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Abstract— While there has been significant progress in solv-
ing the problems of image pixel labeling, object detection
and scene classification, existing approaches normally address
them separately. In this paper, we propose to tackle these
problems from a bottom-up perspective, where we simply need
a semantic segmentation of the scene as input. We employ
the DeepLab architecture, based on the ResNet deep network,
which leverages multi-scale inputs to later fuse their responses
to perform a precise pixel labeling of the scene. This semantic
segmentation mask is used to localize the objects and to
recognize the scene, following two simple yet effective strategies.
We evaluate the benefits of our solutions, performing a thorough
experimental evaluation on the NYU Depth V2 dataset. Our
approach achieves a performance that beats the leading results
by a significant margin, defining the new state of the art
in this benchmark for the three tasks comprising the scene
understanding: semantic segmentation, object detection and
scene categorization.

I. INTRODUCTION

Visual semantic scene understanding has become a crucial
capability in many applications, such as autonomous driving
[1], indoor navigation [2] or robotic manipulation [3]. In fact,
it is the capability that enables robots to truly interact with
the environment with a minimal intervention or number of
sensors, due to the rich information contained in images.

Its goal consists in obtaining as much semantic knowledge
of a given scene as possible. This includes scene categoriza-
tion (labeling the whole scene), object detection (predicting
object locations by bounding boxes), and semantic segmen-
tation (labeling each pixel with a category).

In recent years, there has been large progress in solving
all these tasks (e.g. [4], [5], [6], [7]). However, most current
state-of-the-art approaches propose to solve these problems
separately. In this paper, we demonstrate that it results
beneficial to address these problems following a bottom-
up approach, which mostly relies on a precise semantic
segmentation of the scene.

As it is shown in Figure 1, our solution starts with a
pixel labeling deep network. We base our design on the
DeepLab architecture [4], using ResNet deep networks [8],
enhancing its performance with a multi-scale supervision. We
then propose two simple yet precise approaches to perform
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Fig. 1. We train a multi-scale DeepLab architecture (ResNet based)
to perform a precise pixel labeling of the scene. The key innovation is
to leverage on this semantic segmentation to perform both the object
localization and scene recognition, offering a fast and precise integral
solution, which can be embedded in any mobile robotic platform.

both the object localization and the scene recognition tasks
considering only the scene semantic segmentation as input.

Overall, the main contributions of our work are as follows:

1) In principle, the core of the proposed architecture
relies on a semantic segmentation network. We follow
an intuitive extension of the DeepLab pixel labeling
model [4], which consists in fusing the response of a
pool of multi-scale ResNet based networks.

2) Starting from our precise semantic segmentation, we
demonstrate that it is possible to successfully classify
the scenes. Technically, we introduce two classifiers
based solutions. First, we design a simple approach that
uses SVMs with additive kernels, using as features the
histograms of class labels computed from the seman-
tic segmentation. Second, by viewing each semantic
segmentation as a one-hot binary vector, indicating
the presence/absence of the corresponding classes, we
propose to perform the categorization of the scene with
a Linear SVM. We show that these two surprisingly
simple and fast solutions can surpass prior state-of-the-
art results reported by complex deep networks trained
to directly classify the scenes.

3) We finally showcase the potential of our precise seman-
tic segmentations via the task of object localization. We
just need to identify in the pixel labeling mask for the
whole scene, the connected components that enclose
the objects, allowing us to localize them.

4) Without bells and whistles, all our models surpass
all previous state-of-the-art results on the challenging
NYU-Depth V2 (NYUD2) dataset [9] for the three
tasks comprising scene understanding: scene catego-
rization, object detection and semantic segmentation.



The rest of the paper is organized as follows. Section II
reviews the previous works. We technically detail our ap-
proaches in Section III. Section IV includes the experimental
evaluation. We conclude in Section V.

II. RELATED WORK

Recently, CNNs have become the state-of-the-art approach
in order to solve scene understanding related tasks separately.
Increasingly better results have been achieved in semantic
segmentation (e.g. [2], [4], [10]), scene classification (e.g.
[8], [11], [12], [13]) and object detection (e.g. [5], [14]).

