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1 Introduction

Black holes are known to be the final state of gravitational collapse. They have a well-
known characteristic property. They are entirely defined by mass, angular momentum, and
charge. Choptuik [1] shows that there seems to be another parameter or the fourth quantity
that establishes the collapse itself. Following up on Christodoulou’s work on the spherically
symmetric collapse of scalar fields [2–4], Choptuik looked into the idea that a critical behaviour
can show discrete spacetime self-similarity. The amplitude of the scalar field fluctuation
shows that p must be greater than the critical value pcrit to form a black hole. Moreover, for
values of p above this threshold, the mass of the black hole Mbh results a scaling law as

rS(p) ∝ Mbh(p) ∝ (p− pcrit)γ . (1.1)

The critical exponent in 4d for a single real scalar field is given by γ ≃ 0.37 [1, 5, 6],
while for general dimension (d ≥ 4) [7, 8] these relations are modified as

rS(p) ∝ (p− pcrit)γ , Mbh(p) ∼ (p− pcrit)(D−3)γ . (1.2)

Various numerical simulations with other fields are carried out [9–14]. As an instance the
collapse of a perfect fluid is done in [7, 15–17]. In [16] they explored γ ≃ 0.36 and therefore
it was realised in [18] that γ might be universal for all matter field coupled to gravity in four
dimensions. It was first in [7, 17, 19] that the authors found the critical exponent may be
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found by working out the perturbations of the solutions. To achieve the perturbations, one
needs to perturb any field h (be it the metric or the matter content) as

h = h0 + ε h−κ, (1.3)

where the perturbation h−κ does have the scaling −κ ∈ C that labels the different modes.
Within the possible values of κ, we express the most relevant mode κ∗ as the highest value
of Re(κ).

It was argued in [7, 17, 19] that the κ∗ is related to the critical exponent by γ = 1
Re κ∗ .

The axial symmetry was analyzed in [20], and the critical solution for the shock waves was
investigated by [21].

For the first time, the axion-dilaton critical collapse solution coupled to gravity in four
dimensions was determined by [22] where they found the value γ ≃ 0.2641, hence arguing the
doubts relating to the universality of γ in four dimensions. The first motivation for studying
critical solutions in the axion-dilaton system is the AdS/CFT correspondence [23–25], which
relates the Choptuik exponent to the imaginary part of quasinormal modes, and the dual
conformal field theory [26]. Additional motivations include the holographic description of
black hole formation [8] and the broader physics of black holes and their applications to
holography and string theory [27–37].

In type IIB string theory, there is significant interest in exploring gravitational collapse in
spaces that can asymptotically approach AdS5 ×S5 where the matter content is described by
the axion-dilaton system and the self-dual 5-form field. The paper [38] recently investigated
entire families of distinguishable continuous self-similar solutions of the Einstein-axion-dilaton
system in four and five dimensions, including all three conjugacy classes of SL(2,R). This
study builds upon works of [39, 40]. By applying advanced analytic and numerical methods
described in [41], the perturbed critical solution of a four-dimensional elliptic critical collapse
was computed and determined the value of γ to be around 0.2641, as previously reported
by [22]. The findings provide strong confidence in our ability to determine other critical
exponents across different dimensions and for various classes of solutions.

The study by [42] utilized regression models to estimate nonlinear critical functions.
Subsequently, [43] introduced several methods, including truncated power basis, natural
spline, and penalized B-spline regression models, to estimate the nonlinear functions relevant
to black hole physics, specifically in the axion-dilaton case. Recently, in [44], artificial
neural networks were applied to find black hole solutions within the parabolic class in higher
dimensions. Additionally, in [45], the Hamiltonian Monte Carlo method was proposed to
analyze the complexity of elliptic black holes within a Bayesian framework. Lastly, [46]
employed the sequential Monte Carlo approach to investigate the multimodal posterior
distributions of critical functions in hyperbolic equations. This probabilistic approach helps
identify existing solutions in the literature and finds all possible solutions that might arise
due to measurement errors.

Unlike all existing methods in the literature, we treat the critical exponent in this work as
a random variable for the first time, thereby better capturing the uncertainty and numerical
measurement errors associated with the perturbed equations of motion. To achieve this,
we have developed a novel statistical method that integrates the power and flexibility of
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Markov Chain Monte Carlo (MCMC) and artificial neural networks, estimating the posterior
probability distribution of the critical exponent within a Bayesian framework. Our approach
introduces a generic formalism based on artificial neural networks and the Metropolis-Hastings
algorithm [47, 48] to estimate critical exponent, addressing their inherent complexity. Using
quantum perturbation theory, we apply the Bayesian estimation method to determine the
critical exponent for the elliptic black hole solution in 4d, estimating the Choptuik exponent
within the domain of the equations. We investigate the range of possible values for the
critical exponent in the Einstein-axion-dilaton system’s 4d elliptic black hole solution. In
this novel iterative approach, each iteration combines the Metropolis-Hastings algorithm
with artificial neural networks to simultaneously solve the nonlinear perturbed equations of
motion and identify the stochastically most likely values of the critical exponent. We have
investigated the Bayesian estimation of the critical exponent based on various perturbed
equations independently and by considering all the perturbed equations simultaneously. This
was done to examine the impact of various perturbed equations on stochastic accept-or-
reject transitions. Unlike traditional methods, this new probabilistic approach provides the
established solution and explores the range of physically distinguishable critical exponents
that may arise due to numerical measurement errors.

This paper is structured as follows: section 2 explores the Einstein-axion-dilaton system.
Sections 3 details the quantum perturbation analysis and the perturbed equations of motion.
Section 4 presents the statistical methods employed, including polynomial regression, artificial
neural networks, and Markov Chain Monte Carlo. Section 5 provides the numerical studies
that examine the posterior distribution and Bayesian estimation of the critical exponent.

