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Abstract—This paper presents a quantitative comparison of sev-
eral segmentation methods (including new ones) that have success-
fully been used in traffic sign recognition. The methods presented
can be classified into color-space thresholding, edge detection, and
chromatic/achromatic decomposition. Our support vector ma-
chine (SVM) segmentation method and speed enhancement using
alookup table (LUT) have also been tested. The best algorithm will
be the one that yields the best global results throughout the whole
recognition process, which comprises three stages: 1) segmenta-
tion; 2) detection; and 3) recognition. Thus, an evaluation method,
which consists of applying the entire recognition system to a set of
images with at least one traffic sign, is attempted while changing
the segmentation method used. This way, it is possible to observe
modifications in performance due to the kind of segmentation
used. The results lead us to conclude that the best methods are
those that are normalized with respect to illumination, such as
RGB or Ohta Normalized, and there is no improvement in the use
of Hue Saturation Intensity (HSI)-like spaces. In addition, an LUT
with a reduction in the less-significant bits, such as that proposed
here, improves speed while maintaining quality. SVMs used in
color segmentation give good results, but some improvements are
needed when applied to achromatic colors.

Index Terms—Detection, recognition, segmentation, support
vector machines (SVMs), traffic sign.

I. INTRODUCTION

ECENTLY, both automatic traffic sign detection and

recognition have been the subject of many studies [1]-
[10], although references to them have been appearing since
1990 [11]-[13]. Traffic sign recognition is important for driver-
assistant systems, automatic vehicles, and inventory purposes.
This paper is aimed at developing an inventory system [14],
[15] to obtain a complete catalog of all the traffic signs on a
given road and gather information about their state. Detection of
red and blue traffic signs was considered for inventory purposes
in [16]. However, that system focused solely on the position of
the possible signs and not on their recognition.
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Traffic signs are normally classified according to their color
and shape and should be designed and positioned in such a way
that they can easily be noticed while driving. Inventory systems
must take advantage of these characteristics. However, various
questions need to be taken into account in an automatic traffic
sign-recognition system. For example, the object’s appearance
in an image depends on several aspects, such as outdoor lighting
conditions, camera settings, or the camera itself. In addition,
deterioration of a traffic sign due to aging or vandalism affects
its appearance, whereas the type of sheeting material used to
make traffic signs may also cause variations. Finally, traffic sign
images taken from a moving vehicle can suffer from blurring
because of vehicle motion.

These problems particularly affect the segmentation step,
which is usually the first stage in high-level detection and
recognition systems. In this paper, the goal of segmentation was
to extract the traffic sign from the background, as this is crucial
to achieving good recognition results. Segmentation can be car-
ried out using color information or structural information. Many
segmentation methods have been reported in the literature since
the advent of digital image processing. For example, in [17]
and [18], extensive revisions of color-segmentation methods
are presented. In [17], many color-segmentation methods are
described and classified into different groups.

1) Feature-space-based techniques: These are based on the
color of each pixel with no consideration of the relation-
ship to spatial information and include clustering, his-
togram thresholding techniques, and some neural network
methods used only to classify colors.

2) Image-domain-based techniques: These aim to aggregate
pixels in a region, using a measure of similarity based
on color characteristics. These techniques include split-
and-merge, region growing, edge detection, and neural-
network-based classification techniques that use color
and space information.

3) Physics-based techniques: These techniques use physical
models for the propagation and reflection of surfaces to
look for the color regions in an image.

In [18], 150 references were presented on color segmenta-
tion. If the grayscale methods were to be included, this number
would increase to about 1000 references, making an exhaustive
study of the field beyond the scope of a paper such as this.
Therefore, the discussion here focuses on the segmentation
techniques previously used in traffic sign recognition, although
some methods that have not been used before for this task
but display good characteristics [such as our support vector
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machine (SVM) segmentation or reduced lookup tables
(LUTs)] are also presented and discussed.

The segmentation methods used in earlier works about sign
recognition employed different color spaces and techniques
to separate the sign from the background. In [11] and [13],
color normalization of the Red Green Blue (RGB) com-
ponents with respect to the sum of those components was
performed to detect strong colors in the image. A different
relation between RGB components was used in [19], where
the red component was used as a reference. Other studies used
different color spaces rather than directly using RGB. The YUV
color space was used in [20] to detect blue rectangular signs.
Nevertheless, most researchers [14], [16], [21]-[24] have used
Hue Saturation Intensity (HSI) family spaces, which focus on
the hue and saturation components to prevent lighting depen-
dencies and sometimes include intensity information to reduce
hue and saturation instabilities. All previous methods can be
classified among feature-space-based techniques.

Other algorithms used structural information based on
edge detection, rather than color information. For example, a
Laplacian filter with previous smoothing was used in [25]
for grayscale images, grayscale images were also used with
a Canny edge detector in [26], and a color image gradient
was used in [7]. These are examples of image-domain-based
techniques.

Several segmentation possibilities are thus available for the
present study. The question is how to identify the best. In this
case, the best segmentation method is considered to be that
which gives the best recognition results. The criteria for good
recognition results include high recognition rate, low number
of lost signs, high speed, and low number of false alarms. To
control these variables, a complete recognition system, which
enables the segmentation procedure to be easily changed, was
necessary. In addition, a set of images was needed to test
the performance. For this study, more than 100000 images
were obtained from different captured sequences while driving
at normal road speed, i.e., with no disturbance to traffic. A
database was constructed from the images, which were taken
by different cameras using different settings and under different
lighting conditions, with the camera positioned both inside
and outside the car. However, not all the images have been
used for this comparison. Relevant frames were extracted from
several sequences identified as posing possible problems in
the segmentation step. These frames have been made publicly
available.

Although we focused on the Spanish traffic sign set, many
of the properties are similar to those in other countries, at
least in Europe, since traffic signs from European countries
have similar pictograms to Spanish traffic signs, although some
colors and legends are different.

This paper is organized as follows: Section II presents
an overview of the entire traffic-recognition system used to
measure the performance of each segmentation procedure.
Section III presents the algorithms implemented for com-
parison purposes. Section IV describes some results and the
method designed to measure them. Finally, in Section V, the
results obtained are discussed to identify the best segmentation
method.

Images

Segmentation

Results from

Detection previous

Recognition

images

THHI

¢
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Fig. 1. Block diagram of a traffic sign-recognition system.

II. SYSTEM OVERVIEW

The traffic sign-recognition system that we have imple-
mented, which was described in detail in [14], was used to
evaluate segmentation algorithms presented in this paper. The
system consists of four stages (see Fig. 1).

