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Abstract. This paper introduces a solution for detecting humans in
smart spaces through computer vision. The approach is valid both for
images in visible and infrared spectra. Histogram of oriented gradients
(HOG) is used for feature extraction in the human detection process,
whilst linear support vector machines (SVM) are used for human classi-
fication. A set of tests is conducted to find the classifiers which optimize
recall in the detection of persons in visible video sequences. Then, the
same classifiers are used to detect people in infrared video sequences
obtaining excellent results.
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1 Introduction

In smart spaces visual surveillance, real-time detection of people (e.g. [1], [2])
and their activities [3] is performed both in visible (e.g. [4], [5], [6]) and infrared
spectrum (e.g. [7], [8]). Therefore, it seems interesting to find a single solution to
detect people in both types of videos. Most methods described for the detection
of people are divided into two steps, namely extraction of image features and
classification of the images according to these features.

In this sense, histogram of oriented gradients (HOG) is a feature extraction
technique for the detection of objects [9]. Its essence is that the shape of an
object in an image can be described by means of the intensity distribution of the
gradients. The great advantage of a detector obtained using HOG descriptors
is that it is invariant to rotation, translation, scaling and illumination changes.
Therefore, it has been applied successfully in both visible spectrum images (e.g.
[10], [11], [12], [13]) and infrared images (e.g. [14], [15], [16], [17]). In our ap-
proach, we are firstly interested in discovering if there are HOG descriptors for
extracting human features that are equally valid for color and infrared images.



After using HOG descriptors, support vector machines (SVM) are usually
used in the classification stage. SVM are a set of supervised learning algorithms
which were introduced for linearly separable [18] and linearly non-separable [19]
data. SVM have been used in classification and regression problems in many
fields such as text recognition, bioinformatics and object recognition, among oth-
ers. They have also been used successfully in the detection of persons (e.g. [20],
[21]). Here, we are also interested in knowing if linear SVM trained with color
images provide good results in classifying infrared images without re-training.
Should this be true, we could overcome the lack of large enough datasets in the
infrared spectrum.

2 Detection of Humans in Color and Infrared Video

2.1 HOG for Feature Extraction

Histogram of oriented gradients (HOG) consists of a series of steps that provide
an array of image features representing the objects contained in an image in a
schematic manner. The image features are later used to detect the same objects
in other images. In our particular case, we are interested in obtaining strong
features for human detection.

Global normalization of the gamma/color image. This first step is un-
dertaken to reduce the influence of the effects of image lightning changes. In
order to normalize the color of an image, histogram equalization is applied. The√
RGB function is used for gamma normalization. Each pixel is obtained from

the square root of its channel values.

Gradient computation. A first derivative edge detection operator is launched
to estimate the image gradients. Specifically, filter kernels Gx = [−1 0 1 ] and
Gy = [−1 0 1 ]T are applied to x and y axes, respectively, as well as a smooth-
ing value σ = 0. This way the image contours, shape and texture information
are obtained. Furthermore, resistance to illumination changes is achieved. The
gradient is calculated for each color channel, and the locally dominant gradient
is used to achieve invariance against color.

Orientation binning. This step generates the HOG descriptors. Local infor-
mation on the direction of the gradient is used in the way SIFT [22] does. It aims
to produce an encoding that is sensitive to the local image content, while being
resistant to small changes in attitude or appearance. Orientation binning divides
the image into regions called “cells” of n×n pixels. Gradients or orientations of
the edges at each cell pixels are accumulated in a 1-D histogram. The combined
histograms form the orientation histogram. Each orientation histogram divides
the range of angles of the gradient in a fixed number of bins. The gradient value
of each pixel of the cell is used in the orientation histogram for voting.