2 The Einstein-axion-dilaton system

The Einstein-axion-dilaton system coupled to gravity in d dimensions is defined by the
following action:

S =
∫
ddx

√
−g

(
R− 1

2
∂aτ∂

aτ̄

(Im τ)2

)
, (2.1)

which is known by the effective action of type II string theory [49, 50]. The axion-dilaton is
expressed by τ ≡ a + ie−ϕ. This action enjoys the SL(2,R) symmetry

τ → Mτ ≡ ατ + β

γτ + δ
, (2.2)

where α, β, γ, δ are real parameters satisfying αδ − βγ = 1. If the quantum effects are
considered then the SL(2,R) symmetry gets exchanged to SL(2,Z) and this S-duality was
revealed to be the non-perturbative symmetry of IIB string theory [51–53]. Taking the above
action, one derives the equations of motion as

Rab = T̃ab ≡ 1
4(Im τ)2 (∂aτ∂bτ̄ + ∂aτ̄ ∂bτ) , (2.3)

∇a∇aτ + i∇aτ∇aτ

Im τ
= 0 . (2.4)
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We take the spherical symmetry for both background and perturbations and the general
form of the metric in d dimensions is given by

ds2 = (1 + u(t, r))(−b(t, r)2dt2 + dr2) + r2dΩ2
d−2 , (2.5)

τ = τ(t, r). (2.6)

The angular part of the metric in d dimensions is dΩ2
d−2. One can find out a scale-

invariant solution by requiring the fact that under a scale transformation (t, r) → (Λt,Λr) so
that the line element can be changed as ds2 → Λ2ds2. Hence all the functions must be scale
invariant, i.e. u(t, r) = u(z), b(t, r) = b(z), z ≡ −r/t. The effective action (2.1) is invariant
under the SL(2,R) transformation (2.2), hence τ also does need to be invariant up to an
SL(2,R) transformation, which means that if the following holds

τ(Λt,Λr) = M(Λ)τ(t, r), (2.7)

we then call a system of (g, τ), which respects the above properties of a continuous self-
similar (CSS) solution. It is worth highlighting that various cases get related to other classes
of dM

dΛ

∣∣∣
Λ=1

[38]. Hence, τ can take three different forms [39], called elliptic, hyperbolic
and parabolic cases. In this paper, we deal with the elliptic ansatz and its form for the
axion-dilaton case can be cast as follows

τ(t, r) = i
1 − (−t)iωf(z)
1 + (−t)iωf(z) , (2.8)

where ω is a real parameter to be known and the function f(z) needs to satisfy |f(z)| < 1
for the elliptic case. By replacing the CSS ansätze in the equations of motion, we would be
able to get a differential system of equations for u(z), b(z), f(z). Making use of spherical
symmetry, one can show that u(z), u′(z) can be expressed in terms of b(z) and f(z) so that
finally, we are left with some ordinary differential equations (ODEs) as follows

b′(z) = B(b(z), f(z), f ′(z)) , (2.9)
f ′′(z) = F (b(z), f(z), f ′(z)) . (2.10)

These equations in elliptic 4d can be written in a closed form as

0 = b′ + z(b2 − z2)
b(−1 + |f |2)2 f

′f̄ ′ − iω(b2 − z2)
b(−1 + |f |2)2 (ff̄ ′ − f̄f ′) − ω2z|f |2

b(−1 + |f |2)2 ,

0 = f ′′ − z(b2 + z2)
b2(−1 + |f |2)2 f

′2f̄ ′ + 2
(1 − |f |2)

(
1 − iω(b2 + z2)

2b2(1 − |f |2)

)
f̄f ′2

+ iω(b2 + 2z2)
b2(−1 + |f |2)2 ff

′f̄ ′ + 2
z

(
1 + iωz2(1 + |f |2)

(b2 − z2)(1 − |f |2)

+ ω2z4|f |2

b2(b2 − z2)(1 − |f |2)2

)
f ′ + ω2z

b2(−1 + |f |2)2 f
2f̄ ′ +

2iω
(b2 − z2)

(
1
2 − iω(1 + |f |2)

2(1 − |f |2) − ω2z2|f |2

2b2(−1 + |f |2)2

)
f. (2.11)
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The above equations have five singularities [39] located at z = ±0, z = ∞ and z = z±
where the last singularities are known by b(z±) = ±z±. z = z+ is just a mere coordinate
singularity [22, 39], thus τ should have been regular across it and this constraint actually
translates to having the finite value for f ′′(z) as z → z+.

One can actually realize that the vanishing of the divergent part of f ′′(z) provides
us with an equation that is a complex valued constraint at z+ which can be indicated by
G(b(z+), f(z+), f ′(z+)) = 0 where the final form of G for the elliptic class is given as [38]

G(f(z+), f ′(z+)) = 2zf̄(z+)
(
−2ω2

)
f ′(z+)

+ f(z+)f̄(z+)
(
2z+f̄(z+)(−2 + 2iω + 2)f ′(z+) + 2iω

(
2 + ω2

))
− 2z+(2 + 2iω − 2)f ′(z+)

f(z+)
+ 2ω(ω − i)f(z+)2f̄(z+)2 − 2ω(ω + i) .

(2.12)

The initial conditions are known by the smoothness of the solution. By applying polar
coordinate as f(z) = fm(z)eifa(z), we can see that all equations are invariant under a
global redefinition of the phase of f(z), so this means that fa(0) = 0. Having set the
regularity condition at z = 0 and making use of the residual symmetries in the equations of
motions (2.11), we reveal the initial boundary conditions of the equations of motion as follows

b(0) = 1, fm(0) = x0, f ′
m(0) = f ′

a(0) = fa(0) = 0 , (2.13)

where x0 is a real parameter and (0 < x0 < 1). Therefore, we have two constraints (the
vanishing of the real and imaginary parts of G) and two parameters (ω, x0). The discrete
solution in four dimensions was found in [41]. Note that these solutions are explicitly found
by root-finding procedure as well as numerically integrating all the equations of motion. For
instance, the solution in 4d elliptic case was discovered to be [39, 54] as

ω = 1.176, |f(0)| = 0.892, z+ = 2.605 (2.14)

where the black hole solutions in higher dimensions for the axion-dilaton system are ob-
tained in [55].

3 Quantum perturbation analysis

In this section, we would like to derive the quantum perturbation equations for black holes
in the elliptic class in four dimensions.

