs as the actor-critic head, following a RL paradigm.
The second group consists of the works that address the VSN
problem using imitation learning [12], [13] to build navigation
policies from expert demonstrations. Finally, in the third set we
have the approaches using meta-learning techniques in order
to be able to quickly adapt to new environments [14]–[16].

Our work belongs to the first group. In fact, our proposal is a
simplification of the approach in [11], where we build a model
based on a CLIP feature extractor and two LSTMs encoders

for the agent state, introducing also reward shaping [3] and
ε-greedy [4].

Sparsity and exploration methods. To address the sparse
reward and exploration problems, different approaches have
been proposed. Auxiliary tasks [17], [18] help the agent to ex-
plore the environment and gather extrinsic reward by maximiz-
ing pseudo-reward functions. Curiosity-driven exploration [19]
leverages on the error of the agent’s ability to predict the next
state to introduce a new intrinsic reward that enables the agent
to explore the environment. When dealing with procedurally-
generated environments, a curriculum learning mechanism can
be incorporated so the episodes are ordered by an exploration
score [20], and then the agent imitates the best ones. We also
use procedurally-generated environments, but we rely on a
RL approach combined with reward shaping [21], [22] and
ε-greedy [4] techniques to learn to navigate in them.

III. RL FOR NAVIGATION

A. Problem Formulation

We address the VSN problem by using Reinforcement
Learning (RL). Thus, navigation can be described as a partially
observable Markov decision process (POMDP), in which the
agent, i.e. , a robot, navigates through an environment and tries
to reach a determined object. This problem is known in the
literature as the ObjectNav task [23].

Formally, given an initial observation distribution p0, for the
step t the agent receives an observation ot ∼ p0(o) based on
state st, which in our case is just an RGB image of what the
robot observes. The agent takes action at, obtains reward rt
from the environment and receives a new observation ot+1 =
T (ot+1|ot, at), where T is the transition function. An episode
is a sequence of (ot, at, rt) tuples that form a trajectory. The
episode ends when the agent reaches the goal or the maximum
number of steps (H). An episode is considered a success if
the agent reaches the goal within the step horizon H .

The goal is to find an optimal policy π∗ that maximizes
the cumulative reward over an episode. This policy maps
observations to a probability distribution over actions that is
specified as follows,

π∗ = argmax
π

ET ∼π[RH], (1)

where RH =
∑H
t=1 γ

t−1rt is the return, i.e. the cumulative
reward over an episode, and γ is a discount factor. In naviga-
tion tasks, neural networks with parameters θ are often used
to parameterize the policy πθ.

B. Visual Semantic Navigation

Learning to navigate in a given environment is a challenging
task. First, the reward signal coming from the environment is
usually sparse [2], [19]. These sparse rewards lead to a quite
difficult training process. Second, we need to find a balance
between the exploration and exploitation of the environment to
achieve successful experiences that drive the agent’s learning
process [2], [4]. Finally, the agent architecture has a direct

impact on how it learns. State-of-the-art approaches use a fea-
ture extractor followed by recurrent units to process temporal
information coming from the images.

Sparse rewards and long horizon. Sparse rewards are
a common issue due to the nature of the navigation tasks,
i.e. reaching a specific target in an environment. The most
straightforward way to define a reward in navigation problems
is to let the environment provide a fixed amount when the
agent reaches the goal. This means the agent has to face an
environment in which: 1) in the best case, most of the reward
signal is zero except for the step in which the agent reaches
the goal and obtains a certain amount of reward; and 2) if the
agent does not reach the target it does not receive any reward.
This situation worsens with large temporal horizons, because
the more steps, the higher the sparsity of the reward is.

To mitigate the sparse reward problem, we use a technique
called reward shaping. It consists in modifying the original
reward signal via incorporating domain knowledge. For navi-
gation, we leverage on the distance reward [3], defined as:

rt = −d(st, target) + d(st+1, target)− rs + rT , (2)

where d(st, target) computes the geodesic distance between
agent’s position at state st and target’s position. rT is the
terminal reward, a fixed amount given only when the agent
reaches the target and rs = 0.01 is the slack reward, also
a fixed amount that penalizes each step. The goal of the
distance reward function is to give a constant reward signal
to the agent that increases as the agent approaches the target.
In section IV-B we compare the distance reward against
what is usually referred to as the navigation reward, which
consists only of the slack reward and the terminal reward
rt = −rs + rT .

