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Abstract

The problem of action detection in untrimmed videos
consists in localizing those parts of a certain video that
can contain an action. Typically, state-of-the-art ap-
proaches to this problem use a temporal action propos-
als (TAPs) generator followed by an action classifier
module. Moreover, TAPs solutions are learned from
a supervised setting, and need the entire video to be
processed to produce effective proposals. These proper-
ties become a limitation for certain real applications in
which a system requires to know the content of the video
in an online fashion. To do so, in this work we in-
troduce a live video action detection application which
integrates the action classifier step with an unsuper-
vised and online TAPs generator. We evaluate, for
the first time, the precision of this novel pipeline for
the problem of action detection in untrimmed videos.
We offer a thorough experimental evaluation in Activi-
tyNet dataset, where our unsupervised model can com-
pete with the state-of-the-art supervised solutions.

1 Introduction

The problem of temporal action localization (TAL)
in untrimmed videos has drawn a significant amount of
attention from the research community [2, 3, 7, 10, 14,
28], owing to its applications in many areas like: in-
telligent video surveillance, robotics, human-computer
interaction and human behavior analysis.

Technically, the goal of any TAL solution consists
in identifying in a video what actions occur, and when
they appear, by concretely determining the correspond-
ing temporal windows. Interestingly, the best state-of-
the-art TAL approaches split the problem in two steps,
as it can be seen in Figure 1 Left. First, the methods
integrate a Temporal Action Proposals (TAPs) gen-
erator. This module is responsible for identifying as
many regions in the videos as possible, in order to max-
imize recall, which have a high probability of contain-
ing an action. Then, these action proposals are passed
through an action recognition classifier.

All the approaches in this paradigm for TAL need
to work in an offline fashion. This implies, for exam-
ple, that in order to properly generate action proposals,
these systems need access to the entire video, from be-
ginning to end. From the point of view of applicability,

the fact that they are offline is a major limitation. Let’s
think of a TAL solution for video surveillance, which
has to detect when a dangerous situation occurs. Un-
der these offline approaches, the alert would be gener-
ated a posteriori, once the action has been completed,
not being able to anticipate it.

In this paper we want to change the current
paradigm so that the TAL problem can be addressed
from an online perspective. Figure 1 Right shows the
novel approach we introduce. We continue separating
the tasks of action classification and generation of ac-
tion proposals. But we propose to approach the latter
task with an online model that does not require super-
vision. This is the main contribution of our work, i.e.
the integration in a TAL approach of an online and un-
supervised TAPs generator. Our action proposals are
generated as the video stream evolves, i.e. in live mode.
As soon as an action proposal is identified, we can pass
it to the action recognition module. All the details of
our implementation can be found in Section 3. We also
offer a thorough experimental evaluation of our model
in the challenging ActivityNet [12] dataset (see Section
4). We provide a detailed comparison with the best
state-of-the-art supervised TAL solutions, and results
reveal that our approach can compete with them.

2 Related work

Currently, the best and most common way to solve
the TAL problem involves two stages: temporal action
proposals (TAPs) generation and action classification.
But how did the research community get to this point?

At the beginning, the TAL task was interpreted in
two different ways. On the one hand, some works, e.g.
[16, 25, 30], considered the problem as an extension of
object detection to videos and thus, they proposed to
exhaustively process them with a 3D version of the slid-
ing window used to detect objects in images, in order
to spatio-temporally locate the action.

On the other hand, several authors have addressed
the problem as a retrieval task where given an action
query, the method had to search throughout all the
video for the segments in which the action was be-
ing performed. In this case, the videos involved were
untrimmed, i.e. irrelevant information could appear at
some parts of the video. A classical work representing
this interpretation of TAL is the one proposed by [9].
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Figure 1. Left: We show the current state-of-the-art paradigm for TAL. First, an offline TAP generator is
trained with supervised learning. The whole video is processed by the TAP approach to generate overlapped
proposals. Then, an action classifier is run over them to predict the action categories. Right: This is our
live video action recognition approach. The proposed pipeline works with live video streams that enter into
the online and unsupervised TAP generator. This module produces action proposals online, or discards video
segments considering them as background. Finally, action proposals pass through the action classifier.