This method can be implemented as an extensive method that holds for all dimensions
and all matter content. Some of the steps are taken from [56] and [57] while we could
remove u(t, r) and its derivatives from all the equations, making use of some algebraic
computations.1 One can perturb the exact solutions h0 (where h denotes either b, or f)
that are explored in section 2 as

h(t, r) = h0(z) + ε h1(t, r) (3.1)
1Some similar perturbations of spherically symmetric solutions for Horava Gravity were carried out in [58].
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where ε is a small number. By expanding equations in powers of ε, the zeroth order part
results in the background equations which have been studied in section 2 and the linearized
equations for the perturbations h1(t, r) are explored due to the linear terms in ε. One can
consider the perturbations of the form

h(z, t) = h0(z) + ε(−t)−κh1(z). (3.2)

The four-dimensional axion-dilaton system is known to be stable, and we consider
Reκ > 0. We can explore the spectrum of κ by solving the equations for h1(z). Indeed, one
can point out that the general solution to the first-order equations will be gained with the
linear combination of these modes. We would like to find out the mode κ∗ with the biggest
real part (by assuming a growing mode, which would be t → 0, i.e. Reκ > 0), which will
be related to critical Choptuik exponent as [7, 17, 19]

γ = 1
Reκ∗ . (3.3)

We consider only real modes κ∗ where the values κ = 0 and κ = 1 are indeed gauge modes
with respect to phase of f or U(1) re-definitions of f and time translations as well [41] and
these modes have been eliminated from the calculations.

3.1 Perturbation equations in 4D for the elliptic class

The derivation of the perturbations has been explained in [41]. However, we want to analyze
the quantum perturbation to explore the entire range of perturbed equations independently
and by considering all the perturbed equations simultaneously, as well as their impact
on stochastic accept-reject transitions in finding the posterior distributions and Bayesian
estimate of the critical exponent. We here highlight briefly all perturbation equations. The
perturbation ansatz (3.2), for b, τ functions are

b(t, r) = b0(z) + ε (−t)−κb1(z) , (3.4)

τ(t, r) = i
1 − (−t)iωf(t, r)
1 + (−t)iwf(t, r) , (3.5)

f(t, r) ≡ f0(z) + ε(−t)−κf1(z). (3.6)

Using the ansätze (3.4) for the metric functions, we can calculate the Ricci tensor for the metric
as a function of ε to find the zeroth-order and first-order parts from the limiting behaviours as

R
(0)
ab = lim

ε→0
Rab(ε) R

(1)
ab = lim

ε→0

dRab(ε)
dε . (3.7)

The same method is applied to the right-hand side T̃ab of the field equations, which
results in

T̃
(0)
ab = lim

ε→0
T̃ab(ε) T̃

(1)
ab = lim

ε→0

dT̃ab(ε)
dε . (3.8)

Indeed, the Einstein Field Equations (EFEs) are held order by order so that

R
(0)
ab = T̃

(0)
ab , R

(1)
ab = T̃

(1)
ab . (3.9)
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As explained, one can remove u and its first derivative in terms of b0, f and their first
derivatives. We now combine the field equations so that we would be able to eliminate
the second-derivative terms in b(t, r). This procedure is known as Hamiltonian constraint,
which can be shown by

C(ε) ≡ Rtt + b2Rrr − T̃tt − b2 T̃rr = 0 . (3.10)

One finds the lowest-order contribution as a first-order equation relating b′
0 to b0, f0, f ′

0
as follows

b′
0 = ((z2 − b2

0)f ′
0(zf̄ ′

0 + iωf̄0) + ωf0(ωzf̄0 − i(z2 − b2
0)f̄ ′

0))
b0(1 − f0f̄0)2 . (3.11)

In a similar way, the first correction is given by

dC(ε)
dε

∣∣∣∣
ε=0

= 0 , (3.12)

which is a first-order equation relating b′
1 to b0, b′

0 f0, f ′
0, f ′′

0 , and the other perturbations b1,
f1, f ′

1, which are indeed linear in all perturbations. For the elliptic class in 4d one obtains
the linearized equations for b′

1 as follows

(L1)b′
1 = rt((t− 2t)b0 + rb′

0)
(

− 2f ′
1f̄

′
0r

2

t4s2
0

− 2b1b
′
0

rt
+ κ2b0b1b

′
0

r ((t− 2t)b0 + rb′
0)

− 4iωb0b1f̄0f
′
0

rts2
0

+ 2iωb2
0f̄1f

′
0

rts3
0

+ 2κf̄1f
′
0r

t3s2
0

+ 2iωf̄1f
′
0r

t3s2
0

− 2κb2
0f̄1f

′
0

rts2
0

+ 2iωf̄0f
′
1r

t3s2
0

− 2iωb2
0f̄0f

′
1

rts2
0

+ 4b0b1f
′
0f̄

′
0

t2s2
0

+ 2b2
0f

′
1f̄

′
0

t2s2
0

+ 1
rt4s3

0
2f1
(
tωf̄2

0 (rt(−iκ+ ω)f0 − 2i(r2 − t2b2
0)f ′

0)

+ t(κ− iω)(−r2 + t2b2
0)f̄ ′

0 + f̄0
(
rt2ω(iκ+ ω) + t(κ+ iω)

× (r2 − t2b2
0)f0f̄

′
0 + 2r(r2 − t2b2

0)f ′
0f̄

′
0
))

− 2f ′
0f̄

′
1r

2

t4s2
0

+ 2b2
0f

′
0f̄

′
1

t2s2
0

− 2if0(f̄1(rωt2(κ+ iω) + ωt(2r2 − t2b2
0)f̄0f

′
0 + 2ir(r2 − t2b2

0)f ′
0f̄

′
0))

rt4s3
0

− 2if0tω(−f̄ ′
1r

2 + 2t2b0b1f̄
′
0 + t2b2

0f̄
′
1)

rt4s3
0

+ 4iωf2
0
(
r2 − t2b2

0
)
f̄1f̄

′
0

rt3s3
0

+
2iωf2

0

(
f̄0
(
−f̄ ′

1r
2 + t(κ− iω)f̄1r + 2t2b0b1f̄

′
0 + t2b2

0f̄
′
1

))
rt3s3

0

)
,

(3.13)

where
L1 = 2b0((κ− 1)tb0 + rb′

0), s0 = (f0f̄0 − 1). (3.14)