Exploration vs. Exploitation. As we have mentioned, the
exploration process has to be managed to encourage the agent
to choose actions that it would not otherwise select. To address
this issue, we leverage the technique known as ε-greedy [4].
This solution controls the action that is being selected by the
agent, usually during the learning process. Given an ε ∈ [0, 1],
an action at is selected as

at =

{
argmaxπθ with probability 1-ε,
rand(a) ∈ A with probability ε,

(3)

where A defines the action space. Typically, ε starts at 1 and
it decays with the iterations. In the beginning of the learning
process, i.e. when ε is high, random actions are sampled more
often, encouraging the agent to explore the environment. As
the training process advances, lower ε values permit the agent
to exploit the model knowledge to select the best action. This
introduces a balance between exploration and exploitation.

Agent architecture. We encode the agent as a parameter-
ized model consisting in a CLIP [11] visual encoder connected
to two actor-critic LSTMs that output a discrete distribution
over the action space and the value, respectively. A diagram
of the implemented agent can be found in figure 2. To train
the models, we use Proximal Policy Optimization (PPO) [24],
an on-policy RL algorithm.

 CLIP

Agent

Critic

Environment

60x80x3

1024

Frozen parameters Trainable parameters

Fig. 2: Model diagram. This figure contains a high level
representation of the model used: a visual encoder followed by
an actor-critic module encoded by LSTMs. The visual encoder
is frozen and we only train the actor-critic module.

IV. EXPERIMENTS

In our experiments, we aim to answer the following ques-
tions:

1) How does a state-of-the-art navigation model (CLIP +
LSTM + PPO) behave in a not-so-complex maze-based
environment? See section IV-B.

2) What is the real impact of reward shaping and ε-greedy
techniques on such a model? See section IV-B.

3) When faced with a more realistic robotic navigation
scenario, such as the one proposed with HM3D [7]
dataset scenes in Habitat [8], what is the performance
of the model under analysis?

4) Qualitatively, how does the model navigate through the
proposed environments?

5) Is it feasible to provide clear experimental comparison
environments to establish benchmarks between different
RL-based visual semantic navigation models?

A. Experimental setup

a) Navigation benchmarks: We conducted our main ex-
perimentation in the Miniwolrd-Maze environment from gym-
miniworld [6]. This is a minimalistic 3D interior environment
simulator for RL and robotics, where 3D mazes can be
procedurally generated. In this benchmark, the agent receives
an egocentric 3D view of the environment and has to navigate
to a red cube representing the target. A schematic top-view
representation can be found in figure 1. We propose two
configurations, Maze-S3 and Maze-S5, that correspond to
a 3 × 3 and 5 × 5 tiles maze environments, respectively.
The agent and the target are initialized in opposite corners
of the Maze, and in every episode, a new wall distribution
is randomly generated. The action space A consists of the
following actions: move forward, turn left, turn right.
To establish future comparisons with new navigation models in
this benchmark, we provide 100 procedurally generated mazes
and use them as a separate test set.

The second environment is AI Habitat [8], which allows for
the training of embodied AI agents, such as virtual robots, in a

highly photorealistic and efficient 3D simulator. This scenario
is particularly relevant because it will allow us to evaluate how
a robot would behave in a more realistic navigation scenario
than the one posed with the mazes. We use one 3D scene
from HM3D [7] dataset (see figure 8). We follow an oracle
stop configuration in Habitat, in which the environment is in
charge of telling the agent when to stop, so the action space A
consists of the following actions: move forward, turn left,
turn right, look up and look down.

As for the evaluation metrics, we evaluate the Maze models
using Success Rate (SR) and Steps Per Episode (SPE) metrics.
Additionally, for Habitat models we also employ Shortest Path
Length (SPL) and Distance To Goal (DTG). All these are
the standard metrics for the ObjectNav problem in Habitat
Challenge [23].

b) Implementation details: We leverage on the state-of-
the-art RL approach for embodied navigation in [11] with
some minor simplifications. As it is shown in figure 2, the
first part of our model consists in a pre-trained CLIP plus
RestNet50 module as feature extractor, which receives an RGB
image and produces a latent vector of size 1024. We then
compute the embeddings for the last 10 time steps and pass
them through an LSTM layer with 128 neurons. Finally, we
concatenate two hidden linear layers of 128 neurons with a
tanh unit for activation. Our agent has two separate networks,
one for the actor and one for the critic. Both networks share
the feature extractor. The output layer of the actor consists in
a linear layer of the same dimension as the number of actions
with a softmax function. The output layer of the critic consists
in a linear layer with one neuron and linear activation.

