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Abstract— From this paper, we propose a novel methodology
to compute a 2D Homography applying some algorithms of
computer algebra. We consider the classical problem of solving
(exactly) a linear system of algebraic equations, and we suggest
a new algorithm for computer vision, based on homomorphism
methods over Z, to solve a system of equations necessary to
achieve a 3×3 matrix H which lets us to compute the projective
transformation which translates coordinates between points in
different planes. From this work, we want to show that it is
possible to apply a symbolic approach to some crucial issues
of computer vision, moreover of the numerical methodology,
in order to reduce the complexity of some algorithms, and to
eliminate the problems associated with loss of precision and
normalization. We test our technique in a real situation: a
parking management system, which creates a pseudo-top-view
of a parking area to determine if there are free parking lots or
not.

I. INTRODUCTION

The main objective of this paper is to link some computer
algebra algorithms to computer vision, in order to reject
some numerical approaches which are more complex and
inefficient. Holt et al. presented some algebraic methods for
image processing and computer vision in [1]: Bézout numbers,
Gröbner bases and homotopy methods. From this paper we
propose a new computer algebra resource: homomorphisms
methods for solving systems of equations, which are widely
described in [2], [3] and [4]. There are numerical and symbolic
methods to compute all solutions of a given zero-dimensional
polynomial system, and every approach has its advantages and
disadvantages. An hybrid method could be a great solution for
the problem, as [5] shows. To study the complexity of each
type of approach, numerical or symbolic, as it is shown in [6],
will be an important task if we want to decide which one that
is better-conditioned.

Important problems in computer vision can be formulated
as the solution of a system of equations. To be concrete,
the problem of computing the 3 × 3 Homography matrix H ,
which lets us to compute the projective transformation which
translates coordinates between points in different planes. In the
literature reviewed ([7], [8] and [9]), all authors use numerical
algorithms to determine the problem. Ideally, to solve this
system we need four correspondences of points, but in these
numerical approaches the more the number of pairs of points,
the more exactly is the solution. We aim for a new approach

which uses a computer to perform a mathematical computation
symbolically. This computation must solve a linear system
of equations, and in our symbolic approach we only need
four correspondences of points in order to achieve the exact
solution of the system.

From this mathematical work, we propose a computer vision
application for a parking management system in which we use
the symbolic approach proposed to construct a pseudo-top-
view of a parking area, computing the homography by means
of the homomorphic method for solving a linear system of
equations.

This paper is organized as follows. In section II we des-
cribe the 2D homography computation process, including a
comparative analysis between the symbolic and the numerical
approach. Section III shows a description of the developed
parking management system, and in section IV we have
described the texture feature extraction used in the parking
management system. Finally, sections V and VI contain the
experimental results and the conclusions, respectively.

II. 2D HOMOGRAPHY COMPUTATION

A. Problem Under Consideration: 2D Homography

We can define a point x of an image I in homogeneous
coordinates as follows x = (x, y, z)T . Given a set of points
xi in I , and the corresponding set of points x′i in image J , we
compute the projective transformation which transforms each
xi in x′i. Each image, I and J , is considered as a projective
plane P2. A 2D Homography is a 2D projective transformation,
which is defined by the equation

x′i = Hxi (1)

, where

H =

 h1 h2 h3

h4 h5 h6

h7 h8 h9

 (2)

The equation (1) may be expressed in terms of vector cross
product as x′i ×Hxi = 0. If the j-th row of the matrix H is
denoted by hjT , then we can write

Hxi =

 h1T xi

h2T xi

h3T xi

 (3)
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If x′i = (x′i, y
′
i, z

′
i)

T , then the cross product may be given as

x′i ×Hxi =

 y′ih
3T xi − z′ih

2T xi

z′ih
1T xi − x′ih

3T xi

x′ih
2T xi − y′ih

1T xi

 = 0 (4)

The previous equation can be written as 0T −z′ix
T
i y′ix

T
i

z′ix
T
i 0T x′ix

T
i

−y′ix
T
i x′ix

T
i 0T

  h1

h2

h3

 = 0 (5)

This last equation has the form Aih = 0. Although there
are three equations in (5), only two of them are linearly
independent, hence, this set of equations become(

0T −z′ix
T
i y′ix

T
i

z′ix
T
i 0T x′ix

T
i

)  h1

h2

h3

 = 0 (6)

B. Symbolic Approach

Our symbolic approach is based on a new computer al-
gebra resource in computer vision: homomorphisms methods
for solving systems of equations over Z. The equation (6)
describes a system of linear equations with coefficients ∈ Q.
From a theoretic point of view, the problem can be solved
using symbolic computation, for example Cramer, which has
complexity n!, where n is the number of equations. In order
to reduce this complexity, we propose the homomorphism
method over Z, also called modular method.