It can be seen that (3.13) is invariant under dilations (t, r) → (eλr, eλt), so that, by changing
coordinates to (t, z), one finds that all the factors of t will cancel off and the final result just
depends on z. Hence, we are left with just real and linear ordinary differential equations.
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If we apply the perturbation ansätze in the τ equation of motion (2.4) and extract the
zeroth and first-order parts and remove all u′

0, u1, u′
1, then the resulting zeroth-order part

will be an equation including b0, b′
0 f0, f ′

0, f ′′
0 , while substituting b′

0 according to (2.9) and
solving for f ′′

0 , we obtain a second-order equation for f0, which is indeed the explicit form
of (2.10). The first-order part includes b1, b′

1, f1, f ′
1, and f ′′

1 linearly, while the equations
depend on the zeroth-order functions as well as their derivatives non-linearly as background
functions. Hence, we are left with the perturbations for f ′′

1 given by

(L3)f ′′
1 = r2

(
itωf2

0 (f̄1b
′
0 + f̄0b

′
1) + f1b

′
0(κt− itω − t(κ− 2iω)f0f̄0 + rf ′

0f̄0)

− r(b′
1f

′
0 + b′

0f
′
1) + f0

(
b′

1(−itω + rf̄0f
′
0) + rb′

0(f̄1f
′
0 + f̄0f

′
1)
))

+ rt2b2
0
(
f1f̄0b

′
0f

′
0 − b′

1f
′
0 − b′

0f
′
1 + f0(f̄1b

′
0f

′
0 + f̄0(b′

1f
′
0 + b′

0f
′
1))
)

− t2b3
0

(
2rf̄1f

′2
0 − 2tf ′

1 + 4rf̄0f
′
0f

′
1 + f1f̄0(2tf ′

0 − rf ′′
0 )

+ f0
(
2tf̄0f

′
1 + f̄1(2tf ′

0 − rf ′′
0 )
))

− rb0

(
t2ω(ω − i)f2

0 f̄1 + 2r
(

− rf̄1f
′2
0 + (t(1 + κ− iω) − 2rf̄0f

′
0)f ′

1
)

+ f1
(
t2(−κ2 + κ(−1 + 2iω) + ω(i+ ω)) + t2(κ+ κ2 + 2iκω

+ 2ω(−i+ ω)
)
f̄0f0 + rf̄0(2t(−1 + 2κ− iω)f ′

0 + rf ′′
0 )
)

+ rf0(−2t(1 + κ+ iω)f̄0f
′
1 + f̄1(−2it(−i+ ω)f ′

0 + rf ′′
0 ))
)

− b1

(
rt2ω(−i+ iκ+ ω)f2

0 f̄0 − t
(
r2(−2 + κ+ 2iω) + 6t2b2

0

− 2rtb0b
′
0
)
f ′

0 − 2r(r2 − 3t2b2
0)f̄0f

′2
0 − r(r2 − 3t2b2

0)f ′′
0

+ f0
(
rt2ω(i− iκ+ ω) + f̄0

(
t(r2(−2 + κ− 2iω) + 6t2b2

0

− 2rtb0b
′
0)f ′

0 + r(r2 − 3t2b2
0)f ′′

0
)))

,

(3.15)

where
L3 = rb0(r2 − t2b2

0)s0 . (3.16)

The above equations are scale-invariant. Hence, they turn to an ordinary differential equation
after making use of a change of coordinates to (z, t). Thus, the system of ordinary linear
differential equations is given by

b′
1 = B1(b1, f1, f

′
1) , (3.17)

f ′′
1 = F1(b1, f1, f

′
1) . (3.18)

Note that b1 and f1 are now linear functions that still depend non-linearly on the unperturbed
solution. We also have a quadratic dependence on κ as well. Note that these equations
also do include the same singularities as appeared in the unperturbed system of equations
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which means that they are also singular for z = 0 and b2(z) = z2. The modes are now
explored by finding the κ values that are related to smooth solutions of the perturbed
equations (3.17), (3.18) where they need to satisfy the proper boundary conditions as follows.

We now focus on the boundary conditions needed to solve (3.17) and (3.18). First of
all, at z = 0, we re-scale the time coordinate so that b1(0) = 0. Also, using the regularity
condition for the axion-dilaton at z = 0, we find that f ′

1(0) = 0 so that the freedom in f is
reduced to f1(0) which is an unknown complex parameter. On the other hand, at z+ (we
recall that z+ is defined by the equation b(z+) = z+) all equations and perturbations are
regular so that all the second derivatives ∂2

rf(t, r), ∂r∂tf(t, r), ∂2
t f(t, r) should be finite as

z → z+. Hence, f ′′
0 (z) and f ′′

1 (z) are also finite as z → z+. We introduce β = b0(z) − z

and then expand f ′′
0 , f

′′
1 near the singularity, as

f ′′
0 (β) = 1

β
G(h0) + O(1) , (3.19)

f ′′
1 (β) = 1

β2 Ḡ(h0) + 1
β
H(h0, h1|κ) + O(1) , (3.20)

where we have defined the following equations:

h0 = (b0(z+), f0(z+), f ′
0(z+)), h1 = (b1(z+), f1(z+), f ′

1(z+)) . (3.21)

The vanishing unperturbed complex constraint is given by G(h0) = 0 at z+, and we checked
that it implies Ḡ(h0) = 0 at z+ as well, which means that

G(h0) = 0 ⇒ Ḡ(h0) = 0 . (3.22)

Hence, we are left just with the complex-valued constraint

H(h0, h1|κ) = 0 , (3.23)

that is linear in h1.
We now try to solve this constraint for f ′

1(z+) in terms of f1(z+), b1(z+), κ and h0.
Hence, this condition reduces the number of free parameters in the boundary conditions at
z+ to a real number b1(z+) and a complex f1(z+). In conclusion, we have six real unknowns,
which are κ and the five-component vector as

X = (Re f1(0), Im f1(0), Re f1(z+), Im f1(z+), b1(z+)) , (3.24)

and the system of linear ODE’s (3.17) and (3.18) where the total real order is indeed five.
From the numerical procedure of [41] and given a set of boundary conditions X, we integrate
from z = 0 to an intermediate point zmid, and similarly, we integrate backwards from z+
to zmid. Finally, we collect the values of all functions (b1,Re f1, Im f1,Re f ′

