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Abstract— In this work we introduce a new problem named
Intelligent Speed Adaptation from Appearance (ISA2). Tech-
nically, the goal of an ISA2 model is to predict for a given
image of a driving scenario the proper speed of the vehicle.
Note this problem is different from predicting the actual speed
of the vehicle. It defines a novel regression problem where the
appearance information has to be directly mapped to get a
prediction for the speed at which the vehicle should go, taking
into account the traffic situation. First, we release a novel
dataset for the new problem, where multiple driving video
sequences, with the annotated adequate speed per frame, are
provided. We then introduce two deep learning based ISA2

models, which are trained to perform the final regression of
the proper speed given a test image. We end with a thorough
experimental validation where the results show the level of
difficulty of the proposed task. The dataset and the proposed
models will all be made publicly available to encourage much
needed further research on this problem.

I. INTRODUCTION

For years, speed has been recognized as one of the three
main contributing factors to deaths on our roads. In fact, 72
% of road traffic accidents in the city could be prevented
with an adequate vehicle speed, according to the MAPFRE
Foundation [1]. Furthermore, the European Transport Safety
Council (ETSC) claims that speed is the cause of the death
of 500 people every week on European roads [2]. So, to
control the speed of our vehicles, using an Intelligent Speed
Adaptation (ISA) system, should be a high-priority research
line.

A research by the Norwegian Institute for Transport Eco-
nomics [3] advocates the benefits of an ISA system, which
the study found to be the most effective solution in saving
lives. Some studies of the ETSC reveal that the adoption of
the ISA technology is expected to reduce collisions by 30%
and deaths by 20% [4].

Off-the-shelf ISA solutions use a speed traffic sign recog-
nition module, and/or GPS-linked speed limit data to inform
the drivers of the current speed limit of the road or highway.
However, these solutions have the following limitations.
First, GPS information is inaccurate and may not be correctly
updated. For example, an ISA model based only on GPS
information would have difficulties in certain urban scenes
with poor satellite visibility, or in distinguishing whether
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Fig. 1: ISA2 problem. An ISA2 model must be able to
perform a regression of the adequate speed of the vehicle,
inferring it just using the appearance information of the
image. It has to be trained on video sequences providing the
proper speed for the traffic situation, to be able to provide
an estimation of the adequate speed on test images.

the vehicle is in a highway lane or on the nearby service
road, where the speed limit has to be drastically reduced.
It is true that a speed traffic sign recognition module can
mitigate some of these problems, but for doing so we need
to guarantee the visibility of the signs. Second, they provide
only the speed limit of the road, but not the speed appropriate
to the actual traffic situation.

To address all these limitations, in this paper we propose
a new paradigm for the ISA models, called ISA from
Appearance, or ISA2. Technically, as it is shown in Figure
1, we introduce the idea of learning a regression function
able to map the images to a speed adequate to the traffic
situation. For doing so, we need to train and evaluate the
ISA2 solutions using a dataset with video sequences that
show a driving behaviour that is appropriate to the real
traffic situation. The proposed problem is actually very
challenging. Could a human, from a single image, discern
between whether a vehicle should go at 80 or 110 km/h on
a motorway according to the actual traffic?

The main contributions of our work are as follows:

1) To the best of our knowledge, we propose for the first
time the novel problem of inferring the adequate speed
of a vehicle from just an image.



2) We introduce two deep learning based ISA2 models,
which are trained to perform the final regression of the
proper speed for the vehicle. One consists in learning a
deep network to directly perform the speed regression.
The other approach is based on a deep learning model
to obtain a semantic segmentation of the traffic scene.
We then combine this output with a spatial pyramid
pooling strategy to build the features used to learn the
regressor for the proper speed.

3) We also release a novel dataset for the new ISA2

problem, where the proposed models are evaluated.
We conduct an extensive set of experiments and show
that our ISA2 solutions can report an error for the
prediction of the speed lower than 6 km/h.

The rest of the paper is organized as follows. In Section II,
we discuss related work. In Section III we describe the ISA2

dataset and the evaluation protocol. Our ISA2 models are
detailed in Section IV. We evaluate our models, and analyze
their performance in Section V. We conclude in Section VI.

II. RELATED WORK

Although being able to estimate the appropriate speed for
a vehicle is a key task for the automotive industry, which
year after year is increasing the budget for R&D projects in
its pursuit to achieve a fully autonomous vehicle, there are
no previous works that seek to predict this speed just using
images or visual information.