However, not many works deal with the scene understand-
ing problem as a whole. Among those that have done it,
we find the earlier works which use handcrafted features, to
capture some specific properties considered as representative.
Probably, one of the first approaches in trying to get a major
scene understanding can be found in [15]. They propose
a hierarchical generative model that is able to classify the
image (scene classification) and localize the objects that are
part of it. Moreover, based on the relationship between the
type of scene and the objects, the model provides pixel level
segmentations (semantic segmentation). In [16], a holistic
model capable of accomplishing all the three tasks is pre-
sented too. They make use of a hierarchical graphical model,
a Conditional Random Field, with variables representing
aspects such as the presence or absence of a class, the class
labels, or the correctness of a certain candidate for object
detection. That way, the model can learn jointly about all
the different tasks comprising scene understanding. Gupta
et al. [17], [18] propose a method to detect contours on
depth images for semantic segmentation, and subsequently
quantize the segmentation outputs as local features for scene
classification. More recently, the use of multi-layered neural
networks makes possible to learn features directly from
large amounts of data to solve the scene understanding
problem. For instance, Gupta et al. [19] use the R-CNN [20]
detector on depth images to localize objects in indoor scenes.
Then, the output from their object detectors is used with
a superpixel classification framework to obtain a semantic
segmentation of the scene.

Our work clearly differs from the references above. First,
unlike [17], [19], [18], [11], [13], our approach does not need
to use depth images, we solve the whole scene understanding
task with just one modality, i.e. RGB images only. Second,
we base the solution to the problem of scene understand-
ing on an accurate semantic segmentation. Neither contour
detectors [17], [18], nor object detections [19] are needed.
Instead, we directly obtain the pixel labeling model with a
multi-scale deep network. We then solve the tasks of object
localization and scene categorization by simply using the
semantic segmentation mask as a feature.

III. SCENE UNDERSTANDING

A. Scene Labeling Model

The use of Fully Convolutional Networks (FCNs), first
introduced by Long et al. [21], has achieved great results
by adapting image classification deep networks to the task

of semantic segmentation. In a nutshell, FCNs are mainly
based on the replacement of the last fully-connected layers
with convolutional ones.

Here, we propose the use of such networks, following the
state-of-the-art publicly available model for scene labeling
known as DeepLab [4]. This model introduces three mayor
contributions: 1) atrous convolutions, as a way of increasing
the field of view (FOV) of the convolutional filters; 2) Atrous
Spatial Pyramid Pooling (ASPP) technique, which makes use
of several parallel atrous convolutions at different rates, to
extract features at various scales before merging them; and
3) a post-processing CRF to refine the scene labeling results
given by the CNN under the premise that nearby and similar
appearance pixels should be given the same label.

Technically, for our scene labeling model, we adopt this
DeepLab architecture, incorporating a ResNet-101 based
network [8] to it. For the indoor scene labeling problem
we want to address with the NYUD2 dataset, we follow a
joint multi-scale learning procedure. For that purpose, we
process the input image with scaling factors {0.5, 0.75, 1}
of the original resolution. Thereby, we actually have three
complete ResNet-based networks working in parallel, as
branches of the whole architecture (see Figure 1). At the
end, we fuse the results at each pixel position by taking the
maximum response given by the network for each scale. This
procedure can be seen as a way of increasing and improving
the contextual information that the network obtains from
the images. The effect when processing smaller scales is
similar to increasing the FOV of the filters since each filter
covers a bigger part of the image, while larger scales are
more detail-oriented. Therefore, the multi-scale supervision,
together with the atrous convolution and ASPP, allows our
approach to enhance its performance, by having different
information of the surrounding area of each of the pixels in
the image.

Technically, we are given a set of images,
{I1, I2, . . . , IN}, with their corresponding semantic
segmentation annotations, {φ1, φ2, . . . , φN}. We use the
deep network described, and represent θ̂i as the score map
at the output of our network, and φ̂i as our estimation for
the semantic segmentation.

