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bstract

In this work we address the use of support vector machines in multi-category problems. In our case, the objective is to classify eight different
inds of alcohols with just one SnO2 sensor using thermomodulation. The use of support vector machines in the field of sensors signals recognition
s beginning to be used due to the ability to generalize in a binary classification problem with a small number of training samples. However, when
multi-class problem is presented, the outputs of the support vector machines are uncalibrated and should not be used to determine the category.

n this work a step forward is added to the output of the binary classifiers to choose the category with a maximal a posteriori probability. Obtained

esults show that the ability of generalization provided by support vector machines improves the results obtained with other learning methods used
n the electronic nose field and their use in multi-class problems can be addressed with the method proposed. To reduce the high dimensionality of
he data we have benchmarked several feature extraction methods with probabilistic support vector machines.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Electronic noses are defined as an array of sensors and a
attern recognition (PARC) system [1,2]. Over the past years
hese systems have been applied to many different applica-
ions [2], from coffee quality analysis [3] to automotive exhaust
onstituent measurements [4]. Especially important are those
ystems based on SnO2 sensors due to their advantages of low-
anufacturing cost and high sensitivity. However, disadvantages

f these sensors come from the lack of stability and drift [6]. This
s a major problem because it makes the response non-stationary
nd the performance of the system in a real situation is poorer
han in a controlled environment.

Most of the works have researched on the dynamic response

f the signal in order to extract more information and to min-
mize the drift effect. Basically, there are two approaches to
his transient response: varying the concentration of the analyte

∗ Corresponding author. Tel.: +34 91 885 6725; fax: +34 91 885 66 99.
E-mail address: javier.acevedo@uah.es (F.J. Acevedo).
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dulation

7] or varying the working temperature [8] also known as ther-
omodulation. Each approach then results in another signal.
he second approach has been applied to SnO2 sensors and has

esulted in more stability. Moreover, it has been demonstrated
9] that every sensor is more sensitive to a specific gas at a par-
icular temperature. It is therefore possible to obtain dynamic
esponses in time which then act as a “fingerprint” for a spe-
ific vapour [10]. With this idea in mind and with the help of a
ARC system it is possible to identify the presence of different
ubstances. However, although the stability increases with this
echnique there is always a number of erroneous measurements,
lso known as outliers. In order to improve the classification, the
ARC system selected has to be robust in the presence of these
utliers.

Support vector machines (SVM) is a classification technique
ased on statistical learning theory (SLT) [11,12]. The use
f SVM in the field of sensors signals classification for two

ategories is beginning to be used [13–15] due to the ability
o generalize a classification problem with a small number of
raining samples and so, to avoid the mentioned effects due
o the outlier samples. Since SVM solve two-class problems,

mailto:javier.acevedo@uah.es
dx.doi.org/10.1016/j.snb.2006.05.033
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he extension to the multi-class case is usually done with
ifferent binary SVM that separates one substance from the
est, as is done in Ref. [16]. However, the output of a SVM is an
ncalibrated value and should be not compared directly. Instead,
latt [17] proposed to estimate the a posteriori probability given

he output of a SVM which in turn makes it possible to compare
etween different binary classifiers.

In this work, our proposal is to classify several kinds of alco-
ols with just one SnO2 sensor using probabilistic support vector
achines such as the PARC system. Alcohols to be classified

re based on pure alcohols (ethanol, propanol and methanol),
romatic alcohols (veratryl, isoamyl, amyl) and complex struc-
ures presented in colognes or liquors, eight different substances
n all. Alcohol identification has been reported in some previ-
us works [18–20] but although they used thermomodulation it
as necessary to use several sensors. What is more, they identi-
ed less substances than we propose to. We have compared the
esults obtained with SVM with those obtained with some PARC
chemes used in the electronic nose such as Fuzzy Artmaps
21,22] or Neural Networks [23].