1) Segmentation: This stage extracts objects from the back-
ground, which are, in this case, traffic signs using color
information.

2) Detection: Here, potential traffic signs are located
through shape classification.

3) Recognition: Traffic sign identification is -effected
using SVMs.

4) Tracking: This stage grouped multiple recognitions of the
same traffic sign.

These stages have already been presented in [14], [15], and
[27] and are now summarized for detection, recognition, and
tracking.

A. Shape Detection

The detection stage is described in detail in [27] and will now
be briefly reviewed. This step uses the output masks obtained
from the segmentation stage and gives the position and shape of
any possible traffic sign. Blobs can be obtained by thresholding,
color classification, or marking an edge into the image, as will
be presented later in this paper.

The shapes considered are triangle, circle, rectangle, and
semicircle. The octagon (from stop signs) was considered as
a circle. Detection was carried out by comparing the signature
of each blob with those obtained from the reference shapes.

To reduce projection distortions, each blob was normalized
using the minimum inertia axis angle as a reference, and
eccentricity was reduced through a method based on second-
order moments. Occlusion was overcome through interpolating
the signature when the blob was opened.

To reduce scaling and rotation problems, absolute values of
the discrete Fourier transform (DFT) were considered, and the
total energy of the signature was normalized. The signature
was sampled from 64 different angles, and the output of the
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TABLE 1
NUMBER OF RECOGNIZED SIGNS BY TYPE

Type Number
Red Circular 61
Red Triangular 45
White Circular 110
White Triangular 44
White Rectangular 114
Blue Rectangular 97
Yellow Circular 47
Yellow Triangular 25

Yellow Rectangular 9

Total 552

DFT was compared with that of previously calculated models
to determine to which shape category each blob belonged.

Finally, the blob was reoriented to a reference position to
simplify the recognition stage, except in the case of circles, as
they have no reference point.

B. Recognition

This stage was described in detail in [14]; here, only the
most important aspects are presented. Once the candidate blobs
have been classified according to their shape, the recognition
process is initiated. Rather than using the entire set of signs,
the recognition task is divided into different colors and shapes.
This way, a total of 552 traffic signs (see Table I) is reduced to
a maximum of 114 signs per type, thus improving speed.

Training and testing are carried out according to the color and
shape of each candidate region. Thus, to reduce the complexity
of the problem, each candidate blob is only compared with
those signs that have the same color and shape.

The recognition stage input is a normalized-size block of
31 x 31 pixels in grayscale for every candidate object. The
interior of the bounding box was therefore normalized to these
dimensions, and only pixels of interest were taken into account,
depending on the shape.

Different one-versus-all SVM classifiers (see the Appendix)
with a Gaussian kernel were used. In the test phase, the traffic
sign class with the highest SVM decision function output was
assigned to each blob.

C. Tracking

The tracking stage [15] identifies correspondences between
recognized traffic signs to give a single output for each traffic
sign in the sequence. If a newly detected traffic sign displays
no correspondence with other previously detected signs, a new
track process is initiated. The track data structure containing
the objects to be tracked is then updated, taking into account
the new information. This ensures that sequential detections
from the same object were processed together to estimate the
parameters of the object. At least two detections are required to
consider the object as a traffic sign. Information such as position
coordinates, size, color, type category, and the mean gray level
of the region occupied by the object is evaluated to establish
correspondences between traffic signs in different images.

TABLE II
COMPARED SEGMENTATION METHODS WITH ITS ABBREVIATIONS

SEGMENTATION METHODS
CAD Chromatic/Achromatic Index
RGB RGB Differences
Achromatic RGBN Normalized RGB Differences
SI Saturation and Intensity
Ohta Ohta Components
RGBNT | RGB Normalized Thresholding
Color Space HST Hue and Saturation Thresholding
Thresholding HSET Hue and Saturation Enhancement
Thresholding
OST Ohta Space Thresholding
GER Gray-Scale Edge Removal
Edge Detection | Canny Canny Edge Removal
CER Color Edge Removal
SVMC Support Vector Machines Color
Other Segmentation
LUT Look up Table Speed Enhancement

III. SEGMENTATION ALGORITHMS

This section describes the segmentation algorithms evalu-
ated (see Table II). The implementation of these algorithms
generates binary masks, thus enabling objects to be extracted
from the background. One mask was obtained for each color
of interest, i.e., red, blue, yellow, and white. However, some
algorithms are unable to obtain all the masks needed for the
system, and only one mask is obtained, which is then used
with all the colors of interest. This is the case of edge-detection
techniques.

At this point, a problem arises with white segmentation since
this is not a chromatic color but an achromatic color. In some
related works on traffic sign detection, white information is
not considered, and only red or blue colors are used to detect
signs. However, much information is lost when this approach
is employed since a large number of signs incorporate white
content, i.e., prohibition or danger signs. Furthermore, some
color spaces, such as HSI, are unstable near achromatic colors
and cannot directly be used over those pixels. To improve white
segmentation and reduce color space problems in this study,
chromatic/achromatic decomposition is carried out. Thus, only
those pixels considered chromatic are classified into different
colors, whereas for achromatic pixels, those over a given thresh-
old of brightness are considered to be white. This idea, based
on saturation and intensity values, was used in [28], but we
adapt each color space to identify achromatic pixels. Thus, we
distinguish between color-specific segmentation algorithms and
those devoted only to chromatic/achromatic decomposition,
although, in some cases, both are closely related.

A. Color Space Thresholding (CST)

One extended color-segmentation technique consists of
thresholding the components in a color space. The existing
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TABLE 1II
THRESHOLD VALUES FOR RGBNT, HST, AND OST METHODS

Method Threshold Values

RGBN ThR =0.4, ThG =0.3, ThB = 0.4, ThY = 0.85

HSIT ThRy =10, ThRs = 300, ThB1 = 190, ThBs = 270, ThY; = 20, ThY> = 60, ThY3 = 150
Ohta ThRy = 0.024, ThRy = —0.027, ThB; = —0.04, ThB> = 0.082, ThY; = 0.071, ThYs = 0.027

variations of this technique [18] are related to different spaces
or different means to identify the thresholds. The election of the
color space is a key point in this technique [29], and therefore,
several of them are compared in this work. It is possible to
obtain an automatic threshold based on the histogram of the
image [30], but this approach identifies color regions, instead
of a given color. Thus, the thresholds used for segmentation are
established by looking for the desired colors in the space used.
The distribution of these colors gives an idea of the thresholds
needed, which are empirically set to obtain the best classifi-
cation results. The empirical election of the thresholds cannot
guarantee the best results; thus, we performed an exhaustive
search around the empirical thresholds to validate them. This
procedure and some results are shown in Section IV-C3. As
previously stated, white classification was performed using the
achromatic/chromatic techniques explained in Section III-B.