1, Im f ′
1) at zmid

and encode the difference between the two integrations in a difference function D(κ;X). By
definition, D(κ;X) is linear in X thus it has a representation in matrix form

D(κ;X) = A(κ)X , (3.25)

where A(κ) is a 5 × 5 real matrix depending on κ. Thus, we only need to find the zeroes of
D(κ;X) and this can be achieved by evaluating detA(κ) = 0. We carry out the root search
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for the determinant as a function of κ where the root with the biggest value will be related
to the Choptuik exponent through (3.3). Note that the perturbed equations of motion are
singular whenever the factor

(
κ− 1 − z

b′
0

b0

)
in the denominator vanishes, so that the numerical

procedure fails at a particular point. We can get an estimate for the values of κ giving rise
to this singular behaviour, and we can also find the entire region that leads to numerical
failure. However, this apparent problem does not affect our evaluation of the critical exponent
because, in most cases, the most relevant mode κ∗ lies outside that particular failure region.

4 Statistical approach

In this section, we detail the novel approach we have developed to estimate the distribution
of the critical exponent κ in the elliptic 4d case of the equations of motion with perturbations.
In figure 1 we show the main steps of the proposed pipeline.

Technically, we offer a new Bayesian approach with artificial neural networks (ANNs)
assisted Metropolis-Hastings for the estimation of the distribution of the mentioned κ that is
related to the critical exponent γ. To do so, we must treat κ a random variable, so we use the
Bayesian strategy to find the posterior distribution of κ based on the perturbed DE system.
We emphasize again that this is first time in the literature where the critical exponent is
treated as a random variable. As can be seen in figure 1, our approach starts with the use
a polynomial regression technique to estimate the closed form of the unperturbed critical
collapse functions under analysis. To properly feed the polynomial regression technique, we
follow an ANN-based approach [45] to numerically find the unperturbed critical collapse
functions in the entire domain of the DE system. Our approach uses the ANN estimates of
the unperturbed critical collapse functions so that the polynomial regression technique can be
used for the estimation of the final closed form. As our objective is the Bayesian analysis of
the perturbed equations, we use the estimated closed-form to incorporate the perturbations
related to κ. The last step consists of the implementation of ANN-assisted Metropolis-Hastings
to estimate the distribution of κ which is related to the critical exponent. We detail each step
in the following subsections, providing all the details for the statistical methods employed.

4.1 Polynomial regression for the estimation of the closed form of the
unperturbed equations

Polynomial regression models are common tools in data science to model multivariate data
and find the relationship between variables. Let (x,Z) be the input multivariate data, where
x denotes the response vector of sample size n and Z denotes the design matrix of size
(n × p) with p independent variables (z1, . . . , zp)⊤. Given the training data of size n, the
multivariate regression

xi = z⊤
i β + ϵi, (4.1)

where ϵi are independent and identically distributed (iid) variables from the standard Gaussian
distribution. The regression model (4.1) essentially converts predicting the response differential
equation variable x = g(z) into estimating the unknown coefficients of the model. The least
squares (LS) method is a common approach to estimating the regression model coefficients (4.1)
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Polynomail Regression for the
estimation of the closed form of

the unperturbed critical
collapse functions

ANNs assisted Metropolis-Hastings for
the estimation of the distribution of this

critical exponent

Declare
Pertubed
Equations

Sample  

Find solution with
ANNs

Metropolis-Hasting

 Distribution

Figure 1. Bayesian approach with artificial neural networks assisted Metropolis-Hastings for the
estimation of the distribution of κ. We start with the estimation of the closed form for the unperturbed
equations of motion following polynomial regression. Then, a Bayesian artificial neural networks
assisted Metropolis-Hastings is followed, sampling κ from a prior distribution, and using an ANNs
solver for the solution of the perturbed equations of motion in each of the Metropolis-Hastings
iterations.

minimizing the l2 norm between the predicted responses and observed responses as

β̂ = arg min
β

||x − Zβ||22. (4.2)

One can easily show that the LS estimate of unknown coefficients can be obtained by
β̂LS = (Z⊤Z)−1Zx as the solution to (4.2). Hence, the differential equation response x(z)
at every space-time point znew is predicted by x̂new = znewβ̂LS [59].

The polynomial regression model extends the properties of multivariate regression by
employing the higher-order terms of the independent variables to better predict the nonlinear
pattern of the response function x = g(z). The polynomial regression of order J is given by

xi =
J∑

j=l

zj
i βj + ϵi, (4.3)

where β = (β1, . . . , βJ) are the model coefficients that should be estimated. One can easily
represent (4.3) in matrix form as (4.1) where the columns of the design matrix Z induce the
explanatory variable zi, i = 1, . . . , n raised to various polynomial powers j = 1, . . . , J . From
the least squares method (4.2), one can predict the non-linear responses of the differential
equations at every point znew in the domain of the equations of motion by x̂new = znewβ̂LS.

Technically, we follow the described polynomial regression technique to first obtain a
closed form of the unperturbed equations of motions. As it has been detailed, the polynomial
regression needs pairs of corresponding inputs and outputs. For generating them, for our
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problem, we follow an ANNs-based approach [45] to numerically find the unperturbed critical
collapse functions in the entire domain of the DE system. In other words, we employ the
technique in [45] to generate the training data of the polynomial regressor.

4.2 ANNs assisted Metropolis-Hastings for the estimation of the distribution of
the critical exponent

We do have a closed form of the unperturbed equations of motion thanks to the polynomial
regression detailed in previous section. However, our objective consists of finding the
distribution of the parameter of κ in the perturbed equations of motion.

With the estimations of the closed form for the DE variables b0(z), |f0(z)| and arg(f0(z))
of the unperturbed equations of motion, we proceed to incorporate these estimates and update
the perturbed equations of motion (3.17) and (3.18). We consider these perturbed equations
of motion, as our underlying DE system to estimate the distribution of the critical exponent.

