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A B S T R A C T

In this paper, we present a new algorithm for the computation of the focus of expansion in a video sequence.
Although several algorithms have been proposed in the literature for its computation, almost all of them
are based on the optical flow vectors between a pair of consecutive frames, so being very sensitive to noise,
optical flow errors and camera vibrations. Our algorithm is based on the computation of the vanishing point
of point trajectories, thus integrating information for more than two consecutive frames. It can improve
performance in the presence of erroneous correspondences and occlusions in the field of view of the camera.
The algorithm has been tested with virtual sequences generated with Blender, as well as some real
sequences from both, the public KITTI benchmark, and a number of challenging video sequences also
proposed in this paper. For comparison purposes, some algorithms from the literature have also been imple-
mented. The results show that the algorithm has proven to be very robust, outperforming the compared
algorithms, specially in outdoor scenes, where the lack of texture can make optical flow algorithms yield
inaccurate results. Timing evaluation proves that the proposed algorithm can reach up to 15fps, showing its
suitability for real-time applications.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When a camera moves across a rigid scene, the apparent motion
of the imaged points can be used to infer the relative shift of the
camera with respect to the scene. For the general case, the problem
consists in the computation of the translational and rotational vec-
tors, and is called ego-motion [1]. The computation of ego-motion
plays an important role in some vision systems, such as Visual
Odometry, 3D reconstruction, time-to-impact estimation or obstacle
detection and avoidance.

When the rotational component is null, that is, the camera moves
in a straight line, the problem reduces to the computation of the
translational vector, and the image of this vector on the image plane
is called the Focus of Expansion (FoE) when the camera moves for-
wards, or the Focus of Contraction (FoC) when it moves backwards,
see Fig. 1. Although FoE and FoC refer to opposite directions, their
properties are very similar, and we will only refer to the former,
recalling that the differences in the computation of the later are
minimal.

� This paper has been recommended for acceptance by Cornelia M Fermuller.
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For its computation, many algorithms have been proposed. In
the classic approach, the focus of expansion is computed from the
optical flow field between two time-varying frames, which can be
obtained from several algorithms [2]. However, technical challenges
still exist for general scenes. Typical inaccuracies raise in uncon-
strained environments, such as road scenes where a large proportion
of the image appears untextured, for instance, the sky or a tex-
tureless pavement, and optical flow vectors for these areas do not
exist or are erroneous. Another source of error can be caused by
vibrating platforms. Although many vision benchmarks are avail-
able for research, such as the KITTI Benchmark [3] or the CMU Visual
Localization Data Set [4], these sequences are recorded with com-
plex camera setups to prevent such problems. For more basic setups,
however, any instability can cause the FoE computation to decrease
its accuracy.

To face these problems, we propose a new method based on the
estimation of the vanishing point for multi-frame interest point tra-
jectories. The paper is structured as follows: In Section 2, a brief
overview of different FoE estimation approaches is provided. In
Section 3 we introduce our algorithm for the FoE computation based
on the trajectories of interest points. A comparison of our algorithm
with other works is given in Section 4, while Section 5 concludes the
paper.
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2. Related works

Existing techniques to estimate the FoE can be grouped into two
main approaches, namely the continuous methods and the discrete
methods. Algorithms from the continuous group employ dense opti-
cal flow fields, as in [5–7]. In [8], Sazbon et al. recall that, for a
camera moving in a rigid scene, the FoE is characterized by a null
flow vector, with the optical flow field radially diverging from it.
Thus, only the angular component is enough for the estimation of
the FoE, ignoring the magnitude component of the optical flow field.
In their work, it is proposed the use of a specially designed matched
filter which can work with a low-quality estimation of the optical
flow. The matched filter is used to refine the FoE location after a
rough estimation in a first phase. However, the algorithm proposed
in this work requires that the flow estimation strongly covers the
area near the FoE, but this is not generally the case for general video
sequences.

The main disadvantage of continuous methods is that dense opti-
cal flow is computationally expensive. Furthermore, scenes with
lack of texture on a large proportion of the image can yield inaccu-
rate results, since optical flow fields for these areas are likely to be
erroneous. To solve these problems, discrete methods use stronger
correspondences between image features, such as points or lines,
that can be computed from sparse optical flow algorithms.

If several correspondences between points from two consecutive
frames are available, the Fundamental Matrix F can be computed,
and the FoE will correspond with the null-vector of F [9] (p. 245).
Being the basic approach for the FoE estimation, the Fundamental
Matrix is very inaccurate, and has not been widely used. In [10],
the essential matrix is used instead. However, the results show that
the iterative Levenberg–Marquardt algorithm is needed to improve
results from linear algorithms, increasing thus the computational
complexity.