1) RGB Normalized Thresholding: The RGB space is one
of the basic color spaces (such as XYZ) and, furthermore, is
usually the initial space, as it is used by capture cameras and
monitors. If simplicity of the segmentation process is the aim,
the best choice will be the use of RGB with no transforma-
tion. However, the high correlation between the three color
components and the effect of illumination changes on color
information makes it difficult to find the correct thresholds
in this space using empirical methods. One solution could
be the use of a normalized version of RGB with respect to
R+ G+ B, as in [11] and [13], which uses three normalized
components called 7, g, and b. This way, illumination changes
have less effect on color; in addition, given that the sum of
the new components is r + g + b = 1, only two components
are needed to carry out classification as the other component
can directly be obtained from these. In addition, thresholds are
easily located in this space. However, some problems arise with
this normalized space since, with low illumination (low RGB
values), the transformation is unstable, and at near-zero values,
noise is amplified.

The masks for each color in this space are obtained using the
following expressions for each color mask:

True, ifr(i,j) > ThR
Red(i, j) = and g(i, j) < ThG
False, otherwise
. _ J True, ifb(i,j) > ThB
Blue(i, j) = {False7 otherwise
-y [ Tre, i (r(i, ) + 906, 7)) = ThY
Yellow (i, j) = {False, otherwise. .

The threshold values used are shown in Table III.
2) Hue and Saturation Thresholding (HST): In [31], the
HST technique was presented and generalized for red, blue, and

yellow. The HSI color space has two color components, i.e., hue
and saturation, which are closely related to human perception
and an illumination component that is close to brightness. Hue
represents the dominant color value, and saturation represents
the purity of color, with high values belonging to pure colors
and low values belonging to colors containing a high mix of
white. HSI components can be obtained from RGB [28]. The
hue obtained H is within the interval [0, 360], and the saturation
S is within [0, 255]. It can be seen that hue is undefined
when saturation is null (grayscale with R = G = B) and that
saturation is undefined when intensity is null.

The output masks for each color using hue/saturation thresh-
olding are thus obtained as

True, if H(i,j) < ThR;
Red(i,j) = or H(i,j) > ThRy
False, otherwise
True, if H(i,j) > ThbB;
Blue(i, j) = and H(i,j) < ThBs
False, otherwise
True, if H(i,j) > ThY;
S and H (i,7) < ThY,
Yellow(i, j) = and (i, §) > ThY, P
False, otherwise.

In [14], the thresholds were set after an analysis of the
hue and saturation histogram of manually selected traffic sign
parts, where the hue/saturation thresholding had been applied to
extract the red, yellow, and blue components. Table III shows
the threshold values employed in the evaluation presented in
this paper since they are different from those used in [14], and
saturation was used for yellow only.

This method is simple and almost immune to illumination
changes since hue is used, but the main drawbacks include the
instability of hue and the increase in processing time due to the
RGB-to-HSI transformation.

3) Hue and Saturation Color Enhancement Thresholding
(HSET): In [21], a different method for thresholding the hue
and saturation components was presented. The distribution of
hue and saturation in red and blue hand-segmented signs was
studied, and subsequently, the values associated with each color
are identified. To prevent the problems of a rigid threshold, a
soft threshold based on the LUTs shown in Fig. 2 was used. This
procedure was denominated “color enhancement” but in fact
constitutes a soft threshold, where different values are assigned
using linear functions, as shown in Fig. 2. The LUTs for the
transformation of hue and saturation are described in this figure,
where four parameters are used: hmin, Ptops Pmax, and Smin.
In all the cases, hue and saturation are normalized within the
interval [0, 255].
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New New Blue and New
Red
Hue Hue Yellow Sat. All colors
255 255 : 255
Y Bmin Amax 255 0 Pmin hlop Amax 255 0 Smin 255

Original Hue Original Hue Original Saturation

Fig. 2. Color LUTs for the HSET method [21]. Color enhancement was
achieved by using three LUTs for the hue and saturation components. Red uses

the left LUT, blue and yellow use the central LUT, and saturation uses the right
LUT. Hue and saturation were normalized in the interval [0, 255].

TABLE IV
LUT AND THRESHOLD PARAMETERS FOR HSET
hmin htop hmax Smin Thresholds
red 11 N.A. 224 23 28,160
blue 128 150 180 84 6,257
yellow 10 20 25 84 14,080

De la Escalera et al. [21] did not include yellow, whereas
we have extended the method to incorporate this color by using
the same enhancement as for blue (see Fig. 2) but employing
different parameters.

The method can be summarized here.

1) Obtain hue and saturation from the RGB image.

2) Transform hue and saturation with two LUTs.

3) Normalize the product of the transformed hue and satura-
tion. This step was not performed in our study to increase
speed.

4) Threshold the normalized product.

After the new hue and saturation values have been obtained,
the product of both values can be performed, and the result was
directly thresholded without normalization to reduce calcula-
tions and enhance speed. The different thresholds used for each
color are shown in Table IV. The values used were obtained
through modification of those from [21], as the product was
not normalized, and the aim was to obtain the best empirical
results. The algorithm for blue objects is extended using the
LUT presented in [21], whereas that for yellow objects uses the
results from [14].

4) Ohta Space Thresholding (OST): The search for an effec-
tive space in color segmentation has generated a large number
of color features, such as XYZ, YIQ, Lab, and LUV. Among
these spaces, that proposed by Ohta et al. [32] displays some
desired characteristics, including simplicity and the fact that it
can be used without high computational cost. Another char-
acteristic is that this space is derived from trying to find the
best uncorrelated components, thus making them almost inde-
pendent. Furthermore, this space is included in the Opponent
Color Spaces family, which is inspired by the physiology of the
human visual system [28].

Based on extensive experiments [32] and the use of the
Karhunen—Loeve transform, the author identified a set of three
color features derived from RGB, which are effective for the
segmentation of color images, i.e.,

ol [F 3 B[R
Li=]1 0 —-1||G]. A3)
I3 -+ 1 -1 |B

As we can see, the I; component is related to illumination;
thus, only I» and I3 are needed for color classification. Al-
though these components can be used for direct classification,
in this study, we use the normalization presented in [33], which
reduces color variations due to illumination changes. The new
normalized components P; and P» are given by

_1 RBR-B _ 115
'""VRR+G+B 3,1
126-R-B 2 I

P,

V6 R+G+B 3610 @

Using these normalized components, the colors can be clas-
sified as follows:

True, if Pi(i,5) > ThRy
Red(7, j) = and Ps(i,j) < ThRs

False, otherwise

True, if Pi(i,j) <ThB
Blue(i,j) = and | P2 (7, j)| < ThBs

False, otherwise

True, if Pi(i,j) > ThY;

Yellow (i, j) = and |P2(7,7)] < ThYy,  (5)
False, otherwise.