Consider a system of H differential equations where x(t) = (x1(t), . . . , xH(t)) repre-
sents the multivariate solutions evaluated at space-time t to the system of differential
equations (DEs)

d

dt
xh(t) = gh(x(t)|θ), (4.4)

where the DE variable xh(t) corresponds to h DE and θ denotes the collection of the unknown
parameters of the DE. In our particular case θ = κ. Due to the high non-linearity of the black
hole equations of motion, the exact solution to the DE equations can be observed. Rather
than the exact DE solution, one may observe a perturbed version of the DE variable with
numerical measurement errors through numerical experiments. To take this uncertainty into
statistical methods, let yh = (yh1, . . . , yhn) denote the observed version of the DE variable
xh(t) at n space-time points. Hence, let yh,i follow a Gaussian distribution with mean xh(ti|θ)
and variance σ2

h. Given the Gaussian distribution of the observed data, the uncertainty in
the DE data can be modelled by the likelihood function of yi as

L(θ|y) =
H∏

h=1

n∏
i=1

(1/σ2
i ) exp

{
−(yhi − xh(ti|θ)/2σ2

h

}
, (4.5)

The likelihood function translates the problem of finding the solution to a system of DEs into
a Gaussian process with unknown parameters. One can estimate the unknown parameters of
the DE system given the observed DE variables by maximizing the likelihood function.

According to the non-linear nature of the DE variables, the likelihood function (4.5) ap-
pears nonlinear with multiple optimums, indicating the sensitivity of the maximum likelihood
estimate of the DE variables. Technically, in this work, we propose a Bayesian approach
incorporating the numerical measurement errors in estimating the critical exponent parameter
in the equations of motion (3.17), (3.18). This framework requires prior knowledge of model
parameters. This prior knowledge is incorporated into equations through a prior probability
density function. Let π(θ;α) denote this prior distribution, with α representing the vector of
hyper-parameters. In the experiments, see section 5, we employ different prior distributions.
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So, we are able to first generate κ candidates from a proposal distribution. Then, we
propose to apply fully connected ANNs using the κ candidate and find the solution to the
perturbed equations of motion corresponding to the κ candidate. This means that our model
will generate for each κ candidate a solution using ANNs, assisting in an iterative fashion the
deployed Bayesian approach. We show now in detail how this ANNs step is done.

Standard ANNs encompass multi-layer perceptrons, which transfer the data between
the layers through linear and non-linear functions [60]. In this research, we focus on fully
connected ANNs to deal with the non-linearity of the elliptic perturbed equations of motion
in the Einstein-axion-dilaton system in 4d. Let N L(x, t, ψ) denote a neural networks with L
layers which map the input dimensions Rin to Rout. Let Wl and bl denote the weight matrix
and bias vector, which regress the neurons in layer l on l − 1, respectively. Accordingly, the
response vector before activation in layer l is given by

input layer: N0(x, t, ψ) = x,
hidden layers: N l(x, t, ψ) = η(WlN l−1(x, t, ψ) + bl),
∀1 ≤ l ≤ L− 1
output layer: NL(x, t, ψ) = η(WLNL−1(x, t, ψ) + bL),

where the output of layer l is obtained after applying the activation function, that is η(·).
The universal approximation theorem guarantees that the neural networks can approxi-

mate any function, making the neural networks a state-of-the-art method for solving nonlinear
equations [60]. One must define a loss function L to assess the performance of the ANNs
and a back-propagation algorithm to adjust the weight matrices and bias parameters of the
ANNs based on the gradient of the loss functions. The back-propagation algorithm calculates
the gradients of the ANNs with respect to the response variable to ensure that the estimates
of the ANN’s coefficients meet the requirements of the loss function. This process translates
solving the differential equations of motion into an optimization problem, estimating the
differential variables based on minimizing the squared residues of the ANNs. Accordingly,
for this purpose, we introduce the l2 loss function as

L
(
N L(x, t, ψ)

)
=
(
N L(x, t, ψ) − g

)2
,

where N L(x, t, ψ) represents the trained neural networks approximating the underlying
function.

Overall, at this point, our method disposes of a solution of the system of DEs pertinent to
the perturbed elliptic class of black hole equations of motion, for a sampled particular value
of κ. However, our objective is to find the probability distribution of the critical exponent, so
that it can be considered, for the first time in the literature, as a random variable. Therefore,
for each of the solutions associated to sampled values of κ we must compute the likelihood
function (4.5) and find its acceptance probability

Using information contained in the likelihood function (4.5) and the prior distribution,
one can find the posterior distribution of the unknown parameters π(θ|y). The posterior
distribution enables us to capture the pattern of the parameters of the DE system using
all the uncertainty involved in calculating the DE variables. The posterior distribution of
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θ is calculated by

π(θ|y) = L(θ|y)π(θ;α)∫
θ L(θ|y)π(θ;α) . (4.6)

Nevertheless, the posterior distribution (4.6) lacks a closed-form solution because of the high
non-linearity of the DE variables and the complex marginal distributions of the DE variables.
For this reason, one has to use iterative methods such as Markov Chain Monte Carlo to find
numerically the posterior distribution of the parameters of the DE system [61].

Markov Chain Monte Carlo (MCMC) is a widely acceptable numerical technique within
the Bayesian framework to estimate the posterior distribution of the DE system. The power of
the MCMC approach relies on the fact that it transfers the estimation task into the sampling
process from the posterior distribution of interest. Extensive research has been conducted in
the literature about the properties of the MCMC approach, including Metropolis-Hastings,
Gibbs sampling, and Sequential Monte Carlo [62] and [48]. In its nutshell, MCMC employs
various probabilistic techniques to generate a Markov chain of samples approximating the
target posterior distribution. When the chain is selected long enough, the Markov chain
will eventually reach a stationary state that accurately fluctuates around the true form of
the posterior distribution.

For our implementation, we follow the Metropolis-Hastings (MH) algorithm [47], which is
an established MCMC approach. The MH method calculates the probability of the transition
between the current state of the chain θ(t) and a candidate state θ∗ simulated stochastically
from an independent proposal distribution q(θ). The MH method applies a probabilistic step
to accept or reject the proposed candidate. Let θ(t) represent the t-th state of the MCMC
chain. Then we accept the proposed state θ∗ as the next state of the chain with probability

min
{

1, π(θ∗|y)q(θ(t))
π(θ(t)|y)q(θ∗)

}
. (4.7)

If the candidate θ∗ is accepted, then θ(t+1) = θ∗; otherwise, θ(t+1) = θ(t). The entire MCMC
method is replicated N times to generate a sequence of {θ(t); t = 1, . . . , N} samples from
the target posterior distribution π(θ|y).