Let P be a problem whose input and output are from
domain D. The basic idea of the modular method in computer
algebra consists of applying homomorphisms ϕ1, ..., ϕn to
D, ϕi : D 7→ Di, such that the corresponding problem Pi

can be more easily solved in Di, and the solutions of the
problems in the image domains can be combined to yield the
solution of the original problem P in D. We can combine the
partial solutions by the CRA (Chinese Remainder Algorithm),
which is described in [2]. Is every homomorphism ϕi valid
in this process?. How many homomorphism do we need?. To
answer these questions we must complete a qualitative and
quantitative analysis, respectively.

In our case, let being the problem P ≡ “Given a
regular matrix A = (ai,j)1≤i,j≤n over D and b =
(b1,n+1, ..., bn,n+1)T ∈ Zn, solve the system of equations
defined by Ax = b”. However, the solution to the 2D
Homography problem is, in general, an element which belongs
to Qn, and not to Zn. Under this situation, we propose the
following method to achieve the solution. The problem P is
equivalent to solve the system of equations Ay = det(A)b,
where now, the solution belongs to Zn, and then we only must
divide y by det(A). Therefore, we can reconsider the problem
as follows: “Given a regular matrix A = (ai,j)1≤i,j≤n over
Z and b = (b1,n+1, ..., bn,n+1)T ∈ Zn, determine the vector
y, which solves the system Ay = det(A)b”.

In the qualitative analysis we must conclude if every ho-
momorphism is valid. For our concrete problem, the primes
m, which do not solve the system, are those primes which
make that det(ϕm(A)) = 0. In our case, these primes are the

divisors of det(A), and the number of divisors of det(A) is
lower than log2(n!)+nlog2(n)+2. Then, the strategy will be
to take a prime m, and if we discover that det(ϕm(A)) = 0,
we will discard m and we will take another one.

In the quantitative analysis, we want to determine the
number of homomorphisms that we need to find the solution.
Let be c ∈ N an upper bound for the elements of the amplied
matrix |(A|b)|. Then, each solution βi, using Cramer, is the
determinant of a submatrix of |(A|b)|, and we can use the
bound of Hadamard, which determines that |βi| ≤ nnc2n,
where n is the number of rows of matrix A, to limit the number
of primes to use.

From this point, we can present the steps of the proposed
algorithm for solving a 2D Homography using the modular
method:
• 1 Determine four correspondences between points xi and

x′i. Then, construct the system of equations defined by
(6), to solve the system Ax = b with 8 unknowns.

• 2 Compute the bound given by the equation

CT = n! ·max {|ai,j |1 ≤ i ≤ n, 1 ≤ j ≤ n + 1} (7)

• 3 Initialization: p = 1; P = 1; β1,p = 0; . . . ; βn,p = 0;
βn+1,p = 0.

• 4 while P ≤ 2CT do
– 4.1 Take a prime m of simple precision.
– 4.2 Reduction: Am = ϕm(A); bm = ϕm(b); Aa =

(Am|bm).
– 4.3 Solve over Zm

∗ 4.3.1 Apply Gaussian Elimination over Zm to
matrix Aa, to obtain matrix Age.

∗ 4.3.2 βn+1,p = det(Age). If βn+1,p = 0 return to
step 4.1.

∗ 4.3.3 Solve the system over Zm. Let be the
solution of the system (β1,p, . . . , βn,p)T

∗ 4.3.4 Multiply this solution by the determinant
βn+1,p.

– 4.4 for i from 1 to n + 1 do

βi,p = CRA([βi,p, βi, m], [P,m]) (8)

– 4.5 p = m;P = Pm;.

• 5 Return the definitive solution
(

β1,p

βn+1,p
, . . . ,

βn,p

βn+1,p

)T

We have showed the symbolic algorithm used to solve a
system of equations. For this work, we used the software
Maple to achieve results.