The multi-scale learning process solves the following
optimization. For each training image, during learning, we
apply a soft max function to map the scores given by our
network to a probability distribution over the complete set
of C classes for each of the k positions in the CNN output
map:

p̂kc =
exp(θ̂kc)∑
c′ exp(θ̂kc′)

. (1)

The result, p̂kc, is used to obtain the cross-entropy classifi-
cation loss, ζ, with which our model is optimized according
to the following equation,

ζ =
−1

K

K∑
k=1

log(p̂k, φ), (2)



so that our estimation for each pixel in the image, φ̂, will be
the class for which the response of the CNN output map is
maximum:

φ̂ = argmax
C

(θ̂). (3)

B. Scene Classification

Since the breakthrough of deep learning and CNNs, scene
classification has been carried out using deep networks,
originally designed for the object recognition problem, which
achieve state-of-the-art results (e.g. [8], [11], [12], [13]).
On the contrary, in this work, we aim to use the semantic
segmentation results to directly classify the scenes. Our
results show that our surprisingly simple and fast approach
can surpass the complex deep models trained for scene
categorization.

Technically, we explore two classifier based solutions,
which take as input features our scene labeling output. First,
we propose to use the histograms of class labels obtained
from the semantic segmentation. Thus, as descriptors for
each image, F̄i, we take a C-bin histogram, hist, representing
the number of pixels of each of the C classes in our semantic
segmentation estimation φ̂:

Fi = hist(φ̂) = [fi1, fi2, ..., fiC ], (4)

that we normalize as follows,

F̄i = norm(Fi), (5)

where fic is the number of pixels of class c in image i, and
norm corresponds to an L2 normalization. This idea is based
on the fact that the objects that appear in an image should
define the scene in which they are: the parts form the whole.
With this histogram-like features, we propose to use SVMs
with additive kernels [22], because their good performance
working with this type of features. In the experiments, we try
several of them, such as, intersection kernel, χ2 or Jensen-
Shannon.

On top of that, when constructing the histograms, we also
explore the use of a two-level spatial pyramid pooling. With
the aim of adding localization information to our descriptors,
we divide the image in four parts and extract a histogram,
following the procedure described in Equation 5, for each of
them. Thereby, the new descriptors will be a concatenation
of five C-size vectors: the original one, representing the full
image, and one for each of the four second-level parts.

Our second model for scene categorization consists in
learning a linear classifier with one-hot vectors computed
from the semantic segmentation. For each image, we define
a one-hot vector, Gi, as

Gi = [u(fi1), u(fi2), ..., u(fiC)] = [gi1, gi2, ..., giC ], (6)

with u being the function:

u(x) =

{
1 x > δ

0 x ≤ δ
. (7)

The threshold parameter, δ, is the minimum number of
pixels needed to consider that a class appears in the image.

Therefore, g1, ..., gC ∈ {0, 1}. One-hot vectors just take into
account whether a category is present or not in the image.
For the categorization, we simply use a linear SVM. The
use of one-hot vectors but with the additive kernels do not
improve the results, according to our experiments.

C. Object Detection Integration

Given the semantic segmentation, we present a model
to classify the scene, but, can we also solve the object
localization task? In this section we describe how to obtain
the bounding boxes (BBs) from the pixel labeling masks, in
order to evaluate the object detection accuracy of our model,
closing, this way, the whole scene understanding problem.

Our solution is embarrassingly simple and fast. Given a
semantic segmentation mask, and for each object category
c ∈ C, we simply proceed to obtain a binary mask with
the pixels that belong to the class of interest. We then trace
region boundaries putting a tight BB around each connected
component identified in the mask.

We need to assign a detection score to each of these BBs,
and we again rely on the result of the semantic segmentation
for this purpose. Given an estimated BB, BBc

i , for the object
category c, its corresponding object detection score si is
obtained computing the mean of the confidence scores of
the semantic segmentation output pixels within the BB that
belong to the object class c. In other words, we technically
follow this equation:

si =
1

P
BBc

i
c

BBc
i∑

j=1

θ̂jc, (8)

where P
BBc

i
c is the total number of pixels of class c in

bounding box BBc
i . θ̂jc represents the score values of class

c of the output map provided by our semantic segmentation
network.

IV. EXPERIMENTS

To evaluate the effectiveness of our models, we perform
scene labeling, scene classification and object detection
experiments on the challenging scene understanding NYU
Depth V2 dataset [9] (NYUD2). The details of the exper-
iments and the corresponding results are provided in the
following sections.