The threshold values used are shown in Table III.

B. Chromatic/Achromatic Decomposition

Chromatic/achromatic decomposition tries to find the image
pixels with no color information, i.e., gray pixels. The grayscale
is obtained when the R, G, and B values are equal; however, if
these values are close rather than equal, the colors are perceived
as being near gray. The methods presented extract gray pixels,
and then, the brighter pixels are treated as white ones. All of
the methods are different since each one is applied to different
color spaces, but all of them are based on the idea of closeness
of the R, GG, and B components.

1) Chromatic/Achromatic Index: In [34], a decomposition
for chromatic and achromatic pixels for the detection of white
signs was presented. This method was used in [14] for such de-
tection, together with hue/saturation thresholding. A chromatic/
achromatic index is thus defined as

(IR —G|+|G - B[+ |B - R|)

CAD(R,G,B) = D

(6)

where R, GG, and B represent the color components for a given
pixel, and D is the degree of extraction of an achromatic color.
Accordingly, a pixel was considered achromatic when

.. True,
Achr(i, j) = {False

if CAD(7,j) <1
otherwise

(7

and white when

True, if Achr(4, j) =True
White(i, j) = and (R+ G+ B) >ThW  (8)
False, otherwise.



922 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 4, DECEMBER 2010

TABLE V
THRESHOLD VALUES FOR ACHROMATIC METHODS

Method

Thresholds Values

CAD

D =30, ThW = 180

RGB Differences

ThA1 =32, ThAs = 40, ThAz = 40, ThW = 180

Normalized RGB Differences

ThA =0.17, ThW = 180, ThL = 60

Achromatic ST

ThA =48, ThW = 60, ThL = 60

Achromatic Ohta

ThAy =0.51, ThAs = 0.882, ThW = 60, ThL = 20

The threshold values for this method are shown in Table V.

2) RGB Differences: Although the previous index is useful,
the use of a threshold to measure the difference between every
pair of components is more realistic. Thus, we mark colors as
being achromatic when the three differences between compo-
nents are below a fixed threshold, which is different for each
one. Accordingly, a pixel is considered achromatic when

True, |R(i,j) — G(i,j)| < ThA; and
. G (i, j) - B(i,j)| < ThAs and
At = BG.J) - RG.HI < Thdy @
False, otherwise
and white when
True, if Achr(i,j) =True
White(, j) = and (R+ G+ B) >ThW (10)
False, otherwise.

The values for the thresholds are shown in Table V.

3) Normalized RGB Differences: Innormalized RGB space,
the achromatic pixels can be found in a similar way to that
shown in the previous section. However, working in a normal-
ized space requires only two differences, instead of three, since
the third component can be obtained from the other two (see
Section III-A1). Thus, the output image with each pixel marked
as achromatic or chromatic is given by

True, lf|7ﬁ(17.7) —g(z,j)\ < ThA
Achr(i,j) = and |r(i,7) — b(i,j)| < ThA (11)
False, otherwise

and white is obtained with

True, if Achr(é,j) =True
White(i, j) = and (R+G+ B) >ThW (12)
False, otherwise.

Since this is a normalized space, with near-low intensity
values, instability exists, and to prevent this, when a pixel
previously considered as chromatic has the sum of its RGB
components below a given threshold (ThL), it is directly
considered as black and thus achromatic. The threshold values
are shown in Table V.

4) Saturation and Intensity: When HSI or similar spaces
are employed, the achromatic detection presented in [28] can
be used. This method is based on the fact that low saturation
values mark pixels as achromatic since, with R, G, and B being
equal (gray colors), saturation is null. However, not only zero
saturation but low values are also considered achromatic. In

addition, hue is undefined for zero saturation and unstable for
low intensity. Thus, the expression used is

if 5(i,§) < ThA

otherwise. (13)

.. True,

Achr(i, j) = {False,

Intensity must be considered in two ways. Those pixels

considered chromatic but with an intensity below a threshold

called ThL are directly considered as black, thus preventing

the instability of hue for low intensity. High values will be
considered as white when a pixel is achromatic, i.e.,

True, if Achr(i, j) = True
White(i, j) = and I(i,7) > ThW (14)
False, otherwise.

The threshold values are shown in Table V.

5) Ohta Components: In Ohta space, achromatic pixels can
be located by looking at I» and I35 components or normalized
P, and P, [see (4)]. Low values for P; and P, are obtained
when R, G, and B components are similar. Therefore, low
values of P} and P» mark the achromatic pixels. Consequently,
achromatic pixels are given by

True, lf‘Pl(ZajN < ThAl
Achr(i, j) = and |Pa(i,7)| < ThA, (15)
False, otherwise
and white pixels are given by
True, if Achr(i, j)=True
White(i, j) = { and [ (i,j) > ThW (16)
False, otherwise.

For low values of I;, components P, and P, are unstable;
therefore, chromatic pixels below a T'hL threshold are marked
as black and, thus, are achromatic. The threshold values for this
method are shown in Table V.

C. Edge-Detection Techniques

Other extended segmentation techniques are based on the
use of edge-detection algorithms to locate the different objects
within an image. The idea is to mark the edge points as “no
object,” so that the points inside a closed edge are automatically
marked as “object.” With this method, color information is not
needed, and problems of color spaces can be prevented. In [25],
the authors reported that the use of the hue component showed
two main problems.

1) There is a larger computational cost to obtain the hue

from RGB.

2) The hue component can be affected by illumination

changes, distance from the camera, or weather conditions.
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TABLE VI
PARAMETERS FOR CANNY EDGE DETECTION
Sigma | Tlow | Thigh
Values 0.5 0.5 0.95

Therefore, they used only the brightness of the images to
effect segmentation, using a Laplacian method.

In [26], the authors reported that, while color provides
faster focusing on searching areas, precision was lower due to
confusion of colors (particularly red and blue), segmentation
problems in predominantly white signs, and changes in lighting
conditions. Thus, methods based on shape analysis are more
robust when changes in lighting occur. Therefore, the Canny
method was used for edge detection since this method preserves
closed outlines, which is a desirable characteristic in shape-
detection systems.

One common problem with these methods is that, although
they are simple and fast, they produce numerous candidate
objects, which burden the detection and recognition steps with
more work.