Another approach consists in the computation of the intersection
point of all the lines defined by the optical flow vectors. Since noise
makes all the lines not intersecting at the same point, a minimization
criterion is needed. In [11], Suhr et al. accumulate the lines defined
by the optical flow. After it, the largest peak would correspond with
the required FoE. In [12] Wu et al. compare different minimization
criteria, more specifically, the algebraic method, which is a linear
problem, and the geometric method, which is non-linear and numer-
ically more expensive. It is worth noting here that, for the geometric
method, the Cross Ratio, which is the main tool used in our work, is
also employed there, although in a fundamentally different way. In
their work, it is employed to generate the so called inherent constrains
between a pair of points in two consecutive frames. If the inherit
constrain fails, that is, the Cross Ratio does not hold, the two corre-
sponding pair can not be considered as true correspondences, and are
eliminated from the FoE computation.

In [13], Bak et al. define the C-Velocity over a planar surface
imaged by a camera. When the plane is aligned with the image axis,
the optical flow vectors on the plane can be used to estimate the FoE.
Although simple, this method can only be used when actual planes
are present in the image. For that reason, the use of the algorithm is
limited to urban scenes, where planar facades and the road can be
used as planes to compute the C-Velocity. In [14], Born projects the
optical flow vectors onto the horizontal and vertical axis. These com-
ponents form a line and the point of intersection with the image axis
is the required FoE. A linear regression is needed to compute the line
parameters.

Although discrete methods have been usually preferred over con-
tinuous ones, these methods also show some disadvantages. On the
one hand, finding strong features and correspondences can be a dif-
ficult task, and sometimes it could not be present in the scene.
Furthermore, these methods are normally less robust because they
use local instead of global information.

Fig. 1. Focus of expansion of a translating camera. The center of projection is located
in C0 at t = t0, and moves to C1 at t = t1 with velocity V = (Vx , Vy , Vz)T. A static
point P = (Px , Py , Pz)T is projected to p0 and p1 at t0 and t1 respectively. The focus of
expansion is the image of the vector V.

An alternative way to compute the FoE is by means of algorithms
that compute the 3D camera motion, which are normally referred to
as Visual Odometry (VO) systems. In this case, the goal is the compu-
tation of both the rotational matrix R and the translational vector v,
such that the relation between camera positions at two consecutive
frames is [15]:

T =
(

R v
0T 1

)
. (1)

When the camera motion is a pure translation, R reduces to the
identity matrix, and the image of the vector v is the FoE, as was
shown in Fig. 1. In these systems, for the computation of R and
v, typically the Essential Matrix E is first computed from a set of
correspondences between two consecutive frames. The relationship
between those elements is given by:

E = [t]×R (2)

where [t]× is the matrix representation of the Cross Product with
t. Thus, the computation of the Essential Matrix is a fundamental
step in these kind of systems. Many works have been proposed in
the VO field. In [16], Forster et al. designed a VO system for Micro
Aerial Vehicles (MAVs) using a downward-looking camera. Although
it shows accurate results, it is mainly designed for planar surfaces. In
the work by Geiger et al. [17], R and t is computed by iterative mini-
mization, using the Gauss–Newton algorithm, of the projection error
of the detected points to the image planes. On top of that procedure,
a standard Kalman Filter is used to improve the estimations.

It is worth noting that typically such VO systems are not only
designed for motion estimation, but these systems are also able
to simultaneously perform a 3D reconstruction of the scenario,
a technique called Simultaneous Localization and Mapping (SLAM).
Nonetheless, we are only interested in the motion estimation block.

As we will see in Section 4, some of these algorithms have been
implemented (or downloaded from the paper web page if available),
along with the algorithm proposed in this paper, for comparison pur-
poses. For this task, we have employed both, virtual video sequences
generated with Blender1 and a series of challenging video sequences
recorded with an on-board camera mounted on a vehicle.

1 http://www.blender.org/.

http://www.blender.org/
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(a) Original frame. (b) Points detected at four different scales.

Fig. 2. Performance of the Multi-scale Harris Interest Point Detector.

3. System overview

The proposed system can be divided into two main blocks. The
first block takes the video sequence as input and continuously
extracts Point Trajectories by means of the Optical Flow computation
for the Interest Points detected in the image, as will be described in
Section 3.1. At this stage, each point trajectory will correspond with
the track, relative to the camera motion, of a given point in the scene.

In the second block, each trajectory is projected into its vanishing
point by means of the Cross Ratio property. This allows the system
to compute the focus of expansion of the video sequence, as will be
seen in Section 3.2.

3.1. Interest Point Trajectories

The main goal of the first block is the computation of trajecto-
ries for points belonging to the static scene. To accomplish this task,
the block is based on two internal algorithms, Interest Point detection
and Optical Flow computation. For the detection of the Interest Points
many point detectors have been defined in the literature, in [18] a
complete overview can be found. In our case, we have used one of
the more classic, yet efficient detectors, the Harris Detector, proposed
in [19]. In Fig. 2 we can see a visual example of the performance of
the detector. In (a), the original frame of a video sequence is shown.
In (b), we can see the output of the Harris Detector applied to that
frame at different scales. The points are drawn with circles, centered
at the point’s coordinates, and whose radius is related to the scale at

which the point was detected. In this case, only four scales were con-
sidered (full resolution, half resolution, one-fourth and one-eighth),
although other scales could be used.