A. Experimental Setup

1) Implementation Details: We start from the publicly
available DeepLab model implementation [4], which em-
ploys the Caffe deep learning framework [23]. We implement
the ResNet-101 [8] deep architecture as the base network for
the DeepLab model. This network is pretrained on the MS
COCO dataset [24]. We replace the last layer with a soft max
classifier layer, which has as many targets as the number of
semantic classes of our task in the NYUD2 dataset. Our loss
function is the sum of cross-entropy terms for each spatial
position in the CNN output map (subsampled by 8 compared
to the original image). All positions and labels are equally
weighted in the overall loss function (except for unlabeled



pixels in the ground truth annotations, which are ignored).
We optimize the objective function using SGD. For fine
tuning, the learning rate is initialized at 0.001 and we apply
a poly learning rate policy (the learning rate is multiplied
by (1− iter

max iter )power) with power parameter fixed to 0.9.
As data augmentation techniques, we apply mirroring, with
a probability of 50%, and cropping: we feed our network
with patches of size 385x385 instead of using the complete
480x640 images of the NYUD2 dataset. Our model for
semantic segmentation is trained during 20K iterations with
a batch size of 1.

With respect to one-hot vectors in scene classification, we
set the threshold parameter, δ, to 0.5% of the total number
of pixels in the image, since small objects do not tend to be
the most representative of a particular type of scene.

2) Dataset and Evaluation Metrics: In our experiments,
we use the NYUD2 dataset [9], which consists of 1449
images. We use the publicly available split, which has 795
images for training and 654 images for testing.

For semantic segmentation, the original task proposed in
[9] consists of assigning the pixels of the images in just
four categories. But, we follow the more complex setup
described in [17], and we study a more fine-grained 40 class
discrimination task where the scene is divided in structure
categories like walls, floors, ceiling, windows or doors;
furniture items like beds, chairs, tables or sofa; and objects
like lamps, bags, towels or boxes. The complete list is given
in Table II.

We measure the performance of our model in the seg-
mentation task using the pixel accuracy (pixels correctly
predicted divided by the total number of pixels annotated),
the mean class accuracy (mean of the pixel accuracy when
computed for each class separately) and the Jaccard index
(true predictions divided by the union of predictions and true
labels), which is also known as the intersection over union
(IoU).

For the scene categorization task, we follow the experi-
mental setup detailed in [17], where the original 27 cate-
gories are reorganized into 10 classes: the 9 most common
categories plus the category other for the images in the
remaining classes. For evaluation, we report the classification
accuracy, which is the precision over all test images.

Finally, for the object detection task, we again follow the
setup proposed in [17], where 17 of 40 object categories
are used. They include items such as toilet, bed, sofa, chair,
etc. The ground truth BBs for the objects are obtained
from the ground truth semantic segmentations, discarding
the ignored pixels (pixels with label 255). We follow the
standard PASCAL VOC [25] metric of average precision
(AP) for measuring the detection performance. That is, for
each object class c, we first sort the BBs by their score. Then,
we define an overlap criterion of 0.5 between a predicted BB
and the ground truth to consider a detection as true positive,
and we calculate the precision/recall curve from the ranking
obtained. The AP, for each class c, is defined as the mean

precision at eleven equally spaced recall levels:

AP =
1

11

∑
r∈(0,0.1,...,1)

p(r), (9)

where p(r) is the precision at recall r, but interpolated by
taking the maximum precision measured for a method for
which the corresponding recall exceeds r.

B. Scene Labeling
We here compare our model with other state-of-the-art

methods in the task of scene labeling. Several approaches
have reported semantic segmentation results on this dataset
recently, and some of which make use of depth information
to enhance their results. Table I shows that our model, simply
from RGB images, and using the ResNet-101 as a base
network with the aforementioned multi-scale input procedure
for the DeepLab architecture, beats them all in all the three
evaluation metrics. A set of qualitative results are shown in
Figure 2.

Finally, in Table II, we offer detailed IoU results for
each of the 40 classes. Our approach outperforms all other
methods that have reported these detailed results, obtaining
a particularly considerable improvement in the most difficult
classes. Therefore, we conclude that the solution proposed
for semantic segmentation, defines the new state-of-the-art
results for the NYUD2 dataset.