Local normalization. Now, the cells are grouped into sets called “blocks”, and
each cell block is normalized. A cell can belong to several overlapping blocks.
Therefore, it appears several times in the final vector, but with different nor-
malization. Indeed, the normalization of each block depends on the cell which
it belongs to. Normalization provides better invariance against lightning, shad-
ows and contrast of the edges. The descriptors of the normalized blocks are
precisely the HOG descriptors. Dalal and Triggs [9] explore four different meth-
ods for block normalization: L1-norm (see equation (1)), L1-sqrt (2), L2-norm
(3) and L2-hys. Let ν be the non-normalized vector containing all histograms
in a given block, ∥ν∥k, its k-norm for k = 1, 2 and e be some small constant
(the exact value, hopefully, is unimportant). Finally L2-hys is L2-norm followed
by clipping (limiting the maximum values of ν to 0.2) and re-normalizing. The
normalization factor can be one of the following:

- L1-norm

f =
ν

(∥ν∥1 + e)
(1)

- L1-sqrt

f =

√
ν

(∥ν∥1 + e)
(2)

- L2-norm

f =
ν√

∥ν∥22 + e2
(3)

HOG descriptors combination. In the last stage of the process all blocks are
combined into a dense grid of overlapping blocks, covering the detection window
to obtain the final feature vector.

2.2 Linear SVM for Classification

Given the features of two objects, an SVM seeks a hyperplane optimally separat-
ing the features of an object from the other. An SVM maximizes the margin of
separation between the two classes, so that one side of the hyperplane contains
all objects of a class, and the other one the other objects. The vectors closest to
the margin of separation are called support vectors and are used for classifica-
tion. The accuracy of an SVM may be degraded in the case that data are not
normalized. Normalization can be performed at the level of input features or at
kernel level (in the feature space).

The classification task involves separating data into training and testing.
Each instance of the training set contains a target value, which is the class label,
and a series of attributes such as the observed features. The goal of SVMs is to
create a model based on training data to predict the target values of the test
dataset by only knowing their attributes. Given a training set with instance-label
pairs (xi, yi), i = 1, . . . , l , where xi ∈ Rn e y ∈ {0,−1}l, an SVM requires the
solution of the following optimization problem:



min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi (4)

subject to

yi(w
Tϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0 (5)

Here training vectors xi are mapped into a large or even infinite dimensional
space by function ϕ. SVMs seek a linear hyperplane with the maximum margin
separator in this dimensional space. C > 0 is the error penalty parameter. Func-
tion K(xi, xj) ≡ ϕ(xi)

Tϕ(xj) is called the kernel function. LibSVM [23] offers
the following four main kernel types:

– linear: K(xi, xj) = xT
i xj .

– polynomial: K(xi, xj) = (γxT
i xj + r)d, γ > 0.

– radial basis function (RBF): K(xi, xj) = exp(−γ||xi−xj ||2), γ > 0. Variable
γ can be expressed as γ = 1/(2σ2).

– sigmoidal: K(xi, xj) = tanh(γxT
i xj + r).

In this work it was decided to use a linear kernel, K(xi, xj) = xi × xj ,
where xi, xj ∈ N are the feature vectors. A linear kernel uses to work fine
when handling only two classes and is quite easier to refine, as it only has one
parameter affecting performance, namely C, the soft margin constant.

3 Data and Results

3.1 Parameters for Performance Evaluation

Let us define positive image as an image containing one or more persons and
negative image as an image where no person appears. The parameters used to
validate the goodness of the proposed classifier are:

– FP (false positives): number of images that are negative but have been
classified as positive.

– FN (false negatives): number of images that are positive but have been
classified as negative.

– TP (true positives): number of positive images that are correctly classified,
that is, number of hits.

– P : number of positive test images.
– N : number of negative test images.
– T : number of test images:

T = P +N (6)

– accuracy : percentage of the number of correctly classified test images:

accuracy =
TP

P
· 100 (7)



– precision: percentage of true positives among all positives detected:

precision =
TP

TP + FP
· 100 (8)

– recall : percentage of true positives among all positives:

recall =
TP

TP + FN
· 100 (9)

3.2 Parameters for HOG Feature Extraction

The recommended parameters used for extracting HOG descriptors [9] are pro-
vided in Table 1. These have been used without modifications in our approach.

Table 1. Recommended values for the extraction of HOG features.