Later on, this interpretation evolved to just temporally
locate all the instances of a set of actions for a certain
dataset without using any query, which is the way the
task is understood today (e.g. [26, 28, 36]).

Driven by the success of the object proposals con-
cept for detecting objects in still images [15], some au-
thors proposed to extend this idea to the TAL problem,
e.g. [11, 14, 22, 35]. In [14], Caba et al. proposed the
topic of Temporal Action Proposals (TAPs), in which
methods were only designed to find, in long untrimmed
videos, those segments that can contain a human ac-
tion. Then these segments are used to feed an action
classification network (e.g. SCNN [28] or Untrimmed-
Nets [31]) to cast the final action label. Nowadays, the
majority of TAL approaches utilize this pipeline. As an
example, TURN-TAP ([10]), CTAP ([11]), BSN ([22]),
BMN ([20]), MGG ([24]) and DBG ([19]) have used the
SCNN classifier over their proposals.

As a common denominator, all of the above works
share that: i) they use TAPs models that have been
trained following a supervised learning paradigm; and
ii) they have not been designed to tackle the TAL prob-
lem from an online perspective. On the contrary, we
introduce in this work an approach that integrates an
unsupervised TAPs generator solution into the TAL
pipeline. Moreover, we build with it a live video ac-
tion classification application, that is able to predict
the action in an online fashion. Other works address
this online problem (e.g. [5, 6]), but they perform a
frame-wise video analysis, without action proposals.

3 Live video action recognition application

We describe here a novel approach for live video
action recognition from unsupervised temporal action
proposals. Our pipeline performs an online video anal-
ysis, extracting the action proposal directly from the
live video. Then, we integrate an action classifier to
perform the action prediction. Figure 1 Right shows
the whole system proposed. Unlike all state-of-the-art
approaches, our model operates completely online: the
video is processed as it arrives to the system, without
accessing any information from the future.

3.1 Unsupervised online TAP

We build our application for live video by leveraging
previous work on unsupervised TAPs [18, 1].

Technically, we follow [1] where a rank-pooling [8]
based filtering is used to learn to discriminate, in an
unsupervised fashion, between action and background
temporal video segments that dynamically grow, us-
ing a Support Vector Classifier (SVC) based clustering
model. While the SVC discriminates between contigu-
ous sets of frames to generate candidate action proposal
segments, the rank-pooling filtering computes the dy-
namics of these segments and applies a distance crite-
rion between each segment dynamics and a randomised
version of them to confirm or discard them as actual
action proposals.

Given an online video stream Vi = {vin}
li
n=1 our



application starts extracting any state-of-the-art deep
learning feature representation for every frame or set
of frames. Formally, the online sequence Vi is con-
verted to a set of visual features F i = {f in}

li
n=1, where

f in ∈ Rd. Given the obtained features, the model begins
processing the video Vi by accessing the first 2×N fea-
tures in F i to split them into two sets of N consecutive
features, S+t=1 and S−t=1, i.e. S+t=1 = {f i1, f i2, . . . , f in}
and S−t=1 = {f in+1, f

i
n+2, . . . , f

i
2n}. Note that t = 1 be-

cause it is the first iteration of the process and that for
every new iteration N new incoming features are eval-
uated. In the experiments, we fix N = 32, this choice
gives the best results.

Next step consists in finding whether these two sets
belong to the same segment. To do so, the two sets are
artificially identified with two different labels Y+

t=1 =
{+1}Nn=1 and Y−t=1 = {−1}Nn=1, and the SVC proceeds
to learn to separate them according to the labels. For
our online application, we have opted for using a simple
but effective linear kernel to separate the features.

At iteration t, once the online learning phase of the
SVC is finished, the algorithm classifies the provided
features and measures its performance by computing
the classification error rate (Cert). Lastly, it evaluates
Cert to decide whether to join the initial groups of fea-
tures. A high Cert means that the SVC is not able
to correctly separate the two sets. Hence, the two sets
of features S+t and S−t should be joined in the same
candidate proposal for the next iteration of the algo-
rithm. On the other hand, a low Cert implies that the
set S+t is different from S−t and can be considered a
different proposal. A threshold α is defined to evaluate
these conditions: if Cert ≥ α then S+t+1 = S+t

⋃
S−t ,

the proposal size is increased for the next iteration; if
Cert < α, then S+t+1 = S−t and a new action proposal

apk is generated from the set S+t . For the experiments
we fix α = 0.1.