Once the Interest Points have been detected, the next step is
the estimation of the motion for each point between two consec-
utive frames. One of the more common techniques for this task is
the Optical Flow. Among the available Optical Flow algorithms, one
of the most efficient implementations is the classical Lucas–Kanade
method [20], which is the one used in our system. In Fig. 3 (a) we
can see an example of the output of the optical flow block for the
frame shown in Fig. 2. Note the inaccuracy of the results when work-
ing with outdoor images, which makes, as we will see in Section 4,
decrease the performance of the algorithms based exclusively in
optical flow vectors.

The last step of this block is the computation of the point tra-
jectories. Point trajectories are constructed linking together the con-
secutive segments corresponding to the motion vectors computed
for a particular point, until the point stops being visible to the cam-
era. Fig. 3 (b) shows an example of the trajectories extracted for a
given frame in a real scene. Recall that trajectories are generated
and destroyed continuously, and that this figure only shows alive
trajectories for the current frame.

3.2. Trajectory Projection

In this section, we will see how we can use the point trajectories
extracted by the previous block to compute the focus of expansion

(a) Lucas-Kanade optical flow computation
for the Interest Points shown in Fig. 2 (b).

(b) Extracted trajectories (best viewed in
color). The different colors are used only for
visualization purposes.

Fig. 3. Computation of point trajectories on real sequences. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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(a) A one dimension projective camera
moving with translational velocity v.

(b) Relative motion of a point x with
respect to the camera.

Fig. 4. One dimension geometry for a camera moving on a static scene.

for a given sequence. For simplicity, we will develop the explanation
for a 1 dimension camera moving in a 2D plane. The extrapolation for
a 3D scenario will be straightforward. The notation throughout this
section has been taken from [9] where possible. More specifically, we
will use the notation x to represent a one dimension point, while x
represents a two dimensions point, and X a three dimensions point,
all expressed in homogeneous coordinates.

Let suppose a one dimension camera c moving relative to a rigid
environment with translational velocity v = (vx, vy)T, as in Fig. 4 (a),
and a static point x. The camera will image this point to x0 at t = t0,
and x1 at t = t1. Then, the point will appear to move with respect
to the camera with velocity −v, and the focus of expansion xF will
be the vanishing point of the line described by this point, that is, the
image of the point at t = −∞, see Fig. 4 (b). Note that for a projec-
tive camera, the image of the point at t = −∞ is the same than the
image at t = ∞, and so, from now on, we will consider ±∞ indiffer-
ently. Next, we will see how we can compute the vanishing point of
a trajectory from a minimum of three points by means of the cross
ratio.

3.2.1. The Cross Ratio
The cross ratio is the basic projective invariant of IP1 [9](p. 45).

For a set of four collinear points, the cross ratio is defined as:

Cross(x ′
0, x ′

1, x ′
2, x ′

3) =

∣∣x ′
0x ′

1
∣∣ ∣∣x ′

2x ′
3
∣∣∣∣x ′

0x ′
2
∣∣ ∣∣x ′

1x ′
3
∣∣ , (3)

where the one dimension point x ′
i =

(
x ′

i1, x ′
i2

)T are expressed in
homogeneous coordinates, and:

∣∣xixj
∣∣ = det

[
xi1 xj1
xi2 xj2

]
= xi1xj2 − xi2xj1. (4)

In the projective one dimension camera in Fig. 5, the cross ratio
for the points imaged by the camera keeps constant, that is:

Cross(x0, x1, x2, x) = Cross(x ′
0, x ′

1, x ′
2, x ′

3). (5)

If we suppose a camera moving at constant velocity v, the trajec-
tory of a point x relative to the camera will draw a line, and x ′

i will
correspond to the position of the point at t = ti in that line. In this
situation, the vanishing point of this line is the image of the point at
t = ±∞. Considering, without loss of generality, |v| = 1, t0 = 0 and

x ′
0 = (0, 1)T, the homogeneous coordinates of the points in the line

at different times will be:

x ′
0 =

(
0
1

)
, x ′

1 =
(

t1

1

)
, x ′

2 =
(

t2

1

)
, x ′

3 =
(

1
0

)
(6)

where x ′
3 = (1, 0)T is an ideal point (the point for t = ±∞) on the

line. Substituting in Eq. (3):

Cross (x ′
0, x ′

1, x ′
2, x ′

3) =

∣∣∣∣ 0 t1

1 1

∣∣∣∣
∣∣∣∣ t2 1

1 0

∣∣∣∣∣∣∣∣ 0 t2

1 1

∣∣∣∣
∣∣∣∣ t1 1

1 0

∣∣∣∣
=

t1

t2
. (7)

Since the cross ratio keeps constant under any projective trans-
formation, given any three finite positions x0, x1 and x2, with xi =
(pi, 1)T, of a point at different instants in the image line of the
one dimension camera, the fourth position can be computed using
Eq. (7):