We use the PPO [24] agent provided by pyRIL rein-
forcement learning library [5]. This is a lightweight python
library which contains a collection of state-of-the-art deep
reinforcement and imitation learning methods, environment
wrappers, modularity and different prototyping options.

As our codes are publicly released, we provide a set of tools
to improve the reproducibility of RL experiments, with clear
and standardized evaluation protocols.

B. Miniworld-Maze results

First, we study how the state-of-the-art CLIP + LSTM
model behaves in the Miniworld-Maze environment. Learning
curves for Maze-S3 and Maze-S5 are shown in figure 3. These
learning curves correspond to our best model, i.e. , a model
trained with an ε-greedy strategy and distance reward (defined
in section III-B). We can observe how on Maze-S3 the agent
rapidly figures out how to resolve the maze in most cases, even
getting a good reward from the beginning. On the other hand,
Maze-S5 learning curve shows that it is a more challenging
scenario. The maze is bigger so the distance that the agent
has to travel in order to reach the target is larger, as well as
the number of paths to explore. This translates into a slower
learning curve that takes significantly more time to achieve its
peak reward.

We report the performance or our models in the proposed
test set in table I. We compare between two output strategies

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

2

4

6

R
ew

ar
d

S5 maze
S3 maze

Fig. 3: Learning curves for Maze-S3 and Maze-S5. These
curves show that the bigger the maze, the higher the complex-
ity. On Maze-S3 the agent already starts at the saturation value
around 6.5, but for Maze-S5 the agent needs more steps until
it reaches its peak reward around a value of 5.

of the model to generate the actions: 1) using ε-greedy with
ε = 0.2 during the evaluation; and 2) sampling an stochastic
action from the final layer weights of the agent as a probability
distribution. We also include a random agent as control case.
Both output options obtain the best results using ε-greedy
exploration in the two mazes. We explain this fact considering
how the ε-greedy exploration is treated during training. At the
beginning of the training process ε starts at a value of 1 and
is annealed until a final value of 0.2, the same value used for
evaluation. We can also see that our model achieves 3 times
more success in Maze-S3 than in Maze-S5. This indicates that
larger mazes are more challenging and need specific learning
mechanisms.

To study the impact of reward shaping and ε-greedy tech-
niques we perform an ablation study as shown in table II and
figure 4. The best results are obtained when distance reward
and ε-greedy techniques are combined, which demonstrates
that both components are important in order to navigate in
large environments. Note that this analysis is done in the S5
mazes. When only the distance reward technique is used,
its performance is not enough to make the agent navigate,
achieving only a 2% of success rate. On the other hand,
just using the ε-greedy strategy, the model achieves a better
performance by itself, indicating that in a Maze environment
it is key to explore to find the correct path to the target.

Figure 5 shows the importance of the ε-greedy technique.
When the agent reaches a corner near the target (red square),
it can get stuck and run out of steps (figure 5a), but using the
ε-greedy technique lets the agent to continue exploring.

C. Habitat results

Experiments in the Habitat benchmark enable us to assess
how an agent would act in a more realistic scenario than
the one presented by the mazes. The agent has to navigate
through the 3D scanned scene shown in figure 8. The agent is

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.00

0.05

0.10

0.15

0.20

Su
cc

es
s

S5 w/ sparse rew and no exploration
S5 w/ sparse rew and exploration
S5 w/ rew shaping and no exploration
S5 w/ rew shaping and exploration

Fig. 4: Ablation study on Maze-S5 during learning process.
Curves show that the best success rate is obtained using reward
shaping and exploration techniques.

Output type Maze Success SPE Reward

Ours + ε-greedy S3 0.75 ± 0.44 120.59 ± 111.85 6.80 ± 2.29
S5 0.18 ± 0.38 534.40 ± 130.20 5.24 ± 5.73

Ours + stochastic
S3 0.63 ± 0.49 127.42 ± 132.98 6.59 ± 2.41
S5 0.17 ± 0.38 521.39 ± 182.66 5.14 ± 5.70

random
S3 0.18 ± 0.39 278.04 ± 51.55 0.37 ± 3.66
S5 0.02 ± 0.14 596.07 ± 32.83 -2.09 ± 4.06

TABLE I: Evaluation performance for the best models on
100 test mazes. We compare the evaluation between using
ε-greedy with ε = 0.2 and using an stochastic output, i.e.
, sampling actions from the last layer of the agent. In both
mazes the best result is obtained with ε-greedy.

initialized from random positions, and aims to locate one of
the chairs present in the environment.