Following this approach, in each iteration the SVC
module decides on which groups to make after learn-
ing and classifying based on the initial artificial labels.
Each of the candidate segments that are generated has
to also be evaluated by the next step: the Rank-pooling
based filter.

Let apk be a candidate action proposal generated

by the SVC module. First, a set Fapk = {fn}
lapk
n=1 is

built, where fn ∈ Rd and lapk
encodes the size of the

proposal. Fapk contains the ordered set of features for
the video frames included in apk. Then, the set of
features F̃apk is generated, which is a randomly disor-
dered version of Fapk . Finally, a rank-pooling model
similar to the one proposed by [8] is used to compute

the dynamics of Fapk and F̃apk .
As in the rank-pooling model [8], the dynamic of a

set of features is summarised as the parameters of a
curve in the input space that captures the frame tem-
poral order via linear projections. This is done by op-
timizing a pairwise-learning-to-rank problem based on

an Support Vector Regression (SVR). In particular, we
implement a rank-SVR with a linear SVR based for-
mulation, which is known to be a robust point-wise
ranking method [23].

Given any set of features F = {ft}lt=1 =
{f1, f2, . . . , fl}, a direct projection of the input vec-
tors ft to a time variable t is obtained by employ-
ing a linear model with parameters ωF , as follows,
ωF = arg minωF

∑
t |t−ωF · ft|, where ωF summarises

the sequence of dynamics, becoming the pooled dynam-
ics descriptor for F .

The rank-pooling filtering mechanism computes the
dynamics for Fapk and F̃apk , being them ωF

apk and

ωF̃
apk , respectively. As described above, the distance

between these two dynamics vectors allows the model
to identify action proposals, discarding candidates that
might include background information. For a candi-
date that does not represent to any action, the dis-
tance between its dynamics and the dynamics of its
randomised version should not be high. The Euclidean
distance is used to implement this filtering mechanism
in our application. We define a threshold r to discard

background segments: if d(ωF
apk , ωF̃

apk ) < r, the can-
didate proposal is rejected. In the experiments, r = 1
offers the best results.

3.2 Action Recognition Classifier

The last step of our model (see Figure 1 Right) clas-
sifies each of the resulting action proposals. For the
classifier, we propose to integrate the Temporal Seg-
ment Network (TSN) [32] framework. In our imple-
mentation, we feed the TSN with the unsupervised ac-
tion proposals. Every action proposal is divided into
K segments (in the experiments, we fix K = 7), and
for each segment a short snippet is randomly selected.
Every snippet is processed by a spatial convolutional
neural network. Note that, for greater efficiency, we
do not integrate into our pipeline any temporal opti-
cal flow based input modality, contrary to [32]. So,
our TSN only works with the RGB frames of the snip-
pets. The class scores of different snippets are fused
by a segmental consensus function to yield the action
proposal-level prediction.

Formally, given a action proposal video segment api,
we divide it into K = 7 segments {S1, S2, . . . , S7} of
equal duration. We then use the TSN to model the
sequence of snippets (T1, T2, . . . , T7) as

TSN(T1, T2, . . . , T7) = H(G(F(T1;W), . . . ,F(T7;W))).
(1)

F(Ti;W) is a function that represents a W -parameter
convolutional neural network that operates on the
short snippet Ti and generates class scores for all
classes. G is the segmental consensus function. It ba-
sically incorporates all the snippet outputs to reach at
a consensus on a class hypothesis. For our implemen-
tation, we use the average of the scores of the same



category on all the snippets. Based on this consen-
sus, our prediction function H is the Softmax function,
which predicts the likelihood of each action class for
the entire action proposal.