Overall, we have detailed a novel model that allows for a Bayesian estimation of the
critical exponent on the elliptic black hole solution in 4d. In the next section, we show
all the numerical studies performed, and for the first time in the literature, we are able to
provide a probability distribution of κ.

5 Numerical studies

In this section, we plan to find the distribution of the critical exponent κ in the elliptic 4d
equations of motion in the Bayesian framework. To do so, the critical exponent is treated as
a random variable, so we use the Bayesian strategy to find the posterior distribution of κ
based on the perturbed DE system. In this numerical study, we investigate the equations
of motion as the input DE system.

Hatefi et al. (2023) in [45] proposed ANNs to solve the unperturbed DE variable.
We applied the properties of polynomial regression and found the closed-form polynomial
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Figure 2. The polynomial estimates of the unperturbed critical collapse functions b0(z), arg(f0(z))
and |f0(z)| of the equations of motion based on polynomial orders of l = 1 (black), l = 2 (red) and
l = 3 (blue). The dots show the true functional form evaluated at the validation points.

regression estimates for the unperturbed critical collapse functions. According to the fact
that the goal of this research is to estimate the critical exponent and that the critical
exponent is only observed in perturbed DE variables, we first followed [45] and used the
ANNs based on ω = 1.176 to numerically find the unperturbed critical collapse functions
in the entire domain of the DE system. To find the regression estimate of the unperturbed
critical collapse functions, we generated equally spaced points z1, . . . , zn of size n = 1000
from the domain of the DE system. We obtained the ANN estimates of the unperturbed
critical collapse functions evaluated at each of the 1000 points. Once we obtained the ANN
estimates, we used 750 observations as training and 250 as testing data to estimate the
closed-form polynomial regression of the unperturbed critical collapse functions, as described
in subsection 4.1. Hence, the closed-form polynomial estimates of the unperturbed critical
collapse functions are derived by

b̂0(z) = 1.005 − 0.187z + 0.480z2 − 0.004z3, (5.1)

|̂f0(z)| = 0.919 − 0.122z − 0.028z2 − 0.002z3, (5.2)
̂arg(f0(z)) = −0.011 + 0.041z + 0.047z2 − 0.012z3. (5.3)

Figure 2 shows the training and test performance of the polynomial estimates for the
critical collapse functions for polynomial orders l = 1, 2, 3. One can easily see that the
polynomial of order l = 3 can capture very well the non-linearity of the unperturbed critical
collapse functions. Once we found the unperturbed DE variables b0(z), |f0(z)| and arg(f0(z)),
we incorporated these estimates and updated the perturbed equations of motion. In the
next step, we consider this perturbed equations of motion, as our underlying DE system
to estimate the critical exponent.
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Figure 3. The posterior distribution and trace plot of the κ based on MCMC samples from the
Metropolis-Hastings algorithm using only the perturbed DE variable b1(z) to accept or reject the
transitions under the Uniform proposal distribution.

We proposed an artificial neural network-assisted Metropolis-Hastings to obtain the
posterior distribution of κ. We first generated κ candidates from a proposal distribution to do
so. Here, we considered two proposal distributions, including the Uniform distribution between
(3,4) and the Gaussian distribution with a mean of 3.5 and variance of 1 to deal with the
singularity issue, and the range included the established solution available in the literature [41].

In the next step, we apply fully connected neural networks using the κ candidate and
find the solution to the perturbed equations of motion corresponding to the κ candidate.
We implemented the fully connected ANNs using the Python package neurodiffeq [63]. The
neural networks used contain 4 hidden layers, each with 16 neurons. The training was done
for 50 epochs. We then computed the likelihood function (4.5) and found the acceptance
probability of the Metropolis-Hasting algorithm under non-informative uniform distribution.
Due to the fact that the range of DE variables is dramatically different, we assign σb1 = 7
and σg = 2 in the likelihood function of κ given the perturbed DE variables.

It is shown in the literature that the perturbed b1(z) DE variable is linear with respect to
κ; however, the perturbed f1m(z) = gm(z) contains the higher orders of κ [41]. To investigate
the effects of the different DE variables on the MCMC chains and the Bayesian distribution
of κ, we evaluated the performance of the stochastic accept-reject method based on three
scenarios. These scenarios include the accept-reject step based on only the observed perturbed
DE variable of b1(z), accept-reject based on only the observed perturbed DE variable gm(z)
and accept-reject based on both observed perturbed DE variables gm(z) and b1(z). Finally,
the entire neural network-assisted Metropolis-Hasting approach was carried out for 2000
chains, where in each iteration, the perturbed equations of motion were computed using
artificial neural networks. We discard the first 10% of the history of the MCMC chain to
wash out the effect of the initialization step on the performance of the MCMC chain.
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Figure 4. The posterior distribution and trace plot of the κ based on MCMC samples from the
Metropolis-Hastings algorithm using only the perturbed DE variable f1m(z) = gm(z) to accept or
reject the transitions under the Uniform proposal distribution.

Figures 3–8 show the posterior distributions and trace plots of the κ parameter based
on 1800 MCMC chains (after discarding the burn-in period) using our artificial neural
networks-assisted Metropolis-Hastings approach. The results are based on three accept-reject
approaches and two proposal distributions, including uniform and Gaussian distributions.
From figures 3–8, we observe that the distribution’s posterior mean and posterior mode, as
two Bayesian estimates of the κ range between 3.2 and 3.8, which verifies the findings in
the literature that κ∗ ≈ 3.7858 for the equations of motion in 4d elliptic class [41]. From
the trace plot, we easily observed that the MCMC chain easily searches the domain of the
parameter of interest and supports the solution between 3.2 and 3.8.