Figure 6 shows the reward obtained by the agent during the
training process. The first million steps correspond to an early
stage of exploration. Then, the reward quickly grows until the
agent behavior becomes stable after 3 million steps.

Table III shows a comparison between our best agent under
the same two different output options as in the previous
experiment (ε-greedy with ε = 0.2 and stochastic), and a
random agent as control case. Results show how the ε-greedy
approach reports a success rate of 96%, while the stochastic
output approach only reaches the target 73% of the times.

Figure 7 provides qualitative results for our agent. It shows
the final state (left image) and the top view with the agent’s
trajectory in blue. These figures clearly show how in both
cases a different valid goal is reached (the agent reaches two
different chairs) and how the ε-greedy strategy leads the agent

Reward function Exploration strategy Success SPE Reward

distance reward ε-greedy 0.18 ± 0.38 534.40 ± 130.20 5.24 ± 5.73
navigation reward ε-greedy 0.09 ± 0.29 575.86 ± 91.94 0.08 ± 0.26
distance reward No 0.02 ± 0.14 588.66 ± 79.78 -1.24 ± 4.18

navigation reward No 0.00 ± 0.00 600.00 ± 0.00 0.00 ± 0.00

TABLE II: Ablation study for S5 mazes on 100 test mazes.
The results show that the best performance is obtained when
distance reward and ε-greedy techniques are used.

(a) Failure case.

(b) Success case.

Fig. 5: Qualitative results for Miniworld-Maze agent. We
show agent final state and trajectory for a fail case (5a) and
a success case (5b). In the success case, ε-greedy forces the
agent to select a random action, thus exploring the environ-
ment, escaping the corner and finally reaching the target.

Output type Success SPL DTG SPE Reward

Ours + ε-greedy 0.96 ± 0.19 0.66± 0.25 0.25± 0.85 189.99 ± 116.97 4.96 ± 1.99
Ours + stochastic 0.73± 0.45 0.58± 0.36 0.63± 1.17 231.23± 188.13 3.52± 3.90

random 0.05± 0.22 0.02± 0.10 4.49± 1.72 495.50± 26.96 −4.68± 2.16

TABLE III: Best agent performance on 100 test episodes in
Habitat. The ε-greedy output mode reports the best results.

to do coarser movements.

V. CONCLUSIONS

In this paper, we offer a thorough experimental evaluation
setup for the VSN problem based on the open-source pyRIL
library and two navigation environments: Miniworld-Maze;
and a 3D scanned scene from HM3D database using Habitat
simulator. Following this proposal, we offer a detailed analysis

0 1 2 3 4 5
Steps 1e6

6

4

2

0

2

4

6

R
ew

ar
d

Fig. 6: Learning curve of Habitat experiment. This curve
shows how the agent starts with a sub-optimal policy, receiving
low rewards around −5. Then, the rewards increase until a
value around 5, once the agent gets an optimal policy.

(a) ε-greedy output.

(b) Stochastic output.

Fig. 7: Qualitative results for Habitat agent. Here we show
the agent final state and trajectory on the scene using ε-greedy
with ε = 0.2 (7a) and stochastic output (7b). Note that the
stochastic output produces a smother trajectory.

Fig. 8: Scene 00744-1S7LAXRdDqK from HM3D dataset.
Scene used for Habitat experiments.

of a state-of-the-art VSN model based on a CLIP feature
extractor and LSTMs encoders for the agent state, introducing
also reward shaping and ε-greedy techniques. Our results
confirm the impact of these techniques in both environments.
The models, data and codes are publicly available at https:
//github.com/gramuah/vsn to encourage much needed further
research on VSN.

REFERENCES

[1] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger, and I. Sutskever,
“Learning transferable visual models from natural language supervi-
sion,” in ICLR, vol. 139, 18–24 Jul 2021, pp. 8748–8763.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
second edition ed., ser. Adaptive Computation and Machine Learning
Series. Cambridge, Massachusetts: The MIT Press, 2018.