4 Experiments

4.1 Experimental setup

We proceed to evaluate our live video action recog-
nition module from unsupervised TAPs using Activi-
tyNet [12] dataset. As of now, it is the first time a
TAL solution based on an unsupervised TAPs genera-
tor is evaluated on this dataset.

We report the performance of our model for both the
TAPs and the TAL problems. The former is evaluated
following the standard Average-Recall versus Average
Number of Proposals per Video (AR-AN) metric [14].
As in the official ActivityNet challenge [13], for the
TAP task the Average-Recall (AR) is defined as the
mean of the recall values computed for the set of tIoU
thresholds [0.5, 0.95], using a step of 0.05. To compare
different methods, the Area Under the Curve (AUC)
for the AR-AN plot is used.

For the experimental evaluation of the TAL prob-
lem we again follow the official metric proposed in the
ActivityNet challenge. The interpolated Average Pre-
cision (AP) is used as the metric for evaluating the
results on each activity category. Then, the AP is av-
eraged over all the activity categories (mAP). Finally,
we report the average mAP, which is defined as the
mean of all mAP values computed with tIoU thresh-
olds 0.5, 0.75 and 0.95.

The implementation of the system is divided into
the TAP generator and the action classifier. In the
TAP module, videos are first processed with the C3D
network [29], which is initialized with weights from the
Sport1M [17] dataset. Then, the online action proposal
generation is performed over the fc7 features of the
network, for which we follow the implementation in
[1]1. On the other hand, for the action classifier we
made use of the TSN implementation of [33]2, which
relies on the ResNet200 network for the RGB stream.

4.2 Results

For the TAP problem, in Table 1 we start showing a
comparison between our fully unsupervised and online
approach to generate action proposals, and the cur-
rent state-of-the-art supervised models for TAP. The
best supervised model achieves 67.10 of AUC@100 pro-
posals. Our unsupervised model recovers 41% of this
model’s performance, indicating a promising direction
for unsupervised approaches.

Regarding the TAL problem, we report in Table 2
the results of our system, compared with the state of

1https://github.com/gramuah/svc-uap
2https://github.com/yjxiong/anet2016-cuhk

Table 1. Comparison with the state-of-the-art for
the problem of TAP on ActivityNet. The su-
perscript s indicates the method is supervised.
The best supervised model achieves 67.10 of
AUC@100. Our unsupervised model achieves
27.61, so it is able to recover 41% of the best
performing supervised method.

AUC

[4]s 59.58
[21]s 64.40
CTAP [11]s 65.72
BSN [22]s 66.17
BMN [20]s 67.10

Ours 27.61

Table 2. Comparison with the state-of-the-art for
the problem of TAL on ActivityNet.

tIoU
0.5 0.75 0.95 Average mAP

Ours 24.55 14.08 3.33 14.51
CDC [27] 45.3 26 0.2 23.8
R-C3D [34] 26.8 – – –
SSN [37] 39.12 23.48 5.49 23.98
Chao et al. [3] 38.23 18.3 1.3 20.22
BSN [22] 46.45 29.96 8.02 30.03
P-GCN [36] 48.26 33.16 3.27 31.11

the art in ActivityNet. First, for the lowest tIoU of
0.5, we report 24.55 of mAP. Note that the fully super-
vised model R-C3D [34] gets a close 26.8 mAP. This
supports the effectiveness of our online and unsuper-
vised model for generating proposals. Moreover, if we
carefully analyze the results for the most restrictive
tIoU of 0.9, suddenly, our pipeline outperforms up to
3 different state-of-the-art models. This suggests that
the type of action proposals we are able to generate
are more precise, in terms of temporal localizations,
than those employed by other fully supervised models.
Overall, these results confirm that the live video action
recognition approach from unsupervised action propos-
als can compete with TAL state-of-the-art models, and
therefore be integrated into a real application.

5 Conclusion

This paper introduces a novel approach for live video
action recognition. Technically, we propose to inte-
grate an unsupervised and online TAP generator mod-
ule, with a Temporal Segment Network action classi-
fier, to tackle the TAL problem in live video streams.
We provide a thorough experimental evaluation in the
challenging ActivityNet dataset, where our solution of-
fers promising results than can compete with those of
state-of-the-art TAL models.
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