In the literature, we can find some works that deal with
the different problem of learning a generic driving model,
e.g. [5], [6], [7].

Probably, the closest works we can find to the problem
we are trying to solve, focus on estimating the actual speed
of a vehicle, which is a different problem anyhow. Several
techniques have been proposed for this purpose, from the
design of image processing methods using optical flow [8],
[9], [10] to proposals for motion estimation based on the
subtraction of the background [11]. Chhaniyara et al. [8]
focus on robotics platforms moving over different types of
homogeneous terrains such as fine sand, coarse sand, gravel,
etc. The rest of works [9], [10], [11] have been designed to
estimate the speed of vehicles from video sequences acquired
with a fixed video surveillance camera.

We, instead, propose to estimate the proper speed for a
vehicle, according to the traffic situation, by using a vehicle
on-board camera. While all the works mentioned above aim
to estimate the actual speed at which the vehicle is moving,
our ISA2 models need to estimate the appropriate speed at
which the vehicle should go. Our goal is not to know how
fast a car goes, but how fast it should go.

III. ISA2 DATASET

Here, we introduce the novel ISA2 dataset, which allows
us to train and test different approaches for the new chal-
lenging ISA2 problem.

The database consists of 5 video sequences taken from
both urban and interurban scenarios in the Community of
Madrid, Spain. In total, we provide a set of 149.055 frames,

with a size of 640 × 384 pixels, with the annotation of the
proper speed of the car (km/h). During the driving for the
acquisition of the dataset, in addition to respecting the speed
limits, our driver has carefully tried to adjust the speed of
the vehicle to what he considers to be an appropriate speed,
according to the traffic situation. Figures 2(a) and 2(b) show
some images of both, highway and urban routes, respectively.

To structure the database, both scenarios have been split
into training and test subsets. For the 3 urban recordings,
we use two of them for training/validation, an the third one
for testing. We also provide two highway recordings, one
for training/validation and the other for testing. These splits
between training and testing have been done so that different
scenarios and circumstances are well represented in both sets.
Those scenarios include maximum and minimum speed over
the sequences, stops at traffic lights or entrances and exists on
the highway using service roads, for instance. Finally, with
the aim of evaluating how well the different approaches are
able to generalize, we introduce unique factors in the test
subsets, such as, different weather conditions (rain) in the
urban test set. All these aspects clearly help to release a
challenging dataset. Table I shows the mean speed of the
vehicle for the different subsets described.

TABLE I: Mean speed and standard deviation of the different
sets in the ISA2 dataset

Route Set Mean speed (km/h) Std. deviation (km/h)

Highway Training 84.31 18.15

Highway Test 95.08 12.81

Urban Training 19.55 13.60

Urban Test 19.59 14.78

IV. MODELS FOR ISA2

Our main objective during the design of the ISA2 models
is to propose a strong visual representation that allows the
models to predict the appropriate speed for the vehicle.

The ISA2 problem starts with a training set of images S =
{(Ii, si)}Ni=1, where N is the number of training samples. For
each sample i in the dataset, Ii represents the input image,
and si ∈ R encodes the annotation for the speed.

We first propose to learn a Convolutional Neural Network
(CNN) [12] to directly perform the regression of the adequate
speed. Technically, as it is shown in Figure 3, we use two
different architectures: a VGG-16 [13] or a Residual CNN
[14] (ResNet). Therefore, our networks are trained to learn
the direct mapping from the image to the speed ŝ, a function
that can be expressed as follows,

ŝW = f(W, Ii) , (1)

where, f(W, Ii) : Ii → R represents the mapping that the
network performs to the input images. We encode in W the
trainable weights of the deep architecture. We replace the loss
function of the original network designs, which is no longer
a softmax, but a loss based on the Euclidean distance.



(a) Highway (b) Urban

Fig. 2: Set of images from the ISA2 dataset in highway and urban environments.
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Fig. 3: ISA2 from a CNN based architecture for regression.

The second approach is mainly based on a semantic seg-
mentation model, see Figure 4. Our system starts performing
a dense pixel labeling of the traffic scene. We then use a
spatial pyramid pooling strategy, to build a descriptor for
the image, which is based on the histogram of the different
labels produced by our semantic segmentation model. This
descriptor is used to learn a final regressor, which is the one
in charge of the prediction of the proper speed.