1) Grayscale Edge Removal (GER): This method was pre-
sented in [25] and comprises the classical two-step second-
order derivative (Laplacian) method: first, smoothing the image
and, second, applying a Laplacian filter that performs a sec-
ond derivative over the image to extract the edges. After this
process, the result is an image called L(i, j).

Following this, the edge image is obtained by thresholding
the results as follows:

. Edge,
00, 5) = {No—edge,

L(i,j) >T
L(i,j) <T an
where 1 is the threshold, which is set as I" = 3 as in [25].
2) Canny Edge Removal (Canny): The previous method
used a very simple edge detector, and while implementation is
fast, quality is not the best. Among the algorithms proposed
for edge detection, the Canny edge-detection method [35] is
commonly recognized [36] as a “standard method” used for
comparison by many researchers. Canny edge detection uses
linear filtering with a Gaussian kernel to smooth noise and then
computes the edge strength and direction for each pixel in the
smoothed image. After differentiation and nonmaximal sup-
pression and thresholding, the edges are marked. This method
tends to give connected shapes, and isolated points are minimal.
For this study, we used adaptive thresholds based on his-
tograms of the image. The parameters used are given here.

1) Sigma or the parameter for the Gaussian kernel used.

2) The high threshold value was the (100 % T'high) percent-
age point in magnitude of the gradient histogram of all
the pixels, which passed nonmaximal suppression.

3) The low threshold was calculated as a fraction of the
computed high threshold value.

These parameters are shown in Table VI.

3) Color Edge Removal: The methods previously described
do not use color information, but to take advantage of this
information, an edge-extraction technique based on detection
in the RGB color space is proposed. This method measures the
distance between one pixel and its 3 x 3 neighbors in the RGB

color space. The process starts with an edge detector applied
over the color image, according to the following equation:

8
Dyij = (Rij = Riju)* + (Gij = Gij)* + (Bij — Biji)?
k=1
(18)

where R;j, Gij, and B;; are the red, green, and blue values
of pixel ij, respectively, and R;;x, Gijk, and B;jj, are the red,
green, and blue values of the kth neighbor, respectively. The
value obtained for each pixel is not the distance but the square
of the distance to its neighbors; the square root is not necessary
as it only increases the computational cost. After the final value
D;; is computed for each pixel, those pixels with values below
a given threshold are considered as belonging to the foreground,
whereas those above the threshold are considered as belonging
to the edges separating the objects from the foreground.

D. SVM Color Segmentation (SVMC)

When CST is used, two problems are identified. There are a
great number of thresholds to be adjusted, and the adjustment
of these thresholds depends only on the images used, with
no confirmation about generalization of the results obtained.
Trying to reduce the work in parameter adjustment and obtain
good generalization, a color-segmentation procedure based on
SVMs is presented.

As can be seen, segmentation is a classification task where
every pixel in the image is classified or labeled into several
groups. Thus, segmentation can be carried out using any of the
several well-known classification techniques. One of these is
the SVM, which provides some improvements over other classi-
fication methods (see Appendix). SVMs yield a unique solution
since the optimality problem is convex. This is an advantage,
compared with neural networks, which have multiple solutions
associated with local minima and, for this reason, may not be
robust enough over different samples. In addition, this solution
exhibits good generalization, and only a few parameters are
needed to tune the learning machine.

In [37], an algorithm based on SVMs was presented to
classify the pixels of an image using color information. Sam-
ples of the targeted color to be detected, in addition to other
colors from training images, were labeled and used to train the
SVM. The color space used was the RGB for simplicity, but
other spaces could also be used. The parameters of the SVM
were obtained with an exhaustive search by using tuning tools
provided with the library LIBSVM [38]. The values obtained
were v = 0.0004 and C' = 1000 for all the colors.

One advantage of this segmentation method is that SVMs
can be trained to find only those colors that are of interest to
our application in an easy way, taking pixel samples from im-
ages. Obviously, to generalize to different sequences (different
cameras or illuminations), the number of training vectors must
be increased, but the generalization capacity of SVMs does not
increase the number of support vectors in the same amount.

The main problem presented by this algorithm is its speed.
Although the number of support vectors obtained is not high,
the speed was lower than that of other segmentation algorithms.
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Because of this, it is not possible to directly use it in the
recognition system of this study. However, this problem can be
overcome using the LUTs proposed in Section III-E.

E. Speed Enhancement Using a LUT

Sometimes, a good segmentation algorithm is available, but
it cannot be used in a real application because of its slowness.
Generally, algorithms that require color space transformations
or complex calculations (such as SVM) present the problem of
low speed. However, this can be prevented by making a pre-
calculated lookup table to assign a color to each possible RGB
value. With this approach, a table containing 224 positions is
needed to accomplish with the whole equivalence. The number
of operations is thus reduced (only one access to the table and
an assignation are needed), but the table required is too long.
Therefore, in the table mentioned, the RGB components were
quantized, which gives a table with 28 positions, with 6 bits,
instead of 8 bits, per component being used.

This quantization should not significantly affect detection
performance, because only the two least significant bits of each
component are eliminated. The reduction in computational time
is significant enough to overlook this loss of information.

In the experiments carried out for the present study, this LUT
is used with three particularly lengthy methods: 1) HST, which
requires the computation of hue and saturation; 2) HSET, which
computes a modified hue and saturation; and 3) the SVMC
method, which requires the computation of several kernel dis-
tances to effect the classification. Thus, three LUTs were used:
one for HST, one for HSET, and one for an SVMC that had
been trained using images taken on sunny and rainy days.

IV. EXPERIMENTS
A. Traffic Sign Set

Many sequences on different routes and under different
lighting conditions were captured. Each sequence included
thousands of images. With the aim of analyzing the most prob-
lematic situations, we extracted several sets, which included
those frames that were particularly problematic with regard
to segmentation. Each set presented different segmentation
problems, such as low illumination, rainy conditions, array of
signs, similar background color, and occlusions. Table VII show
details for each set.

Fig. 3 shows representative frames of such sets. For the re-
sults presented in this paper, a total of 313 images selected from
thousands of 800 x 600 pixel images were analyzed. These
sets were considered representative of the main segmentation
problems that may arise. Using the entire set of sequences
obtained was not practical, as the total number of images
involved was too high to carry out the inspection necessary to
identify where a sign appears and how many signs there are in
a sequence.