Cross (x0, x1, x2, x) =

∣∣∣∣ 0 p1

1 1

∣∣∣∣
∣∣∣∣ p2 p3

1 1

∣∣∣∣∣∣∣∣ 0 p2

1 1

∣∣∣∣
∣∣∣∣ p1 p3

1 1

∣∣∣∣
=

p1(p2 − p3)
p2(p1 − p3)

=
t1

t2
(8)

Fig. 5. Cross ratio for a set of four collinear points. As the relation between the points
{x ′

0, . . . x ′
3} and {x0 . . . x3} is a projective transformation, the cross ratio for both sets is

the same.
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where we have considered p0 = 0 for simplicity, that is, we have
set x0 the origin of coordinates for the image line, so that pi is the
distance from xi to x0. After a little computation, we have:

p3 =
p1p2(1 − k)

p1 − kp2
, (9)

where k = t1/t2. Since Eq. (7) was computed for the last point at
t = ∞, p3 will be the location of the vanishing point for the line
described by the point, that is, the searched focus of expansion, let’s
call this point p3 = pF. Finally, defining r = p1/p2:

pF = p2
r(1 − k)

r − k
, (10)

where pF is the distance from x0 to the vanishing point xF in the
image line of the one dimension camera. Generalization for a 3D
environment is straightforward. A 3D point X will be imaged by a
projective 2D camera to xi at t = ti. As long as the camera moves
at constant velocity V = (Vx, Vy, Vz)T, the trajectory described by the
imaged points xi will be a line, and the FoE again corresponds to the
vanishing point of this line.

3.2.2. Error sensitivity
In this section, we will check the sensitivity of the process to

errors in image measurements. Since the coordinates of trajectory
nodes correspond to interest point locations, we will assume that
measure errors are mainly due to errors in the Harris Detector, inde-
pendently of image coordinates. Let suppose that the absolute error
in the location of an interest point is Dx, and that errors for differ-
ent points are independent. When computing the vanishing point,
we need a set of three image points with its corresponding errors
Dx0, Dx1 and Dx2. Note that in Eq. (10), p2 is the Euclidean dis-
tance between x0 and x2, and so, the relative error for p2 can be
approximated to:

dp2 ≈ Dp2

p2
. (11)

Thus, the absolute error of the vanishing point with respect to p2
will be:

DpF =
∂pF

∂p2
Dp2 =

r(1 − k)
r − k

Dp2 =
pF

p2
Dp2, (12)

and its relative error:

dpF =
DpF

pF
=

Dp2

p2
, (13)

that is, the relative error decreases as the distance between x0 and
x2 increases. This result agrees with our intuitive notion that longer
trajectories are better for computation than shorter ones.

Next, we compute the sensitivity to the intermediate point x1

chosen, or more precisely, the ratio k = t1/t2. In this case, the
absolute error of pF with respect to k is:

DpF =
∂pF

∂k
Dk = p2

r(1 − r)
(r − k)2

Dk, (14)

and the relative error:

dpF =
DpF

pF
=

1 − r
(r − k)(1 − k)

Dk. (15)

From Eq. (10), we can solve for r:

r =
pFk

pF − p2(1 − k)
=

mk
m − 1 + k

, (16)

where m = pF/p2. Finally, substituting in Eq. (15):

dpF =
1 − mk

m−1+k(
mk

m−1+k − k
)

(1 − k)
Dk =

m − 1
k(1 − k)

Dk. (17)

Taking into account that 0 < k < 1, the relative error of pF with
respect to k have a minimum at k = 0.5, and the error tends to infin-
ity when k approaches 0 and 1, that is, when the point x1 is close to
either x0 or x2.

In brief, the relative error of the computed vanishing point
reduces as the value of p2, that is, the distance between the exterior
points x0 and x2, increases. Similarly, the relative error reaches the
minimum when k = t1/t2 = 0.5.

3.2.3. FoE extraction
From the previous discussion, we can assert that any point tra-

jectory belonging to a static point with at least three nodes can be
used to compute its vanishing point, and hence, the focus of expan-
sion of a video sequence. However, noise and processing errors can
make the point not drawing a straight line. For that reason, prior to
FoE computation, we need to choose the more appropriate trajecto-
ries for this task. To this end, for a given trajectory composed of n+1
nodes T = {x0, x1, . . . xn}, a line l = (l1, l2, l3)T is defined using the
first (x0 = {px

0, py
0}) and the last (xn = {px

n, py
n}) nodes (see Fig. 6), and

the mean geometric error for the rest of the nodes is computed:

e =
1

n − 1

n−1∑
i=1

l1px
i + l2py

i + l3√
l21 + l22

. (18)

Since, for a given frame, a number of trajectories from the video
sequence are available, the FoE can be computed as the weighted
mean of the vanishing point computed for each trajectory. The geo-
metric error computed in Eq. (18) will be used, along with other
parameters, to weight each computed point, as will be described in
Section 3.2.4, using Eq. (19). Nevertheless, a threshold the can be
set to prevent the system from computing the vanishing point for
unsuitable trajectories. If a given trajectory reaches that threshold,
the first point (the oldest one) is ignored, and a new geometric error
is computed, in this case with its n remaining nodes. The process
continues until either the geometric error is below this threshold or
the trajectory does not have enough nodes to compute its vanishing
point.