C. Numerical Approach

This numerical approach is based on the algorithm called
DLT (Direct Linear Transformation), which is widely deve-
loped in [7], and in this section we only present an outline
of itself. At firs, we need to establish more than 4 corres-
pondences between points, in order to reach a better solution,
with 8 correspondences it is enough. In a second step, we
have to make a normalization of xi and x′i. We compute a
transformation matrix T (which consists of a translation and
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a scaling), which takes points xi to a new set of points x̃i

such that the centroid of the new set is the coordinate origin
(0, 0)T , and the average distance of all the points to the origin
is equal to

√
2. Also, we compute a similar transformation

T ′ between the set of points x′i and x̃′i. T and T ′ are upper
triangular matrices which are defined as follows

T =


√

2
p 0 −

√
2

sx
mx

0
√

2
p −

√
2

sy
my

0 0 1

 (9)

, where: m is a vector of 2× 1 defined as m = (mx,my)T ,
which contains the mean value of the coordinates x and y of
the vectors xi, s is a vector of 2×1 defined as s = (sx, sy)T ,
with the standard deviation of the coordinates x and y of a set
of points xi, and p is the mean value of the components of
vector s. Then, we can compute the transformation between
these two sets of points as follows

x̃i = Txi (10)

From this point, we have two transformation matrix: T and
T ′. For each new correspondence between the set of points
x̃i and x̃′i we compute the matrix Ai defined in (6). Then we
assemble all the 2×9 matrices into a single matrix A. We seek
the non-zero solution for h. Matrix A has rank 8, hence it has
a 1-dimensional null-space which provides the exact solution
for h. This would be the case if the measurement of image
coordinates were exact, but in others situations the established
correspondences between the sets of points are inexact. Instead
of needing an exact solution (the null-space), we can find
an approximate solution which minimizes a determined cost
function. To solve the system of equations under this situation,
we have to obtain the SVD (Singular Value Decomposition)
of matrix A. The cost function to minimize is the quotient
||Ah||/||h||, that is the same that to minimize the norm ||Ah||.
The unit singular vector corresponding to the smallest singular
value is the solution h. Specifically, if A = UDV T with
D diagonal and with positive diagonal entries, arranged in
descending order down the diagonal, then h is the last column
of V .

Let h̃ be the obtained solution, and H̃ the compounded
matrix. In order to obtain the matrix H we have to do the
following denormalization

H = (T ′)−1
H̃T (11)

H =
(

1
h9

)
H (12)

D. Experimental Results

We have presented an alternative approach to compute a
2D Homography based on computer algebra. A symbolic
algorithm offers the exact solution of a problem, whereas the
numerical one returns an approximation. There are advantages
and disadvantages in each kind of approach. First of all, in the
developed comparative analysis, we have to take into account
that DLT algorithm needs transformations of normalization,

because its result, for computing homographies, depends on
the coordinate frame in which points are expressed. This
normalization, consisting of a translation and scaling of image
coordinates, will make that the algorithm be invariant with
respect to arbitrary choices of scale and coordinates origin.
Whereas, the symbolic methodology proposed from this paper
is invariant, without the necessity of any kind of normalization
process which adds more complexity to the algorithm, and
problems of loss of precision.

To compare both approaches, we have created a real-
top-view of a figure over a plane. Then, we have matched
4 correspondences (8 for the numerical approach) between
points, in order to compute the 2D Homography. Finally, we
have measured the similarity between the real-top-view and
the generated top-views, computing the SSD (Sum of Squared
Differences). Figure 1 shows the picture generated and the
real top-view, and in figure 2 we can see that both algorithms
presents a quite similar solution, but the SSD obtained is of
9.876.292 for the symbolic approach, and for the numerical
method is of 10.003.448.

(a) (b)

Fig. 1. This figure shows the created model: a) is the projective view, and
b) is the real-top-view.

(a) (b)

Fig. 2. This figure shows the pseudo-top-views created, a) with the numeric
approach, and b) with the symbolic methodology.

III. APPLICATION: PARKING MANAGEMENT SYSTEM

To apply the mathematical work proposed from this paper,
we have developed a parking management system. In this kind
of systems, based on computer vision, there are some problems
derived from the use of cameras. In [10] the authors present a
work for determining car-park occupancy from single images,
but a full visibility from the camera position to the whole car-
park has to be ensured. Others works, as it is shown in [11],
assume that it is possible to install a camera high enough to
implement a parking condition discrimination system based
on a real-top-view of the parking area. We understand that
all of described situations impede the installation of these
management systems in a lot of real places, as in underground

1677



parkings. To solve these problems, our work compounds a
pseudo-top-view of the parking area. It has to be ensured that
our surveillance camera has a good visibility of the parking
area, in order to manage more parking lots. The main objective
of this image compounding task is to achieve a reference image
where it can be done easily the identification and delimitation
of each parking lot, and the extraction of the texture feature
characteristics.