B. Goal Evaluation

The problem that arises when we want to measure the per-
formance of different segmentation methods is that there is no
established method for carrying this out. There are many studies

TABLE VII
SETS USED TO TEST THE SEGMENTATION ALGORITHMS
(SETS CAN BE ACCESSED AND DOWNLOADED AT
http://agamenon.tsc.uah.es/Segmentation)

Num. of
N . s .
ame | Characteristics Frames Sign Types

Different ~ segmentation @

SET1 | colors and different | 36 ;@ im
shapes

SET 2 | Complex white signs 11 5:@
Different  segmentation 7O

SET3 | colors and different | 27 6: Sé
shapes ’

SET4 | Complex white sign 9 9:&
Different shapes and an 10:A 11:A

SET 5
array of signs 29 12:® 13:©

SET 6 Signs with yellow back- 20 14:A 15:0
ground
Two signs with a near

SET 7 reddl.sh background, and 5 16:©
the signs were small com-
pared to size of images

SETS Arrays of signs with red 14 17:V 13:®
crossed ones

SET9 | Partially occluded sign 11 19:®

SET 10 Arrays and Fomplex back- 10 20:A 21:®
ground. Rainy day

SET 11 Arrays and Fomplex back- 17 22:A
ground. Rainy day

SET 12 Different segmenta'tion 27 23:© 24:@
colors, some rotated signs 25.1

SET 13 Red crossed signs which 57 26:0 27:©
are complex to recognize

SET 14 Clqudy day. Low illumi- 40 28:A 29:0
nation.

that measure segmentation performance [39]-[41], but none of
them represents a standard. The main problem of these methods
is that those with unsupervised measures are not good enough
in specific scenarios, whereas supervised ones need an image
segmentation background that must manually be constructed.
Both types of methods suffer from an excessive execution time.
In this paper, we propose an evaluation method based on the
performance of the whole recognition system. That is, we count
the signs correctly recognized using different segmentation
methods, whereas the rest of the system blocks (detection and
recognition) remain unchanged. The images used in the tests
were presented in the previous section. Evidently, following
an inspection, the number and type of signs to be recognized
in each set are known. The number of correctly recognized
signs is not the only parameter that gives information about the
performance of segmentation; however; speed or lost signs are
also important parameters.
The parameters we evaluated are given here.
1) Number of signs recognized: For each individual sign, we
counted the number of times it was correctly recognized.
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[l SET 5 1

Fig. 3. Some frames from each testing set. These frames show the most
important signs in each set.

(One sign can be recognized more than once, depending
on the colors it has.) However, instead of giving this num-
ber, we give a normalized version related to the maximum
number of times that a sign can be detected. This way, a
value near 1 is the best scenario since all possible signs
have correctly been recognized. In addition, the sum of all
the scores obtained (7otal score) by every method is pre-
sented to show a unique performance measure. Since we
used 29 different kinds of signs, the ideal score will be 29.

2) Global rate of correct recognition: The sum of all cor-
rectly recognized signs was related to the number of
signs that could globally be recognized. A value of
100 indicates that all possible signs in all sequences were
correctly recognized.

3) Number of lost signs: This refers to the number of signs
that were not recognized in any way.

4) Number of maximum: This parameter gives the number of
times that a method achieved the maximum score.

5) False recognition rate: This figure represents the percent-
age of signs erroneously recognized by a method with
respect to the number of total signs recognized.

6) Speed: Measure of execution time per frame. That is, the
total execution time in seconds is divided between the
number of frames used.

These parameters and all the tests were carried out using
an automatic tool that compared the results obtained by every
method with the known ground truth of all the sequences. This
tool uses Matlab and bash commands to extract and process

TABLE VIII
RESULTS OF THE DIFFERENT ACHROMATIC METHODS STUDIED. EACH
ROW REPRESENTS A SIGN WITH WHITE CONTENT IN THE SETS STUDIED

| Sign [| RGBN | Ohta | ST[28] | CAD [14] | RGB |

1 0.72 0.44 0.78 0.00 0.67
4 0.67 0.67 0.44 0.44 0.00
5 0.14 0.14 0.14 0.14 0.14
6 L00 0.93 0.93 0.13 0.60
8 0.00 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00
10 0.88 0.75 0.75 0.62 0.75
11 0.62 0.62 0.50 0.38 0.75
12 0.62 0.62 0.62 0.25 0.62
13 0.45 0.45 0.45 0.36 0.36
16 0.80 0.90 0.90 0.80 0.90
17 1.00 1.00 1.00 1.00 0.57
18 0.36 0.71 0.57 0.43 0.36
20 0.75 0.62 0.62 0.75 1.00
21 1.00 0.62 0.75 0.88 0.62
22 0.88 0.81 0.81 0.69 0.88
25 0.00 0.00 0.00 0.00 0.00
26 0.82 0.89 0.82 0.61 0.41
28 0.90 0.90 0.90 0.90 0.90
29 0.68 0.68 0.68 0.68 0.68

data. All the measures were obtained in a Linux environment
with a 2.6.27 kernel.

Some example raw results' obtained for achromatic methods
are presented in Table VIII, where each column represents
the results obtained using a specific method, and each row of
results corresponds to a sign in the sequence. The row number
identifies a sign in Fig. 3. The best results for each sign are in
bold type to facilitate interpretation.

C. Results

1) Achromatic Decomposition Methods: First, it is neces-
sary to ascertain whether the proposed achromatic decompo-
sition methods are good enough and which of them are the best
since, for some segmentation methods, no related achromatic
decomposition exists, and a decision must be reached concern-
ing the different options.

The data are presented in Table VIII. Since achromatic
decomposition applies to white segmentation, only signs with
white information are presented in the results. Additional infor-
mation is given in Table IX.

Upon inspection of Table IX, it can be seen that the original
CAD index used in [14] is not an option for obtaining the
best results. The modified CAD index separating the three
differences in RGB improves the results but does not produce
the best performance. The method that achieved the best data
for the total score, recognition percentage, number of lost signs,
and maximum obtained is the RGB Normalized method, but it
should not be concluded from this as the best since the Ohta and
SI methods are not clearly worse. In false positives, the RGB