Once a set of n + 1 nodes is found to be suitable for the compu-
tation of its vanishing point following the process described before,
all the nodes are projected onto the line defined by the first and last

Fig. 6. Geometric error for a set of n+1 points and a line defined between the exterior
points x0 and xn .
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(a) Vanishing points computed for a given

frame (the gray level represents the weight-

ing value ω).

(b) Computed focus of expansion. The FoE

is represented as the meeting point of the

four lines drawn.

Fig. 7. Computation of the focus of expansion.

node, as in Fig. 6. At this point, n − 1 vanishing points can be com-
puted, using the first node as p0 (origin of coordinates of the line) in
Eq. (10), the last node as p2, and one of the n − 1 intermediate nodes
as p1. Furthermore, n−2 vanishing points can be computed using the
second, the last and one of the n − 2 intermediate nodes, and so on.
Note that computing more vanishing points using the penultimate
node as p2 is not needed, since that computation was performed in
the previous frame of the video sequence.

Thus, for a suitable trajectory of n + 1 nodes, we can compute
up to (n2 − n)/2 different vanishing points. To get a single vanishing
point for the trajectory, the centroid for all the points can be com-
puted. However, not all the possible point combinations have the
same sensitivity to measure errors when applying Eq. (10), as seen
before. To this end, we can weight each vanishing point, computing
its relative error with respect to the actual points employed in the
computation.

3.2.4. FoE computation
For a given frame, the FoE is computed as the weighted centroid

of all the vanishing points xF computed from all the available trajec-
tories. The weight for each vanishing point is computed, according to
previous discussion, as:

w = wd • wk • we, (19)

where wd = p2, wk = k(1 − k), and we = the − e, being e the geo-
metric error computed according to Eq. (18). In Fig. 7 (a) we can see
the cloud of points representing all the vanishing points computed

Table 1
Main parameters of the Blender project designed for the
rendering of the virtual video data set. We have considered
for distances 1 blender unit equal to 1 m, and a frame rate of
25 fps.

Image width 640 pixels

Image height 480 pixels
Horizontal field of view 49.13◦

Focal length 700 pixels
Scenario length 250 m
Sequence length 500 frames
Seq. duration 25 s

for all the available trajectories for the current frame shown in Fig. 3
(b). In this figure, the weighting value w is represented by its gray
level, with black points representing low values and white points
representing high values.

Finally, the focus of expansion can be computed as the weighted
centroid of all the vanishing points. However, to make the compu-
tation robust to outliers generated from erroneous trajectories, the
mean-shift algorithm is employed. Following the original algorithm
from Comaniciu [21], the mean shift vector m is computed using the
weighted vanishing points xi, according to:

m(i+1 =

∑N
i=1 xiwig

(∥∥∥∥ xi−x(i

h

∥∥∥∥
2
)

∑N
i=1 wig

(∥∥∥ xi−x(i

h

∥∥∥2
) − x(i, (20)

(a) (b) (c)

Fig. 8. Different views of the Blender 3D View window. (a): Orthogonal view, from the Z axis, of the rows of cubes before random rotation, scaling and shift. (b): Perspective view
of the generated tube. Note the camera placed at the start of the tube, drawn in orange. (c): The tube from the camera point of view. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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(a) α = 0 , β = 0 . (b) α = 20 , β = 0 . (c) α = 30 , β = 5 .° ° ° ° ° °

Fig. 9. Sample frames for sequences with different pan (a) and tilt (b) angles.

where x(i is the current FoE location for the ith iteration, and x(i+1 =
x(i + m(i+1. Also, g(x) is the derivate of the Kernel Profile as defined
in [21], where the profile employed was the Normal Kernel. Exper-
iments have shown that a number of 10 iterations is enough for
the convergence of the algorithm. For each frame, the initial value
x(0 is set to the computed FoE for the previous frame. For the first
time, however, it is set to the weighted centroid using all the avail-
able vanishing points. Recall that the first FoE can only be computed
when we have at least one trajectory with three nodes. Fig. 7 (b)
shows the focus of expansion computed for a real scene. Note how
the FoE has been located at the vanishing point of the road, proving
the applicability of the proposed algorithm.

4. Results and discussion

In order to test the algorithm described in this paper, the pro-
posed system has been implemented in Java.2 For the Harris Detector
and the Lucas–Kanade algorithm, we employed the implementations
available in the OpenCV 2.4.8 library. For comparison purposes, the
following algorithms have been used:

1. Trajectory Projections (TRP): This is the implementation of the
system described in this paper.

2. Flowfield Projections (FLP): Following the work described
in [14], the optical flow vectors are projected onto the image
axis, and a line is computed for each one. The FoE location is
the point of intersection of these lines with the image axis.