Parameter Value
Window size 64 × 128 pixels
Block size 2 × 2 cells
Cell size 8 × 8 pixels
Number of angle divisions 9 (no sign, 180◦)
Overlap 8 × 8 pixels (stride = 8)
Gaussian smoothing No
Histogram normalization L2-hys
Gamma correction Yes
Max number of detection window scalings 64

3.3 People Detection in Color Video

Description of training and test databases. Two people image databases
widely addressed in the scientific community have been used to train and test
the proposal in the visible spectrum. These are INRIA (Institut National de
Recherche en Informatique et en Automatique) “Person Dataset” (available at
http://pascal.inrialpes.fr/data/human/) and MIT (Massachusetts Insti-
tute of Technology) “Pedestrian Data” (available at http://cbcl.mit.edu/

software-datasets/PedestrianData.html). The MIT training database of peo-
ple was generated from color images and video sequences taken in a variety of
seasons using several different digital cameras and video recorders. The pose of
the people in this dataset is limited to frontal and rear views. The MIT pedes-
trian database contains 923 positive images; each image was extracted from raw
data and was scaled to the size 64× 128 and aligned so that the person’s body
was in the center of the image. The data is presented without any normalization.

The INRIA person database also contains images of people in different po-
sitions, backgrounds and with different lightning (see Table 2). There are also
people partially occluded. This dataset was collected as part of research work
on detection of upright people in images and video. The dataset contains images
from several different sources. Only upright persons (with person height > 100)



Table 2. Description of INRIA person database.

# of images Size (pixels)
Positive training images 2,416 96 × 160
Negative training images 1,218 Not normalized
Positive test images 1,126 70 × 134
Negative test images 453 Not normalized

Table 3. Description of final test dataset.

# of images Size (pixels)
Positive training images 4262 64 × 128
Negative training images 12180 64 × 128
Positive test images 1126 64 × 128
Negative test images 4530 64 × 128

are marked in each image, and annotations may not be right; in particular at
times portions of annotated bounding boxes may be outside or inside the object.

Before using images from this database to extract their features, it is rec-
ommended to normalize them to 64× 128 pixels, and to get sub-images of their
negative images. In our case, we have added:

– 10 sub-images of size 64 × 128 pixels are randomly extracted from each
negative image.

– A centered window of size 64 × 128 pixels is extracted from each positive
image.

– A mirror image of each positive image (reflection on the vertical axis) is
obtained.

Therefore, 2, 416 positive training images, 12, 180 negative training images,
1, 126 positive test images and 4, 530 negative test images are extracted. Also, in
order to increase the number of positive images to train the classifier, the mirror
images of the MIT dataset are obtained. Table 3 shows the final set of images
used for training and testing.

Description of the training process. During the training process the SVMs
supplied by LibSVM and LibLINEAR [25] are used. The models generated will
be used later for human detection. LibLINEAR offers several SVMs for linear
classification; we use L2-regularized L1-loss (dual), L2-regularized L2-loss (pri-
mal) and L2-regularized L2-loss (dual). The influence of the soft margin constant
C on the three kernels is studied. Table 4, Table 5 and Table 6 show the results
for each kernel, respectively.

The aim is to find the best kernels to classify the color training input images
to apply them to the detection of people in new images. The more accurate the
results of the kernel are, the better the future detection results. In this case,
in order to assess the goodness of a kernel we will use the recall evaluation
parameter to obtain the minimum possible number of false negatives, although
some more false positives may appear. From the previous study, we conclude to
use kernels L2-regularized L2-loss (dual) with C = 10 and L2-regularized L2-loss
(dual) with C = 0.001, as their respective recall values are very close (96.36%
and 96, 63%).



Table 4. Influence of parameter C in the L2-regularized L2-loss (dual) linear kernel.

C Hits FP FN precision (%) recall (%) accuracy (%)
0.0001 5582 16 58 98.57904085 94.849023 98.69165488
0.001 5590 24 42 97.86856128 96.269982 98.8330976
0.1 5580 37 39 96.71403197 96.536412 98,6562942
1 5574 41 41 96.35879218 96.358792 98.55021216
10 5577 41 38 96.35879218 96.625222 98.60325318
100 5577 41 38 96.35879218 96.625222 98.60325318

Table 5. Influence of parameter C in the L2-regularized L2-loss (primal) linear kernel.