IResult images including segmentation, detection, and recognition can be
found at http://agamenon.tsc.uah.es/Segmentation.
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TABLE IX 20 ey
ANALYSIS OF THE RESULTS IN TABLE VIIL. SEE SECTION IV-B 12 T 1
CER(1500) mmmmm g
Measures || RGBNT | Ohta | SI[28] | CAD [14] | RGB | i = ]
Total score 1229 | 1178 | 1169 | 907 | 1022 : it 5 ]
Recognition (%) || 65.66 | 6453 | 64.15 47.55 51.32 2 Sl ]
Lost 3 3 3 4 4
Max 11 10 8 4 8 4 ' 1 ol ]
False (%) 0.00 0.00 0.00 1.56 2.86 5 1 10t 8
Speed 0.1478 | 0.1356 | 0.1400 0.1130 | 0.1340 g i . i i i :
2r % 1 st .
1 % 1 =2t g
Normalized, SI, and Ohta methods perform best with no false ’ Number of Log g
signs, but the other two methods get good scores. For speed, all 20 T 06 .
methods are similar, but CAD achieves the best score. 15 | 4 %8r 1
Based on these data, we decided to use the achromatic RGB ;| , g:
Normalized and Ohta methods in conjunction with its related ol 02l j _
color method and the SI achromatic method with color HST 01} 2 1
and HSET. Although we could have used the RGB Normalized ik 40 Spcad Time per Saime (s&Bond)
method with the other methods, this would have implied the ()
use of two color spaces, and as the results are similar, it was not 35 om 80 ——
considered to be the best option. 30 . P or 70 -
2) Color Segmentation Methods: In this section, the data ;5, % CE%S&E? % S0 " ]
obtained for color plus achromatic methods are presented. The 151 é = o 01 .
data refer to all existing signs in the sets, including red, white, [ i Jwrreer = 122 i / : 1
blue, and yellow data. Although raw data were obtained in a o e — : 0 Recogin (e :
similar way to that presented in Table VIII, in this case, the most 16 - , 30 ,
important information is summarized in Fig. 4(a) to improve 1‘; i 1 =r 1
data presentation. 10 { 2r ]
It can be seen that the best methods are the CST methods. o [ ] :Z 3
Edge-detection methods are not the best in all the cases, but for ‘; i 1 st H g _
signs such as 5, which is only white (end of prohibition) and o e et
thus problematic for achromatic decomposition, they represent 5 o7
the best option. Of all these latter methods, Canny performs 25t { o06r
the best. o 1 ol
Among CST methods, although the RGB Normalized :2 1 o3t
method obtains the best score for the total score and recognition S| | gf I
percentage, the scores for other methods are not sufficiently o 0
different to justify discarding them. The best results for lost ®)

and the number of maximum are obtained by the LUT SVM
method. The false percentage is very similar among CST meth-
ods, except for LUT SVM, and is excessive with edge detection
methods.

In execution speed, the best scores are obtained by CST
methods, whereas edge detection methods are significantly
worse. Within CST methods, HST has the worst speed, al-
though this could be improved by using a LUT. The RGB
Normalized method and OST without a LUT show good speed
behavior. The differences observed between LUTs are due to
differences in the number of objects detected by each method;
as the number increases, the detection and recognition steps
take longer.

Speed enhancement using an LUT as presented in
Section III-E improves speed and does not significantly reduce
quality, as can be seen by a comparison of HST and LUT HST
or HSET and LUT HSET.

3) Threshold Adjustment and Sensitivity: The results pre-
sented clearly depend on how the different parameters have
been adjusted. Although the experiments were intended to get

Fig. 4. Results for the color segmentation methods. (a) Analysis of the results
obtained for the image set presented in Section I'V-A. In this case, the total score
can reach 29. (b) Analysis of the results for the validation sets. The total score
can reach 43. See Section IV-B for details about each measure presented.

the best results, it may be possible that better results could

be reached with other parameters. Thus, a more complex ad-

justment method was implemented for those methods that are

heavily dependent on thresholds, such as Achromatic or CST.
The method consists of two steps.

1) Initial empirical adjustment: The first adjustment is
started by looking for the thresholds in a graphical way,
i.e., when the thresholds related to the red color are to
be adjusted, an image with red signs is chosen, and the
thresholds are set until a good visual segmentation for this
color is obtained. After all the colors have been adjusted
this way, recognition results are obtained using all the
frames in every set. Then, the thresholds are refined using
the recognition results in a “trial-and-error” procedure.
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Fig. 5. Variation of the recognition performance. Examples for the RGBN color space and thresholds ThA, ThW, ThL, and ThR. The graphs have two
ordinate axes since each plot has different scales. The left ordinate axis is for the recognition rate, and the right ordinate axis is for the lost and false rates.

2) Exhaustive search: In this second step, a sweep around
the empirical threshold values is performed. Recognition
results are obtained for multiple values for one of the
thresholds while keeping the others unchanged. This
way, the recognition performance evaluation function is
obtained for each threshold. Plotting these results allows
a simple visual inspection to find the best threshold
value.

Fig. 5 shows some examples of the graphs obtained with
the exhaustive search procedure. These examples correspond
to RGBN space, and the evolution of recognition percentage,
lost signs, and false percentage with respect to thresholds
ThA, ThW, ThL, and ThR is plotted.”> Three performance
measurements are plotted together since a tradeoff between
false/correct detection and signs lost is desired.

Looking, for example, to the plot of T'hA evolution, it can
be seen that ThA = 0.17 gives good recognition percentage,
with only three signs lost and no false detection. However, the
best recognition percentage is obtained for ThA = 0.13 but
with some false percentage and one additional sign lost. In this
case, the initial empirical adjustment gave ThA = 0.14, i.e.,
close to the optimum but not the best. Thus, this threshold was
modified to the optimum value. The inspection of every graph
for the different color spaces used gives similar information,
and although sometimes the initial empirical adjustment was
modified, most of them were maintained.

2More graphs for different methods and parameters can be accessed at
http://agamenon.tsc.uah.es/Segmentation.

4) Validation: The data presented in previous sections are
significant enough to generate some conclusions about what
segmentation method should be used for sign recognition.
However, since it was necessary to adjust the parameters for
each method to obtain the best results using the sets presented
in Section IV-A, doubt may arise about generalizing the results
to other sets. Therefore, more sets were created to validate the
results, using images captured with different cameras, under
different lighting conditions, and in different locations from
those used in the previous sections. These sets include 43
different signs.?

Data obtained for validation sets are shown in Fig. 4(b).
From a comparison with Fig. 4(a), it can be seen that validation
roughly confirms previous data since the RGB Normalized
method remains as the best method for most measures, and
results for CST and Edge detection methods are the same. The
only important difference concerns the SVM method since the
results for validation sets are poor, compared with the previous
ones. (SVM was applied in this validation test with the same
training as in previous tests.) A deeper analysis of data sepa-
rating color and white results shows that there is a reduction in
the recognition rate for white information, whereas for color,
performance is maintained. This reduction may have been the
consequence of poor SVM training for white. Color training
shows good generalization, but white does not. This may be
considered a drawback of the SVM method since, to obtain
good results with white information, this method requires more
training than for color.