We present a solution based on a single camera. This
first approach offers the following administration tasks: sur-
veillance of the parking area, determination of free parking
lots, determination of parked vehicles in forbidden zones and
average time of parking. Every minute, we capture an image
of a parking area from a surveillance camera. The view that
offers the camera is not the optimal to the achievement of the
proposed tasks. Our first goal is to compound a pseudo-top-
view of the parking area. To reach this objective we implement
an homography computation, like described in this paper,
over the captured image of the parking area which has been
bounded previously. Only with four identified correspondences
between captured image and pseudo-top-view, we can compute
the homography correctly. From this compounded image we
can extract all the characteristics of interest easily. In a second
stage, we realize a texture feature extraction of each parking
lot using a Gabor filter bank. This kind of filter banks are
used for the texture feature extraction in the literature [12],
[13] and [14]. Finally, each feature vector is processed by an
SVM (Support Vector Machine) trained to recognize parking
conditions. Figure 3 shows the steps that our system follows
to achieve these objectives.

IV. TEXTURE FEATURES EXTRACTION

The main goal of the proposed parking management system
is the detection of free parking lots in a parking area. These
kind of problems can be solved with techniques like motion
detection and tracking, but due to given restrictions (single
images, large distance, lens distortion, changes in lighting)
these techniques are not applicable easily, and there are some
works, [10] and [11], which deal with this difficulties. We
suggest a solution to solve these problems: an SVM trained
with texture feature vectors of every parking lot, which have
been taken in different illumination conditions and with di-
verse type of shadows. From this paper, we propose Gabor
filters for texture feature extraction of the background of
the parking area, because they compound a multi-resolution
representation of itself, as it is described in [12] and [13]. A
Gabor filter lets us to extract various features related to the
local power spectrum of an image. These features are obtained
by filtering the image with a bank of two-dimensional Gabor
filter. In [15], [16] and [17], there is a complete description of
this kind of filters. A Gabor filter has a convolution kernel
which is a product of a Gaussian and a cosine function,
and we can establish a preferred orientation and a preferred
spatial frequency. The use of Gabor filters, in extracting texture
features of an image, is motivated on the following factors:
Gabor representation is optimal in the sense of minimizing

Fig. 3. Paring Management System Diagram.

the joint two-dimensional uncertainty in space and frequency,
and a Gabor filters can be considered as an edge and line
detectors, hence this kind of filters can be used to characterize
the texture information. A two dimensional Gabor function
g(x, y) and its Fourier transform G(u, v) can be written as:

g(x, y) =
exp

{
−1
2

[(
x
σx

)2

+
(

y
σy

)2
]

+ 2πjWx

}
2πσxσy

(13)

G(u, v) = exp

{
−1

2

[(
(u−W )

σu

)2

+
(

v

σv

)2
]}

(14)

, where σu = 1
2πσx

and σv = 1
2πσy

. The gaussian’s major
and minor axis widths are determined through σx and σy ,
respectively. Typically, an input image I(x, y), where (x, y)
ε Ω, and Ω represents the set of image points, is convolved
with a 2-D Gabor function g(x, y), to obtain a Gabor feature
image S(x, y) as follows

S(x, y) =
∫∫

Ω

I(φ, ϕ)g(x− φ, y − ϕ)dφdϕ (15)

For the texture feature extraction, we need to generate a
Gabor filter dictionary scaling and changing the orientation
of a Gabor function g(x, y). Let g(x, y) be the mother Gabor
function, then the Gabor filter dictionary can be obtained
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through the generating function gmn(x, y) as follows

gmn(x, y) = a−mg(x′y′) (16)

, with

x′ = a−m(xcos(θ) + ysin(θ))

y′ = a−m(−xsin(θ) + ycos(θ)) (17)

, where a > 1, m and n are integers, θ = nπ
K , and K is the

number of orientations.
A Gabor filter family, generated with equations (16) and

(17), forms a complete but non-orthogonal basis set, hence
it implies that there is redundant information in the filtered
images. We can establish some criteria to design a Gabor
family depending on the application. For the texture feature
extraction it is crucial to reduce the possibly redundancy
derived from the non-orthogonality of the functions set. Let
zl and zu be the lower and upper frequencies of interest, K
the number of orientations and R the number of scales in
the multi-resolution decomposition. The design strategy is to
ensure that the redundant information is minimized, thus the
half peak magnitude of the filter responses has to be tangent
to its nearest half peak magnitude neighbours, as [12] shows.
For our application we have employed the following values:
zl = 0.05, zu = 0.4, K = 6 and R = 4. Figure 4 shows the
contours which indicate the half peak magnitude of the filters.