C Hits FP FN precision (%) recall (%) accuracy (%)
0.0001 5581 16 59 98.57904085 94.760213 98.67397454
0.001 5591 24 41 97.86856128 96.358792 98.85077793
0.1 5577 36 43 96.80284192 96.181172 98.60325318
1 5578 35 43 96.89165187 96.181172 98.62093352
10 5578 36 42 96.80284192 96.269982 98.62093352
100 5578 36 42 96.80284192 96.269982 98.62093352

Table 6. Influence of parameter C in the L2-regularized L1-loss (dual) linear kernel.

C Hits FP FN precision (%) recall (%) accuracy (%)
0.0001 5565 21 70 98.13499112 93.783304 98.39108911
0.001 5592 16 48 98.57904085 95.737123 98.86845827
0.1 5578 38 40 96.62522202 96.447602 98.62093352
1 5575 43 38 96.18117229 96.625222 98.5678925
10 5576 42 38 96.26998224 96.625222 98.58557284
100 5577 41 38 96.35879218 96.625222 98.60325318

Description of the results. The classification in the visible spectrum is per-
formed on the test images by using both selected kernels. Here, the best accuracy
is 90.33% using the classification model L2-regularized L2-loss (dual) [24] with
C = 10. The performance results are offered in Table 7. Also, some result images
in the visible spectrum are shown in Fig. 1.

3.4 People Classification in Infrared Video

In order to test the proposal in infrared spectrum, we manually labeled 112
infrared images recorded by our research team. Of course, as stated previously,
we use the parameters and kernels obtained during the training color images
detection and classification phases. Here, the best performance results obtained
for human detection in infrared are offered in Table 8. These come from the
use of model L2-regularized L2-loss (primal) with C = 0.001. Now, accuracy is
94.64, which is astonishingly very high compared to the accuracy in color images.
The reason for this increment is probably the fact the infrared images have been
annotated manually and very carefully. Lastly, some resulting images in infrared
are shown in Fig. 2.

4 Conclusions

The initial objective of this work was to efficiently detect humans in color and
infrared video. For this, we use the HOG algorithm for extracting image features,



Table 7. Performance results in color video.

Kernel L2-regularized L2-loss
(primal) C= 0.001

L2-regularized L2-loss
(dual) C = 10

Mean detection time (ms) 336 297
Hits 896 908
False positives 63 32
False negatives 222 229
Accuracy (%) 89.41 90.33
Precision (%) 93.43 96.60
Recall (%) 80.14 79.86

Fig. 1. Some results in color video.

and a linear SVM for classification of the features. This combination allows
detecting humans in images with high accuracy, both in visible and infrared
spectrum. The HOG algorithm obtains the feature vectors from the training
color images of the proposed databases. Then, a linear SVM seeks a hyperplane
capable of separating the feature vectors in two classes in the most optimal way.

As it has been demonstrated, after using the recommended parameters for
the feature detector and selecting a couple of kernels suited for SVM in the color
spectrum, the approach works well for in the visible and infrared spectra, pro-
viding an accuracy of 90.33% and a recall of 79.86% for automatically annotated
images in the visible spectrum, and an accuracy of 94.64% and recall of 96.91%
for manually annotated infrared images.

Acknowledgements

This work was partially supported by Spanish Ministerio de Economı́a y Com-
petitividad / FEDER under TIN2010-20845-C03-01 and TIN2010-20845-C03-03
grants.



Table 8. Performance results in infrared video.

Kernel L2-regularized L2-loss
(primal) C = 0.001

L2-regularized L2-loss
(dual) C = 10

Mean detection time (ms) 870 924
Hits 188 186
False positives 3 6
False negatives 8 6
Accuracy (%) 94.64 94.54
Precision (%) 97.92 96.88
Recall (%) 96.91 96.88

Fig. 2. Some results in infrared video.
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