TABLE I
SCENE LABELING PERFORMANCE FOR THE NYUD2 DATASET 40-CLASS

CLASSIFICATION TASK.

Method Input pix acc class acc IoU

RCNN [19] RGB-HHA 60.3 35.1 28.6

FCN-16 [21] RGB-HHA 65.4 46.1 34.0

Eigen et al. [26] RGB-D-N 65.6 45.1 34.1

FuseNet-SF3 [27] RGB-D 66.4 44.2 34.0

Context-CRF [28] RGB 67.4 49.6 37.1

MVCNet [2] RGB-D 69.1 50.1 38.0

Ours RGB 70.9 52.2 41.8

C. Scene Classification
Table III shows the results of our methods when we

compare them with other state-of-the-art models for scene
recognition in the NYUD2 dataset. We incorporate to the
evaluation, two baselines methods, which are a VGG-16
[12] and a ResNet-101 [8] architecture, which we train
to directly classify the scenes. Technically, we develop a
fine tuning procedure for two pretrained models of these
networks, where the objective now is correctly classify the
scenes in the NYUD2 dataset.

Using the proposed 40-classes scene labeling histograms
as features to feed a linear SVM, already improves all previ-
ously reported methods, and stays very close to the ResNet-
101 baseline model, specifically trained for the problem of



Fig. 2. Qualitative results fro the scene labeling problem. For each group of three images, we show, from left to rigth: the RGB image, the ground truth
and our results. We represent the best (first 3 rows) and worst (last 2 rows) test images in terms of pixel accuracy.

TABLE II
IOU FOR EACH OF THE CLASSES IN THE 40-CLASS SEGMENTATION TASK.

wall floor cabinet bed chair sofa table door window book sh. picture counter blinds desk shelves curtain dresser pillow mirror floor mat

SC [9] 60.7 77.8 33.0 40.3 32.4 25.3 21.0 5.9 29.7 22.7 35.7 33.1 40.6 4.7 3.3 27.4 13.3 18.9 4.4 7.1

KDES [29] 60.0 74.4 37.1 42.2 32.5 28.2 16.6 12.9 27.7 17.3 32.4 38.6 26.5 10.1 6.1 27.6 7.0 19.7 17.9 20.1

SVM+Scene [17] 68 81 48 55 40 44 30 8.3 33 20 40 47 44 10 5.1 34 22 28 19 22

RCNN-Depth [19] 68.0 81.3 44.9 65.0 47.9 47.9 29.9 20.3 32.6 18.1 40.3 51.3 42.0 11.3 3.5 29.1 34.8 34.4 16.4 28.0

Det+Scene [18] 67.9 81.5 45.0 60.1 41.3 47.6 29.5 12.9 34.8 18.1 40.7 51.7 41.2 6.7 5.2 26.9 25.0 32.8 21.2 30.7

Ours 74.0 80.6 55.9 64.6 55.0 61.0 40.9 33.1 45.0 39.9 54.5 53.0 57.1 14.5 10.9 46.6 40.2 37.0 34.0 28.4

clothes ceiling books fridge tv paper towel shower cur box wh. board person night stand toilet sink lamp bath tub bag other str. other fur. other prop

SC [9] 6.5 73.2 5.5 1.4 5.7 12.7 0.1 3.6 0.1 0 6.6 6.3 26.7 25.1 15.9 0 0 6.4 3.8 22.4

KDES [29] 9.5 53.9 14.8 1.9 18.6 11.7 12.6 5.4 3.3 0.2 13.6 9.2 35.2 28.9 14.2 7.8 1.2 5.7 5.5 9.7

SVM+Scene [17] 6.9 59 4.4 15 9.3 1.9 14 18 4.8 37 16 20 50 26 6.8 33 0.65 6.9 2 22

RCNN-Depth [19] 4.7 60.5 6.4 14.5 31.0 14.3 16.3 4.2 2.1 14.2 0.2 27.2 55.1 37.5 34.8 38.2 0.2 7.1 6.1 23.1

Det+Scene [18] 7.7 61.2 7.5 11.8 15.8 14.7 20.0 4.2 1.1 10.9 1.4 17.9 48.1 45.1 31.1 19.1 0.0 7.6 3.8 22.6

Ours 17.5 63.5 29.2 57.5 57.3 27.3 33.9 17.8 9.6 32.1 76.9 41.8 73.7 50.2 44.6 31.5 7.3 25.6 15.5 32.5

scene classification. If instead we use one-hot vectors as
described in Section III-B, we increase the accuracy by 1,3%.
Using a Jensen-Shannon kernel for our SVM, with normal-
ized histograms, obtains another 0,3%. Finally, applying a
two-level spatial pyramid pooling technique improves the
performance by an extra 0,76%, attaining a 68,96% clas-
sification accuracy, the new state-of-the-art for this dataset.