Fig. 4. Contour of the half-peak magnitude of the generated Gabor functions.

Then, given an image I(x, y), its Gabor transform
Smn(x, y) is obtained changing the Gabor function g(x, y)
in (15) by gmn(x, y). For each parking lot we compute its
Gabor transform, then we use the mean µmn and the standard
deviation σmn of the filtered image for the classification and
recognition purposes. A feature vector f̄ is created using µmn

and σmn as follows

f̄ = [µ00σ00µ01σ01 . . . µ(S−1)(K−1)σ(S−1)(K−1)] (18)

Length of vectors Class Rate
48 99.73%
38 99.73%
28 99.71%
18 99.62%
8 98.17%

TABLE I
EXPERIMENTAL RESULTS OBTAINED WITH DIFFERENT LENGTHS OF THE

TEXTURE FEATURE VECTORS.

For this work, each parking lot is filtered by the described
Gabor filter bank and each feature vector of our application
has 48 components, because we have employed the following
values: K = 6 and R = 4.

V. EXPERIMENTAL RESULTS

The parking condition recognition task is done through a
trained SVM. We need to use a supervised learning method
because the surveillance camera takes images: with different
illumination conditions, shadows and possibly strong sun-light
spots. Thus, an approach to object detection based on tech-
niques as motion detection or tracking is not easily applicable.
For this work, we have created a texture database which
consists of 2 different texture classes: one class represents the
texture of the background of a parking lot, and the other one
represents the textures of vehicles. We have trained the SVM
with a database which contains 24300 different texture feature
vectors, extracted from images which were taken in diverse
illumination conditions, of which 22470 belong to the free
parking lot class, and 1830 belong to the vehicle texture class.
For the training step we have used 12150 feature vectors, the
half of each class. With the SVM we can use some different
types of kernels, but for this study we have used a Linear
kernel only. We have made use of the implementation in C
called SVMLight described in [18].

Finally, the implementation of the parking management
system offers the following results. Every minute the system
captures an image of the parking zone of 720×576 pixels. For
this work, we can manage a parking zone with 21 parking lots
with a single camera. The first step is to compound the pseudo-
top-view of the image. Then, the system extracts the texture
feature vector of each lot. To end, these 21 texture vectors
obtained are passed to the trained SVM for the recognition
task. We have tested our trained SVM with 12150 feature
vectors and the results obtained with different lengths of the
feature vectors are in Table I.

From vectors with more than 38 components the class rate
obtained is the same, then we can compute the recognition
task with vectors of 38 components in order to reduce the
average time of feature extraction and classification. These
results show that the main information for class recognition
is in low frequencies. The software developed for this work
generates visual information over some images which indicates
if the parking lot is free (white rectangle), if it is occupied
(white rectangle with a cross inside) or if the car is parked
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on a forbidden zone (white rectangle with a two white filled
triangles inside). Figure 6 shows that our systems recognizes
free parking lots even if there are shadows over the parking
area, and it displays some results obtained with vehicles in
forbidden zones and with sun-light spots.

Fig. 5. Captured image with sun-light spots and shadows.

Fig. 6. Experimental results over occupied parking lots.

VI. CONCLUSIONS

In this paper, we have proposed a novel methodology for
computing a 2D homography applying a concrete algorithm
of computer algebra: the homomorphic method for solving
systems of equations over Z. This algorithm is a new re-
source for the computer vision discipline, which eliminates
the problems of normalization and of loss of precision which
are associated with the numerical approach developed in the
DLT algorithm. We have showed the results obtained with a
comparative analysis between these two methodologies, and
the symbolic approach presents the best solution: it solves the
system without normalization process and with less number
of correspondences between points. Also, we have presented

a Parking Management Systems based on the computer algebra
algorithm proposed, which works well in a real scenario.

In future works, we will deal with: a deeper comparative
analysis of complexity between these numerical and symbolic
algorithms, and with a new search of computer algebra al-
gorithms that could be appropriate in some computer vision
problems. Related to the parking management system, future
works will include tests with more than one cameras and with
car tracking techniques. Then, we will try to compound a real-
top-view of a parking zone, and we will be able to solve the
problems of occluded regions in the image.
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