Technically, for this second approach, we first implement
the DeepLab [14] model, using a ResNet-101 as the base
network. We train the DeepLab using a multi-scale input,
using the scale factors {0.5, 0.75, 1}. We then fuse the
prediction for each scale, taking the maximum response
given by the network for each scale. Note that the ISA2

dataset does not provide semantic segmentation annotations,
therefore this model is trained using the Cityscapes dataset
[15].

For the final regression, we evaluate in the experiments
several approaches: linear regressor, lasso regressor, boosting
trees and linear Support Vector Regressors. For all of them,
we evaluate the impact of adding spatial information by using
spatial pyramid pooling of up to 3 levels.

Multiscale Input

Semantic Segmentation...

...

...

W

W

F
u

si
o

n

RESNET

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

3x
3 

co
nv

, 6
4

Feature extraction:
Spatial Pyramid of 

Histograms

... Cn

...
C0C1 C3C2

... Cn

...
C0C1 C3C2

... Cn

...
C0C1 C3C2

... Cn

...
C0C1 C3C2

REGRESSION

38 km/h

Speed Estimation

Fig. 4: ISA2 from a semantic segmentation and a regressor.

V. EXPERIMENTS

To evaluate the effectiveness of our models, we use here
the ISA2 dataset. We detail the experimental setup and main
results in the following sections.

A. Experimental setup and evaluation metric

For our CNN-based approaches, VGG and ResNet-101,
we fine-tune pre-trained models on the large-scale ImageNet
dataset [16]. Both networks are trained for 4K iterations with
a learning rate of 10−4 for the first 2K iterations, and of 10−5

for the rest. We use stochastic gradient descent (SGD) with
a momentum of 0.9 and a batch size of 20 images for both
architectures.

With respect to our models based on the semantic seg-
mentation of the images, we cross validate both the specific
parameters of the different regression methods and the spatial
pyramid levels we use.

To measure the performance of the different models, we
use the standard Mean Absolute Error (MAE) metric, which
is defined as the difference in absolute value between the real



speed, sr, and the proper speed estimated by an ISA2 model,
ŝ, averaged for the K images of the test set, according to:

1

K

K∑
i=1

|sri − ŝi|. (2)

We evaluate the MAE independently for the urban and
highway set of images, because this provides a more detailed
analysis of the results.

B. Quantitative results

In Table II we present the results of our ISA2 approaches.
In general, we show that our second approach, that is a
semantic segmentation (SS) plus a regressor, obtains better
results, only for the urban scenarios, than the first model
proposed, where the CNNs directly cast the speed estimation.
In a highway setting, our first approach reports a lower MAE.
Probably, the fact that our first type of approaches have more
parameters, allows them to adjust better the prediction to both
types of environments.

TABLE II: MAE comparison of our different proposed
methods. For each model, we train a unique regressor for
both highway and urban scenarios.

Method
Urban MAE Highway MAE

(Km/h) (Km/h)

VGG-16 12.58 11.57
ResNet-101 11.49 11.87

SS + Linear regression 9.15 15.78

SS + SVR 10.69 16.76

SS + Lasso regression 8.74 18.13

SS + Boosting Trees 9.78 13.86

In this sense, we decide to perform a second experiment.
We proceed to train an ISA2 model for each type of scenario
(urban and highway) separately. Table III shows the results.
Now, models based on the SS perform better for both
urban and highway images. In highway images, boosting
trees are the ones that offer the best results, followed by
the lasso regression and the SVR. On the other hand, in
the urban sequences, a linear regression exhibits the best
performance, followed by the lasso regression and the SVR.
As a conclusion, it is clear that for our models based on SS,
it is beneficial to train a regressor for each type of scenario
separately. Figure 5 shows a graphical comparison of the
results, following the two training methods described.

Finally, Figure 6 shows a graphical comparison between
the proper speed of the vehicle (in blue) and the estimated
speed (in red) by the different ISA2 models proposed. For
each type of scenario, results of the two CNN-based models
used are shown together with the two best models based on
SS + regression.

Interestingly, for the highway test sequence, all our models
detect that it is necessary to reduce the speed halfway along
the route, at a time when the driver leaves the highway
towards a service road, to finally rejoin a different highway.

TABLE III: MAE comparison of our different proposed
methods. For each model, we train an independent regressor
for highway and urban scenarios.