3Validation sets can be found at http://agamenon.tsc.uah.es/Segmentation.
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TABLE X
RESULTS USING TRACKING INFORMATION

Measures GER Canny CER CER RGBNT HST HSET OST LUT LUT LUT
[25] (1400) | (1500) [14] [21] HST HSET SVM

Total 47 20 21 23 46 45 45 47 42 42 42

Correct 41 17 18 18 46 44 45 47 42 42 42

False 6 3 3 5 0 1 0 0
Lost 6 30 29 29 1 3 2 0 5 5 5

5) Tracking Results: Finally, the entire system, including
tracking, was tested for each segmentation method. To this
purpose, we used a sequence of 7799 images recorded in mixed
urban and road environments over 12 km with no relation to
the images and sequences used in previous tests. In this test, it
was not possible to carry out such exhaustive data collection
as in previous tests since the number of images was higher.
Therefore, the tracked signs for each segmentation method were
used as the result. In Table X, the collected data are shown. The
first row gives the number of signs tracked for each method, the
second row indicates the number of signs that were correctly
identified, the third row indicates the number of false tracked
signs, and the last row displays the number of lost signs with
respect to the method that gave the highest number of correct
signs. From these results, it can be seen that OST is the best
method since it has no loss and no false scores. However, the
RGB Normalized method obtained very similar results, with
only one lost sign. HST and HSET gave good results, with
two lost signs and no false for HSET and three lost signs and
one false for HST. LUTs obtained the worst results within CST
methods, losing five signs.

Once again, CST methods performed better than edge-
detection methods, and although the GER method gave compar-
atively good results, it produced too many lost and false signs.
The Canny method, which obtained good results (among edge-
detection methods) in previous tests, performed poorly here.
A possible explanation may be that this method excessively
depends on parameter settings.

V. CONCLUSION

This paper has presented research aimed at identifying the
best segmentation methods for its use in automatic road sign-
recognition systems. Different methods employed in previous
studies have been implemented, although they have been modi-
fied and improved to obtain the best results. Furthermore, other
new methods not previously used for this task are proposed,
such as SVM, in addition to color spaces not previously tested,
such as normalized Ohta. The use of an LUT with some loss
of information (2 bit/channel) is also suggested to improve the
speed of the slowest methods. Finally, achromatic decomposi-
tion in different color spaces has also been presented since the
treatment of color and achromatic information can be separated.

Analysis of the data obtained has led to six conclusions.

1) The recognition percentage results for the best method
are 69.49% for the test sets and 78.29% for the validation
sets. These results may seem low, but they were obtained
by taking into account all the times that a traffic sign
could be recognized in a sequence. Moreover, the image

sequences were selected for their complexity, and there-
fore, the percentage tends to be low.

For test and validation sequences, the RGB Normalized
method performed the best, whereas, for tracking, the best
performance was obtained with OST. LUT SVM may be
an option, but it needs more refined training in several
scenarios.

Edge-detection methods may be used as a complement
to other color-segmentation methods, but they cannot be
used alone.

The use of the LUT method improves speed, and quality
was similar to the original method.

No method performs well in all the contexts.
Normalization, as in the RGB Normalized method or
OST, improves performance and represents a low-cost
operation. Although HST or HSET gives good results,
their cost in speed and their performance render them
unnecessary. Why use a nonlinear and complex transfor-
mation if a simple normalization is good enough?

Although it is not possible to identify one method as being
the best in all the cases, our main conclusion is that a color-
space-threshold method incorporating illumination normaliza-
tion constitutes a good choice. In addition, the use of an LUT
with some loss of information improves speed and implies that
some more lengthy methods could be used with good results.

Achromatic decomposition has been a good choice since
most problems of color classification arise when treating achro-
matic pixels due to instabilities. Moreover, white identification
in signs has been improved using this decomposition.

It would appear that the end of prohibition signs has been
particularly difficult to detect due to segmentation problems
with achromatic colors and the fact that these signs are split into
two semicircles by their central bar. To improve the detection of
these signs, not only good segmentation but also a more refined
detection and recognition method is needed.

The primary aim of this paper was to carry out an exhaus-
tive study to identify the best segmentation method for this
particular task, i.e., traffic sign recognition. The main tool
for this study has been our traffic-recognition system, which
can be improved in all of its stages but was the same for
all the segmentation methods used. Consequently, the results
presented here should be considered as being relative between
methods and in no way absolute.

2)

3)

4)

5)
6)

APPENDIX
SUPPORT VECTOR MACHINE CLASSIFIERS

The principles of SVMs have been developed by Vapnik [42]
and presented in several works, such as [43].
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The classification task is reduced to finding a decision fron-
tier that divides the data into the groups chosen. The simplest
decision case is where the data can be divided into two groups.
The work presented here used this type of classification, with-
out loss of generality since multiclassification can be obtained
using the SVMs in several ways.

The simplest decision problem comprises a number of vec-
tors divided into two classes, and the optimal decision frontier,
which divides these classes, must be encountered. The optimal
decision will be the one that maximizes the distance from
the frontier to the data. In a 2-D case, the frontier will be a
line, whereas in a multidimensional space, the frontier will be
a hyperplane. The desired decision function has the follow-
ing form:

l
F&) = agilx; - x) +b (19)
=1

where x is the input vector, and the y values that appear in this
expression are 41 for one-class training vectors and —1 for the
others. In addition, the inner product is performed between each
training input and the vector that must be classified. Thus, a
set of training data (x,y) is needed to find the classification
function. The « values are the Lagrange multipliers obtained in
the minimization process, and the [ value will be the number
of vectors (x;) that, during the training process, contribute to
forming the decision frontier. These vectors are those with an
« value that is not equal to zero and are known as support
vectors.

When the data are not linearly separable, this scheme cannot
directly be used. To prevent this problem, the SVMs can map
the input data into a high-dimensional feature space using the
well-known kernel method. An optimal hyperplane is con-
structed by the SVMs in a high-dimensional space and then
returns to the original space, transforming this hyperplane into
a nonlinear decision frontier. The nonlinear expression for the
classification function is given in

l
Fx) =" ok (xi,%) + b (20)
1=1

where K is the kernel that performs the nonlinear mapping.

The choice of this nonlinear mapping function or kernel is
very important for the performance of the SVMs. One kernel
that is generally used with good results is the radial basis
function. This function has the expression given in

K(z,w) =exp (—|z — w|?). 21

The ~ parameter in (21) must be chosen to reflect the
degree of generalization applied to the data used. When the
input data are not normalized, this parameter also performs a
normalization task.

When some data within the sets cannot be separated, the
SVMs can include a penalty term (C) in the minimization,
which renders misclassification more or less important. The
greater this parameter is, the more significant the misclassifi-
cation error in the minimization procedure.
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