3. Intersection Point (IPG): In this case, the FoE is the intersection
point of all the lines defined by the optical flow vectors. Since
noise makes all the lines not meeting at the same point, a min-
imization criteria is needed. In this case, we use the Simplified
Geometric Algorithm (SGA), as described in [12].

4. Visual Odometry (VO): In order to give a reference between
algorithms that compute the FoE directly in the image plane
(TRP, FLP and IPG) and Visual Odometry algorithms, which
allows its computation from the translational vector, the work
proposed in [17] has been downloaded and included in the
comparison.

Although the original works based solely in optical flow vectors
(FLP and IPG) use the raw output of the Lucas–Kanade algorithm,
we improved their performance by constructing more accurate flow
vectors using two non-consecutive nodes of each trajectory. That is,

2 A Java application, and all the videos employed for testing can be downloaded
from http://agamenon.tsc.uah.es/Investigacion/gram/papers/FoE.

for an interval of N frames, flow vectors are constructed using tra-
jectory nodes at frames M and M − N for the computation of the FoE
in frame M. This way, flow vectors are more accurate and the FoE
is more stable. For the frame interval N, an exhaustive search was
performed, finally choosing a value of 5 frames. For the algorithm
proposed in this paper, however, this previous step is not required.

To compare the performance of these systems, we have designed
two different data sets. First, a virtual scenario has been built using
Blender 2.69 and Python scripting. In this case, camera parameters,
such as focal length, camera motion and orientation can be accu-
rately defined. The second data set is composed of several video
sequences recorded with an on-board camera.

4.1. Virtual video data set

Blender is a free and open source 3D creation suite. It allows
modeling and animation of 3D scenarios. In this case, we have
used Blender to create a simple scenario, and animate a camera to
simulate camera translations when rendering the video sequence.
More specifically, the scenario has been constructed with a series
of cubes forming a tube, and a camera moving inside it. Fig. 8 (a)
shows one row of this composition, with the camera in the mid-
dle, drawn in orange. The composition is extruded along the Z axis
to form the tube, and the camera will travel from the beginning
of the tube to its end. Furthermore, all the cubes are randomly
rotated, scaled and shifted from its initial position. Fig. 8 (b) shows
the final scenario, while Fig. 8 (c) displays it from the camera point
of view. Finally, the camera is animated and a video sequence is
rendered from that. Table 1 shows the main parameters of the

β

α

Fig. 10. Pan and tilt angles for a camera orientation.

http://agamenon.tsc.uah.es/Investigacion/gram/papers/FoE
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Fig. 11. Average Euclidean distance to the true FoE, in pixels, as a function of the pan angle (a) for different values of the tilt angle (b). For Panels (a), (c) and (e), the camera is
moving forwards, while for (b), (d) and (f) it moves backwards.

Blender project. The Python script designed for modeling and ren-
dering the whole data set can be downloaded from the project web
page.

In the first experiment, we tested the performance of the evalu-
ated algorithms to camera orientation while the camera is traveling
at constant speed inside the scenario. To this end, two key frames
are inserted at the beginning and end of the sequence, so that the
camera traverses the whole scenario. The sequences were generated
for different camera pan and tilt angles, and all the algorithms were

executed for all these sequences. Fig. 9 shows some sample frames
for different pan and tilt angles.

Note that the location of the FoE can be computed for a partic-
ular video sequence from the camera parameters. More specifically,
if a and b are the pan and tilt angles respectively for a particular
orientation of the camera, as shown in Fig. 10, the camera projection
matrix P will be:

P = K • (RY(a) • RX(b))−1 • [I|0] (21)
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Fig. 12. Error angle, in degrees, as a function of the pan angle (a) for different values of the tilt angle (b). For Panels (a), (c) and (e), the camera is moving forwards, while for (b),
(d) and (f) it moves backwards.

where RY is a matrix rotation around the Y axis, RX a matrix rotation
around the X axis, I is the 3 × 3 identity matrix and K is the camera
calibration matrix, that can be computed from the parameters given
in Table 1 (with zero skew and square pixels). Since the camera is
programmed to move along the Z axis, the translational vector v =
(0, 0, 1)T will be projected to the new camera as:

xFG = K • (RY(a) • RX(b))−1 • v (22)

where xFG is the Ground Truth FoE. After a little computation, we
get:

xFG = xc + f •
tana

cosb
yFG = yc + f • tanb (23)

where f is the focal length of the camera and pc = (xc, yc) are
the coordinates of the principal point of the camera (which in this
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(a) α = 0 , β = 0 . (b) α = 20 , β = 0 . (c) α = 30 , β = 5 .

Fig. 13. Sample results for sequences with different pan (a) and tilt (b) angles.

