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Abstract— Is it possible to train navigation agents from
just human demonstrations? We show this possibility via
OffNav framework, an offline reinforcement learning algorithm
implemented for visual semantic navigation. We provide a small
analysis of its performance on HM3D dataset [1]. We design
five experimental setups with incremental difficulty to evaluate
the trained policy. We compare our results with the state-of-
the-art model PIRLNAV [2], based on behavior cloning. The
results show an 8.69% of absolute improvement in the success
rate for OffNav agent against PirlNav baseline agent in the
most challenging scenario.

I. INTRODUCTION

The task of delivering Visual Semantic Navigation (VSN)
capabilities to real robots in the real world is still a challenge.
To teach robots how to navigate in indoor environments, the
VSN community has been using online reinforcement learn-
ing (RL) algorithms, which require querying environments to
learn. This is a problem because querying real environments
is expensive and time-consuming, and querying simulated
environments is not always a good proxy for real-world
performance. Offline RL [3] can be a solution to these chal-
lenges by learning policies from a fixed dataset consisting in
human demonstrations and their associated reward signals.
Therefore, in this work, we propose a novel approach to
train VSN agents without ever querying an environment, by
leveraging on the Offline RL paradigm. We call this approach
Offline Visual Semantic Navigation (OffNav).

Technically, we have implemented Implicit Q-Learning
(IQL) [4] offline RL algorithm using the decentralized dis-
tributed philosophy of DD-PPO [5] to create DD-IQL, a
decentralized distributed version of IQL. Our DD-IQL is
trained against a fixed dataset containing thousands of human
navigation experiences [2]. As depicted in Figure 1, we
propose the OffNav approach, capable of efficiently learning
the navigation policy required by a VSN agent from human
demonstrations. Subsequently, these policies can be deployed
across various scenarios, and if necessary, further refined
through online RL for more specific tasks.

To demonstrate the capabilities of our implementation,
we carried out a small analysis of its performance using
different environments from HM3D dataset [1]. Preliminary
results shows that our DD-IQL implementation is able to
learn navigation policies effectively. To the best of our
knowledge, this is the first time that an offline RL algorithm
is implemented for VSN and large environments, predicting
actions directly from raw input observations.
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Fig. 1: By leveraging on the offline reinforcement learning
paradigm, we can train agents from a fixed dataset of nav-
igation experience, without querying any environment. This
opens the possibility to create many navigation datasets from
any navigation agent in any real or simulated environment,
and then use them to train new agents for different scenarios
without the need to ever query that environment.

II. OFFLINE VISUAL SEMANTIC NAVIGATION

In this work, we study OBJECTNAV navigation [6], a setup
in which an agent is asked to navigate to a target object in
an environment. To perform this task, the agent does it using
only egocentric perceptions. Specifically, the agent receives
RGB images and GPS+Compass information that provides
the agent with the current position and orientation relative
to the starting point. The set of movements is discrete and
consists of the following actions: TURN LEFT, TURN RIGHT,
MOVE FORWARD, LOOK UP, LOOK DOWN and STOP. If the
agent spawns the STOP action within 1m Euclidean distance
respect to the target object within a 500 steps time limit,
the episode is considered successful. In the other case, it
is considered a failure. The success rate (SR) is measured
by averaging the success over all the episodes present in an
evaluation set.

Since we are on an offline RL setup, we need a previously
collected dataset of navigation experience. The dataset that
we chose is collected in [2]. It consists of 77k episodes of
human navigation trajectories using the HM3D [1] dataset.

We train our policies using our DD-IQL implementation
on the human demonstrations. The objetive is to find a policy
with optimal parameters ϕ∗ that maximizes the expected



return from the dataset. To do so, the IQL algorithm relies
on the use of expectile regression to modify a temporal-
difference (TD) loss. This modified TD loss is able to learn
an approximate Q-function from the dataset actions. This
Q-function does not explicitly represent the corresponding
policy, so a separate policy extraction step is needed. For
policy extraction, we use advantage-weighted regression [7],
[8]:

Lπ(ϕ) = E(s,a)∼D
[
exp

(
β
(
Qθ̂(s, a)− Vψ(s)

))
log πϕ(a|s)

]
,

(1)
where β ∈ [0,∞) controls the trade-off between cloning

the expert policy and maximizing the Q-function. This loss
can be seen as a selection of most optimal actions to clone
in the dataset. We also employ inflection weighting [9] to
modify the loss function, thereby giving more importance to
those time steps where there is a change in actions.

For the policy architecture, we use a simple CNN+RNN
model from [2]. The difference is that we use ResNet18 for
the visual encoders. We copy the same architecture for the
policy net, the Q net and the Q target net. For the V net, we
only use the visual encoder and a single linear layer, without
any recurrent module.

III. EXPERIMENTS AND RESULTS

Is an offline RL algorithm able to learn navigation policies
effectively? To answer this question, we have trained our
DD-IQL model using the expert demonstrations on five dif-
ferent experimental setups. These setups have been designed
with an incremental difficulty. The first three are evaluated
on the same environments in which the agents were trained,
while the last two are evaluated on different environments.
The details of the setups are depicted on figure 2.

We compare our results with the current state-of-the-
art model PirlNav [2]. This model is based on a two-
phase training schedule. The first phase is a supervised
learning phase, where the model is trained using behavior
cloning on the expert demonstrations. The second phase is a
reinforcement learning phase, where the model is fine-tuned
using DD-PPO algorithm [5]. For a fair comparison, we train
the PirlNav agent using only the behavior cloning phase on
the same setups as our OffNav model.

Results are shown on table I. It can be seen that both
methods obtain similar performance on setups 1 to 3. Offnav
method outperforms PirlNav on setup 2, while PirlNav
outperforms OffNav on setup 3, and both of them obtain
100% SR on setup 1. When evaluated on setup 4, PirlNav
outperforms OffNav by 2.27% absolute points. However,
on setup 5, the most challenging one, OffNav outperforms
PirlNav by 8.69% absolute points.

IV. CONCLUSIONS AND FUTURE WORK

From the results obtained in the experiments, we can
conclude that the proposed OffNav method is able to learn
navigation policies effectively from human demonstrations.
It can also be seen that the method is able to generalize
to unseen environments, as shown in setups 4 and 5, and

Experimental Setup OffNav PirlNav

SETUP 1 100% 100%
SETUP 2 79.31% 72.50%
SETUP 3 75.78% 77.63%
SETUP 4 25.00% 27.27%
SETUP 5 34.78% 26,09%

TABLE I: Success Rate for OffNav and PirlNav methods on
the five experimental setups.

➤ Setup 1

➤ Setup 2

➤ Setup 3

➤ Setup 4

➤ Setup 5

1 environment
80% training episodes
20% testing episodes

2 environments
80% training episodes
20% testing episodes

10 environments
80% training episodes
20% testing episodes

10 training envs
1 testing env

10 training envs
2 testing envs
(minival)
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Fig. 2: Five experimental setups designed with an incremen-
tal difficulty.

outperform the state-of-the-art model PirlNav [2] in the
most challenging one. Future work will focus on training
the policy with more diverse environments to improve its
generalization capabilities and further extend this analysis.
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