[3] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva,
and D. Batra, “DD-PPO: Learning Near-Perfect PointGoal Navigators
from 2.5 Billion Frames,” in ICLR, 2020.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: https://arxiv.org/abs/1312.5602

[5] S. Hernandez-Garcia, “pyril: Python reinforcement and imitation learn-
ing library,” https://github.com/SergioHdezG/pyRIL, 2022.

[6] M. Chevalier-Boisvert, “Miniworld: Minimalistic 3d environment for
rl and robotics research,” https://github.com/maximecb/gym-miniworld,
2018.

[7] S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets,
A. Clegg, J. Turner, E. Undersander, W. Galuba, A. Westbury, A. Chang,
M. Savva, Y. Zhao, and D. Batra, “Habitat-Matterport 3D Dataset
(HM3D): 1000 Large-scale 3D Environments for Embodied AI,”
NeurIPS, 2021.

[8] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. Turner,
N. Maestre, M. Mukadam, D. Chaplot, O. Maksymets, A. Gokaslan,
V. Vondrus, S. Dharur, F. Meier, W. Galuba, A. Chang, Z. Kira,
V. Koltun, J. Malik, M. Savva, and D. Batra, “Habitat 2.0: Training
Home Assistants to Rearrange their Habitat,” in NeurIPS, 2021.

[9] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven Visual Navigation in Indoor Scenes using
Deep Reinforcement Learning,” in ICLR, 2017.

[10] M. Chang, A. Gupta, and S. Gupta, “Semantic Visual Navigation by
Watching Youtube Videos,” in NeurIPS, 2020.

[11] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi, “Simple but
Effective: CLIP Embeddings for Embodied AI,” in CVPR, 2022, p. 10.

[12] Q. Wu, X. Gong, K. Xu, D. Manocha, J. Dong, and J. Wang, “Towards
target-driven visual navigation in indoor scenes via generative imitation
learning,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 175–
182, 2020.

[13] R. Ramrakhya, E. Undersander, D. Batra, and A. Das, “Habitat-Web:
Learning Embodied Object-Search Strategies from Human Demonstra-
tions at Scale,” in CVPR. New Orleans, LA, USA: IEEE, Jun. 2022,
pp. 5163–5173.

[14] J. X. Wang, Z. Kurth-Nelson, D. Tirumala, H. Soyer, J. Z. Leibo,
R. Munos, C. Blundell, D. Kumaran, and M. Botvinick, “Learning to
reinforcement learn,” arXiv:1611.05763 [cs, stat], Jan. 2017.

[15] M. Wortsman, K. Ehsani, M. Rastegari, A. Farhadi, and R. Mottaghi,
“Learning to Learn How to Learn: Self-Adaptive Visual Navigation
Using Meta-Learning,” CVPR, pp. 6743–6752, 2019.

[16] S. Zhang, W. Li, X. Song, Y. Bai, and S. Jiang, “Generative meta-
adversarial network for unseen object navigation,” in ECCV, Cham,
2022, pp. 301–320.

[17] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” in ICLR, 2017.

[18] J. Ye, D. Batra, A. Das, and E. Wijmans, “Auxiliary tasks and exploration
enable ObjectGoal navigation,” in ICCV, Oct. 2021, pp. 16 117–16 126.

[19] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in ICML, vol. 70, 2017, pp.
2778–2787.

[20] D. Zha, W. Ma, L. Yuan, X. Hu, and J. Liu, “Rank the Episodes: A Sim-
ple Approach for Exploration in Procedurally-Generated Environments,”
in ICLR, Sep. 2020.

[21] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICLR,
1999, pp. 278–287.

[22] C. Jestel, H. Surmann, J. Stenzel, O. Urbann, and M. Brehler, “Obtaining
robust control and navigation policies for multi-robot navigation via deep
reinforcement learning,” in ICARA, 2021, pp. 48–54.

[23] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi,
M. Savva, A. Toshev, and E. Wijmans, “ObjectNav Revisited: On Evalu-
ation of Embodied Agents Navigating to Objects,” in arXiv:2006.13171,
2020.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” arXiv:1707.06347 [cs],
Aug. 2017.

https://github.com/gramuah/vsn
https://github.com/gramuah/vsn
https://arxiv.org/abs/1312.5602
https://github.com/SergioHdezG/pyRIL
https://github.com/maximecb/gym-miniworld

	Introduction
	Related work
	RL For Navigation
	Problem Formulation
	Visual Semantic Navigation

	Experiments
	Experimental setup
	Miniworld-Maze results
	Habitat results

	Conclusions
	References