Method
Urban MAE Highway MAE

(Km/h) (Km/h)

VGG-16 11.86 12.48

ResNet-101 9.59 12.79

SS + Linear regression 6.02 9.54

SS + SVR 8.14 9.23

SS + Lasso regression 6.67 8.72

SS + Boosting Trees 8.81 7.76

In general, we can observe that the neural networks have
more difficultly to predict the proper speed, than the SS based
solutions. This is particularly evident in the initial section of
the routes, where the error made by the CNNs exceeds 30
km/h.

For the urban test sequence, it is remarkable that the
CNNs are not capable of reducing the estimated proper speed
when the vehicle is completely stopped, mainly at red traffic
lights. On the other hand, SS-based regressors do adjust such
situations much better.

C. Qualitative results

We show a set of qualitative results in Figure 7. Those
results correspond to the best of our models for each type of
road, i.e. using boosting trees in highway and SS + Linear
regression in an urban environment.

Analyzing these results, we observe some of the difficul-
ties our models have. On highways, for instance, the biggest
errors for the estimation of the proper speed occur when
the vehicle wants to leave the motorway, which leads the
driver to slow down. Obviously, our models, which are based
exclusively on what the vehicle sees at any given time, are
not able to anticipate the driver’s intentions, so they estimate
a speed higher than the real one. However, as soon as the
driver leaves the motorway and change the type of road, the
models do correctly adjust the speed.

In urban environments, the main problem is related to the
presence of stationary vehicles on the road, which implies
that our vehicle has to stop when it reaches them. In those
cases, although there is a decrease in the estimated proper
speed, the models do not come to realize that it is necessary
to completely stop. This does not occur in the presence of
red traffic lights, where the estimated proper speed reaches
0 km/h.

VI. CONCLUSION

In this paper we propose for the first time the ISA2

problem. It is a difficult and interesting problem, that has
not been studied before. We also release a new dataset and
propose an evaluation protocol to assist the research on ISA2.
Finally, we have introduced and evaluated two types ISA2

models, and the results show the level of difficulty of the
proposed task.
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Fig. 5: MAE comparison between all of our different approaches to the ISA2 problem.

0 500 1000 1500 2000 2500 3000 3500

Imágenes

0

20

40

60

80

100

120

V
e

lo
ci

d
a

d
 (

km
/h

)

VGG

0 500 1000 1500 2000 2500 3000 3500

Imágenes

0

20

40

60

80

100

120

V
e

lo
ci

d
a

d
 (

km
/h

)

ResNet

0 500 1000 1500 2000 2500 3000 3500

Imágenes

0

20

40

60

80

100

120

V
e

lo
ci

d
a

d
 (

km
/h

)

Regresor de Lasso, 3 divisiones

0 500 1000 1500 2000 2500 3000 3500

Imágenes

0

20

40

60

80

100

120

V
e

lo
ci

d
a

d

Boosting Trees, 3 divisiones

Frames Frames Frames Frames

Sp
ee

d 
(k

m
/h

)

Sp
ee

d 
(k

m
/h

)

Sp
ee

d 
(k

m
/h

)

Sp
ee

d 
(k

m
/h

)

0 200 400 600 800 1000 1200

Imágenes

0

5

10

15

20

25

30

35

40

45

V
e

lo
ci

d
a

d
 (

km
/h

)

VGG

0 200 400 600 800 1000 1200

Imágenes

0

5

10

15

20

25

30

35

40

45

V
e

lo
ci

d
a

d
 (

km
/h

)

ResNet

0 200 400 600 800 1000 1200

Imágenes

0

5

10

15

20

25

30

35

40

45

V
e

lo
ci

d
a

d
 (

km
/h

)

Regresor de Lasso, 1 división

0 200 400 600 800 1000 1200

Imágenes

0

5

10

15

20

25

30

35

40

45

V
e

lo
ci

d
a

d
 (

km
/h

)

Regresor lineal, 1 división

Sp
ee

d 
(k

m
/h

)

Sp
ee

d 
(k

m
/h

)

Sp
ee

d 
(k

m
/h

)

Sp
ee

d 
(k

m
/h

)

Frames Frames Frames Frames

VGG

VGG

ResNet

ResNet

Lasso Regressor, 3 levels

Lasso Regressor, 1 level

Boosting Trees, 3 levels

Lineal regressor, 1 level

Fig. 6: Proper speed (blue) vs. Estimated proper speed (red) of different methods. First row corresponds to the highway test
sequence, while second row shows results on the urban sequence.

The dataset and the proposed models will all be made
publicly available to encourage much needed further research
on this problem.
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