Fig. 14. Snapshot of the Blender Graph Editor showing the Z coordinate for the camera as a function of time, for a particular acceleration az . The initial velocity vz is computed to get
the camera located at the end of the tube in the last frame of the sequence. Note that, for some values of az , the initial velocity vz can make the camera move in opposite direction.

case is the image center). The evaluated parameters are the average
Euclidean distance to the true FoE, in pixels, and its corresponding
angle, in degrees, for the whole video sequence. For the computation
of the angle, we used the well known cosine formula:

cos h =
XFG

• XF

‖ XFG ‖ • ‖ XF ‖ (24)

where XFG =
(
xFG , yFG , f

)T is the 3D coordinates of the true FoE in the
Camera Coordinates System and XF = (xF, yF, f)T the estimated one.

In Fig. 13 some visual results of the performance of the proposed
algorithm are shown. On the other hand, a numerical comparison
between the algorithms evaluated is provided in Fig. 11. Panels (a)
and (b) show the average Euclidean distance to the true FoE in pix-
els as a function of the pan angle of the camera a, for a tilt angle
b equal to 0. Note that for pan angles between 90◦ and 180◦ the
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Fig. 16. Error angle, in degrees, as a function of the camera acceleration az , in m • s−2 for different values of the pan angle (a).

camera is looking backwards, and so, the Focus of Contraction is to be
computed, instead of the FoE. Furthermore, when the pan angle is
90◦, the image plane is parallel to the motion vector, and the FoE lies
at infinity. We found experimentally that for angles close to 90◦ none
of the algorithms yielded valid results. For those reasons, the whole
range of the pan angle has been divided into two different graphics,
one from 0◦ to 65◦, and the other from 115◦ to 180◦. Fig. 11 (c) and
(d) shows the same results for a tilt angle equal to 5◦, and (e) and (f)
for a tilt angle of 10◦.

As can be seen from these results, the algorithm based in Visual
Odometry (VO) yields poor results. This is obvious, because it is not
an algorithm designed for the computation of the FoE, although it can
be computed from its output. Nevertheless, it can serve for compar-
isons between VO and FoE algorithms. Likewise, the algorithm based
on Flowfield Projections (FLP) also yields inaccurate results. On the
other hand, the algorithm proposed in this paper (TRP) and the one
based on Intersection Point (IPG) perform similarly. The Euclidean
error increases for all the algorithms as the image plane of the cam-
era tends to be parallel to the motion vector, since the FoE tends to be
located far away from the image origin of coordinates. For that rea-
son, results are more meaningful if given in terms of the angle error.
Fig. 12 are the equivalent results, showing the angle error. In these
figures, it can easily be seen that for pan angles approaching 90◦, that
is, when the FoE lies outside the image plane, the proposed algorithm
performs better than the rest.

In Section 3.2.1, we assumed constant velocity for the camera. In
the next experiment, we will test the performance of the evaluated
systems to camera accelerations. To this end, using the same scenario
designed in the previous experiment, we programmed the camera to
move with an Uniformly Accelerated Motion, thus the camera center
will be located at:

C(t) = vt +
at2

2
(25)

where C(t) = (0, 0, z)T are the coordinates of the camera center of
projection, v = (0, 0, vz)T is the translation vector, and a = (0, 0, az)
its acceleration. Fig. 14 shows the camera location z in the Blender
Graph Editor for a particular value of az.

Fig. 15 (a) shows the average Euclidean distance to the true FoE
as a function of the camera acceleration, for a pan angle equal to 0◦
while Fig. 15 (b) for a pan angle equal to 30◦, and tilt angles equal to
0 in both cases. Fig. 16 (a) and (b) shows the same result in terms of
the error angle. Note that, from Table 1, the camera average speed is

12.5m • s−1. As can be seen, since the hypothesis of constant veloc-
ity does not hold for these sequences, the proposed algorithm does
not perform well, thus, showing a limitation of this algorithm. Com-
parisons have been performed only with the IPG algorithm, since the
other two algorithms yielded worse results.

4.2. Real video data set

To test the performance of the evaluated systems on real images,
a set of video sequences extracted from the KITTI benchmark, along
with some videos recorded with an on-board camera have been
used. For the last case, we employed a LG L40 and an iPhone 4
smart-phones installed in the windscreen of a vehicle using a stan-
dard windshield mount. In all the cases, the vehicle was driven on
a straight road at approximately constant speed, with the camera
pointing forwards. In this situation, the focus of expansion, as long as
the vehicle follows the road, is located on the vanishing point of the
road, as in Fig. 7, and can be easily annotated manually.

The set of videos includes different situations, from high textured
scenes, to very challenging, low textured ones. An overview of the
videos and their main characteristics are given in Table 2. In Fig. 17
an example for each group is given. For the scenes of the group 4, the
vanishing point of the road is not visible, and so the location of their
FoE has been annotated manually by projecting scene lines, like road
marks or the line defined by the street lamps.