D. Object Detection

Here, we are interested in investigating the task of de-
tecting furniture like objects in indoor scenes. The NYUD2

dataset [9] was originally proposed to study semantic seg-
mentation and scene recognition. However, we can derive
BBs annotations for the objects directly from the semantic
segmentation ground truth, following the experimental setup
of [17]. Hence, we can also use this dataset to evaluate the
performance of the models in an object localization task.

Table IV summarizes the results achieved by our simple
object localization solution and the proposed approaches
described by Gupta et al. in [17], [18], [19]. We observe
that we are able to consistently outperform all these previous
works. Note that our simple approach, using only RGB im-



TABLE III
SCENE CLASSIFICATION ACCURACY FOR NYUD2. COMPARISON WITH

THE STATE OF THE ART.

Method Input Acc.

State of the art

RCNN-Depth [19] RGB-D 45.4

FV+CNN [11] RGB-D 63.9

D-CNN [13] RGB-D 65.8

Baselines
VGG-16 classification RGB 64.37

ResNet-101 classification RGB 67.73

Ours

Histograms + Linear SVM RGB 66.51

One-hot + Linear SVM RGB 67.89

Histograms + Additive Kernel SVM RGB 68.20

Histograms + Spatial Pyramid + Additive Kernel SVM RGB 68.96

TABLE IV
OBJECT DETECTION PERFORMANCE, USING THE AP METRIC, FOR THE

NYUD2 DATASET. COMPARISON WITH THE STATE OF THE ART.

SVM+Scene [17] Det+Scene [18] RCNN-Depth [19] Ours
Input RGBD RGBD RGBD RGB

Bed 52.1 56.0 66.5 58.7
Chair 6.4 23.5 40.8 43.9
Sofa 17.5 34.2 42.8 52.7
Counter 32.7 24.0 37.6 51.3
Lamp 1.4 26.7 29.3 27.7
Pillow 3.3 20.7 37.4 19.2
Sink 14.0 22.8 24.2 46.1
Table 9.3 17.2 24.3 23.4
Bathtub 28.4 19.3 22.9 33.7
Television 3.1 19.5 37.2 42.7
Bookshelf 6.7 17.5 21.8 35.1
Toilet 13.3 41.5 53.0 74.0
Box 0.7 0.6 3.0 2.5
Desk 0.8 6.2 10.2 7.0
Door 5.0 9.5 20.5 23.3
Dresser 13.3 16.4 26.2 26.5
Night-stand – 32.6 39.5 43.5

Mean over 16 classes 13 24.3 31.1 35.5
Mean over 17 classes – 23.0 31.6 36.0

ages, outperforms all these methods which jointly exploit the
depth and appearance information. Importantly, we achieve
an improvement of more than 5% for the AP compared to
the best results detailed in [19]. We provide some qualitative
detection results in Figure 3.

V. CONCLUSION

This paper proposes a highly effective bottom-up ap-
proach to perform scene understanding. From an accurate
multi-scale semantic segmentation deep network, using the
DeepLab model with ResNets, we present and develop a
variety of simple but robust strategies to use scene labeling-
based descriptors for performing both scene classification
and object detection tasks.

We compare our solutions with other state-of-the-art meth-
ods using a variety of metrics in the challenging NYUD2
dataset. The obtained results confirm that our methods are
able to outperform all other previously reported models in
all the three tasks comprising scene understanding, by only
using RGB images.

Overall, in this work we demonstrate that to rely on a
precise scene labeling, as the one given by our model, for
acquiring a complete scene understanding, is an extremely
effective solution. Therefore, in pixels we trust.
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