As one needs the ANNs in each iteration of the MCMC chain to evaluate the accept-reject
steps, we show the results of the loss function of ANNs in figures 9–14 (in the appendix). To
show the convergence of the ANNs, we computed the difference between training and validation
loss functions in the last epoch of the ANNs over 1800 MCMC samples. In each figure,
we also show the entire trajectory of the training and validation loss functions over all the
epochs for a randomly selected MCMC sample. From figures 9–14, we clearly observe the loss
differences are almost very small of magnitude 10−6 fluctuating around zero. This highlights
the convergence of the ANNs in estimating the critical exponent in a Bayesian framework.

The unique solution for the elliptic case in four dimensions was achieved in [41]. Indeed,
the behaviour of detA(k) near the last crossing of the horizontal axis was estimated to be

κ∗
4E ≈ 3.7858 , (5.4)

which gives rise to a Choptuik exponent as γ4E ≈ 0.2641. In this paper, we have used various
statistical methods to actually explore the entire range of the critical exponent rather than
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Figure 5. The posterior distribution and trace plot of the κ based on MCMC samples from the
Metropolis-Hastings algorithm using both the perturbed DE variables b1(z) and gm(z) to accept or
reject the transitions under the Uniform proposal distribution.

exploring the last crossing. Surprisingly, our results

3.2 < κ∗
4E < 3.8 (5.5)

is in perfect agreement with the literature, see [54]. Hence, we can actually take this very
non-trivial match as evidence that shows all our numerical sets up are reliable methods that
can be extended to any dimension and any matter content.

6 Conclusion

In this paper, we advance the current literature on critical exponents for black hole solutions
by examining all solutions within the domains of the linear perturbation equations of motion.
Specifically, we investigate the quantum perturbation theory for a four-dimensional Einstein-
axion-dilaton system under an elliptic class of SL(2,R) transformations. Utilizing quantum
perturbation theory, we propose artificial neural network-assisted Metropolis-Hastings algo-
rithms for Bayesian estimation of the critical exponent of the elliptic black hole solution in 4d.

Unlike conventional methods, we investigated the range of possible values for critical
exponents using quantum perturbation theory. We conducted a thorough analysis not only
of the perturbed differential equation (DE) variables b1(z) and f1m(z) = gm(z) but also of
the DE variables for both b1(z) and gm(z) equations simultaneously. This comprehensive
approach allowed us to assess their effects on stochastic accept-reject transitions within
the posterior distributions of the critical exponent. Our innovative probabilistic method
stands out from existing techniques by offering the established solution while simultaneously
exploring the entire spectrum of physically distinguishable critical exponents, accounting
for potential numerical measurement errors. This advancement provides a more robust
and inclusive understanding of critical exponents, highlighting the limitations of previous
approaches and paving the way for more accurate predictions in complex systems.
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Our new methods introduce innovative approaches for exploring the potential range
of allowed values for the critical exponent, applicable to all different conjugacy classes of
the SL(2,R) transformation. Moreover, it is important to emphasize that these methods
can be extended to various types of matter content. This is a direction we are keen to
pursue in future research.

It is interesting to note that, besides the critical exponents’ dependence on matter content,
dimension, and various solutions of self-critical collapse [38], these exponents can span an
entire range of values rather than being confined to a single localized value. Therefore,
we conclude that the conjecture regarding the universality of the Choptuik exponent does
not hold. However, some universal behaviours might be embedded in the combinations of
critical exponents and other parameters of the given theory that our current analysis has not
accounted for. Our new findings clearly indicate that the standard expectations of statistical
mechanics do not transfer to the context of critical gravitational collapse.
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A The posterior and Uniform distributions

Figure 6. The posterior distribution and trace plot of the κ based on MCMC samples from the
Metropolis-Hastings algorithm using only the perturbed DE variable b1(z) to accept or reject the
transitions under the Gaussian proposal distribution.
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Figure 7. The posterior distribution and trace plot of the κ based on MCMC samples from the
Metropolis-Hastings algorithm using only the perturbed DE variable f1m(z) = gm(z) to accept or
reject the transitions under the Gaussian proposal distribution.

Figure 8. The posterior distribution and trace plot of the κ based on MCMC samples from the
Metropolis-Hastings algorithm using both the perturbed DE variables b1(z) and gm(z) to accept or
reject the transitions under the Gaussian proposal distribution.
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Figure 9. The difference between the train and validation losses in the last epochs over MCMC
samples (A) and the histogram of the loss differences (B). The train and validation losses for one
random MCMC sampling (C). The MCMC samples are from the Metropolis-Hastings algorithm, using
only the perturbed DE variable b1(z) to accept or reject the transitions under the Uniform proposal
distribution.

Figure 10. The difference between the train and validation losses in the last epochs over MCMC
samples (A) and the histogram of the loss differences (B). The train and validation losses for one
random MCMC sampling (C). The MCMC samples are from the Metropolis-Hastings algorithm, using
only the perturbed DE variable gm(z) to accept or reject the transitions under the Uniform proposal
distribution.
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Figure 11. The difference between the train and validation losses in the last epochs over 1800 MCMC
samples (A) and the histogram of the loss differences (B). The train and validation losses for one
random MCMC sampling (C). The MCMC samples are from the Metropolis-Hastings algorithm, using
both perturbed DE variables b1(z) and gm(z) to accept or reject the transitions under the Uniform
proposal distribution.

Figure 12. The difference between the train and validation losses in the last epochs over MCMC
samples (A) and the histogram of the loss differences (B). The train and validation losses for one
random MCMC sampling (C). The MCMC samples are from the Metropolis-Hastings algorithm, using
only perturbed DE variables b1(z) to accept or reject the transitions under the Gaussian proposal
distribution.
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Figure 13. The difference between the train and validation losses in the last epochs over MCMC
samples (A) and the histogram of the loss differences (B). The train and validation losses for one
random MCMC sampling (C). The MCMC samples are from the Metropolis-Hastings algorithm, using
only the perturbed DE variable gm(z) to accept or reject the transitions under the Gaussian proposal
distribution.

Figure 14. The difference between the train and validation losses in the last epochs over MCMC
samples (A) and the histogram of the loss differences (B). The train and validation losses for one
random MCMC sampling (C). The MCMC samples are from the Metropolis-Hastings algorithm, using
both perturbed DE variables b1(z) and gm(z) to accept or reject the transitions under the Gaussian
proposal distribution.
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