Again, the evaluated parameters are the average Euclidean dis-
tance to the true FoE, in pixels, and its corresponding angle, for the
whole video sequence. For the KITTI benchmark, the horizontal angle
of view is close to 90◦ (see [22]). For the recorded videos, the hori-
zontal angle of view of the LG L40 back camera is approximately 52◦,
while for the iPhone 4, approximately 37◦.

Table 3 shows the average error, for the different video groups
and the different algorithms. As we can see, the method based on the
computation of the intersection point (IPG) performs similarly that

Table 2
Videos employed in the experiments. The Texture column refers to the average amount
of texture on the video frames. The column FoE location denotes whether the FoE is
located inside the image plane or not.

Texture FoE location # videos # frames

Group 1 Whole Inside 10 2103
Group 2 Half Inside 10 5491
Group 3 Minimal Inside 6 10,191
Group 4 Whole Outside 5 12,807
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(a) Group 1

(b) Group 2 (c) Group 3

(d) Group 4

Fig. 17. Sample frames for the different groups employed in the evaluation. For group 4, a graphical representation of the FoE annotation process is also given.

the algorithm proposed in this paper for the less challenging scenes
(group 1). On the other hand, the algorithm based on the Flowfield
Projections (FLP) performs worse. The VO algorithm has not been
included in this experiment, since most of the results yielded by the
algorithm were wrong.

Nevertheless, the IPG algorithm starts decreasing its performance
as the amount of image texture reduces, as can be seen in Table 3
for the videos of groups 2 and 3. For instance, group 3 is composed
of videos with texture mainly in the middle of the image, with a
textureless sky and road. In this situation, lines defined by the opti-
cal flow vectors tend to be horizontal, and the computation of the
intersection point of quasi-parallel lines becomes inaccurate. For the
proposed algorithm, on the other hand, the relative angles between
the trajectories is unimportant, since vanishing points are computed
independently.

Results get very inaccurate when the FoE is located outside the
field of view of the camera, as it is the case for the videos of the group

Table 3
Average error in pixels (and its corresponding angle in degrees) for the sequences
employed in the comparisons, for the four algorithms evaluated.

TRP IPG FLP

Overall 23 pixels (1.4◦) 31 pixels (3.5◦) 151 pixels (10.1◦)
Group 1 16 pixels (0.9◦) 18 pixels (1.1◦) 81 pixels (3.7◦)
Group 2 21 pixels (1.2◦) 28 pixels (1.7◦) 59 pixels (3.2◦)
Group 3 29 pixels (1.7◦) 39 pixels (2.5◦) 54 pixels (3.3◦)
Group 4 26 pixels (1.8◦) 122 pixels (10.3◦) 323 pixels (20.5◦)

4. In this case, only the proposed algorithm is able to locate the focus
of expansion correctly. In Fig. 18 some successful graphical results
are shown.

Finally, we evaluated the real-time applicability of the proposed
algorithm. In Table 4 we report the average computation time per
image, along with the individual times employed by each block.
Times were obtained by averaging the processing time for all the
videos. Since the videos for the KITTI benchmark and the new pro-
posed videos have different resolution, results are given separately.
Tests were run on an i5 32 bits at 3.2 GHz on a Linux Kernel 3.13.0.
As we can see, the proposed algorithm can reach up to 15 fps on a
800 × 480 pixels (WVGA) image resolution.

5. Conclusions and future work

In this paper, we have proposed a new algorithm for the compu-
tation of the focus of expansion for a video sequence. The algorithm
uses the trajectories of interest points to compute the vanishing
point for each trajectory, by means of the cross ratio property. A
number of challenging videos, both virtual ones generated with
Blender and real ones recorded with a smart phone, along with some
sequences of the public KITTI benchmark have been used to test the
algorithm. Results showed that the proposed algorithm can improve
the performance of classical algorithms for challenging sequences.
This is specially relevant for low textured scenes, for instance, traffic
sequences with textureless top (sky) and bottom (road), and for the
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Fig. 18. Sample results for different video sequences.

Table 4
Average time per image employed by the proposed algorithm, for different image
sizes.

Image size FoE Trajectories Total Frame rate
(pixels) (ms) (ms) (ms) (fps)

1226 × 370 4.34 78.15 82.49 12.12
800 × 480 8.22 56.59 64.81 15.43

cases where camera orientation with respect to the moving platform
makes the focus of expansion lie outside the image plane. Further-
more, a Java implementation of the proposed algorithm can reach up
to 15 fps on WVGA (800 × 480 pixels) video resolution, showing
its viability for real-time applications. Limitations of the proposed
algorithm arise when camera motion is not constant. Thus, when
camera acceleration is significant, the algorithm starts decreasing its
performance.

The proposed paper allows us to glimpse the potential of using
the trajectories of interest points for ego-motion tasks. Although we
have focus our work on the computation of the focus of expansion,
thus limiting the applicability to straight trajectories, work will con-
centrate in widening the study to not straight paths, allowing us to
compute not only translation, but also the rotational vector related
with the camera ego-motion.
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