One of the aspects gaining in importance in the electronic
ose field is feature extraction [24,25]. These techniques try to
educe the dimension of the input vectors to be recognized by
he learning machine employed, concentrating all the discrimi-
ating information on a few features only. We have also tested
set of these methods to study the behaviour of SVM in each

ase.
Although the described work classifies alcohols, the proce-

ure here exposed can be applied to different applications in the
eld of classification of substances by their odour.

. Experimental

.1. Signal acquisition

The sensor stage is composed of a signal conditioning circuit,
power stage and a unique SnO2 from Figaro Sensor (Taguchi
620). This sensor incorporates a heater element. In our case it
s fed through the power stage with a sinusoidal heater voltage
n order to achieve thermomodulation. A frequency of 50 mHz
as selected for this modulating signal. This frequency must be

low enough to allow the heater element to change the temper-
ture following the heater voltage. If a much higher frequency
s applied, the heater will not be able to change the temperature
nd thermomodulation is not achieved. In the presence of alco-
ol the sensor changes its resistance giving a dynamic response
ue to thermomodulation. This modulated response is sent to a
icrocontroller that converts the signal from analog to digital
ith a resolution of 10 bits.
For the training phase we have to collect a representative

roup of signals of every kind of substance, we would like to
dentify—alcohols in this case. These signals are all acquired
nder the same thermomodulation signal in different environ-

ental conditions of temperature and humidity. The pure alco-

ols and the aromatic ones were tested without having diluted
hem in water, since we wanted to classify the alcohols rather
han estimate the concentration. The experimental setup of the

m
t
s
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ampling vapours was done placing the liquid into a closed
hamber where the sensor is located. This chamber is not kept
t constant temperature because, as it was mentioned, we would
ike to test the system under different environmental conditions.
or the training stage, the liquids were placed without having
iluted them. The purpose of this first phase is to test the pro-
osed classification method without interference effects from
ther substances. The training of the system is always done with
hese substances without having diluted them.

For the test stage the procedure followed to sampling the
apours was quite similar to the one described for the training
tage, but instead of using substances without having diluted
hem, we also tested the substances diluted at three different
oncentrations because it is interesting to evaluate the detection
imit. We also tested some mixes from two different substances.

Every cycle of the thermomoduling signal is considered a
ealization in the time domain of the alcohol substance repre-
entation and is represented as vk

si
[n], where si i = 1, 2, . . ., 8

s one of the alcohol substances under study, and k represents
he kth cycle of the thermomodulated signal. So, for a N cycles
ignal we have N realizations of one of the substances under
tudy, with T samples of each one. This can be seen in Fig. 1a
or four cycles of amyl alcohol. The fact of acquiring the sig-
als under different environmental conditions results in that the
ignals taken with the same substance are not very similar, as
s shown in Fig. 1b–i. where we can distinguish different pro-
les for each of the substances under study. Each of the cycles
btained is converted to a T-dimension vector which in turn is
he input of the PARC system.

.2. Autonomous real-time system

The method exposed in this work has been implemented in an
utonomous real-time system based on a custom board designed
y our investigation group, incorporating a Fujitsu 16-bit micro-
ontroller, the signal acquisition part and an external host. This
ystem can work in two modes: training and testing. In the train-
ng mode, the system sends the signal, captured in the sensor
tage described above, to an external workstation that finds the
ptimal values for the multi-category problem. The software that
s executed in the workstation is based on a written-in-house ver-
ion of the SVMLIB [26]. The mode’s objective is to produce a
onfiguration file with the PARC coefficients that will be loaded
nto the autonomous system ready for the test mode. Once the
raining phase has ended the external host is no longer needed.

In the testing mode, the system has been updated with the
ecessary information to know which of the signal’s features
eed to be extracted. Furthermore, the system has been fed the
oefficients of the support vector machines and the a posteriori
robability coefficients to identify the alcohol. The result is sent
o a display that informs the final user.

It is important to note that the available memory in this kind
f systems is small and this plays an important role in the imple-

entation of the system. As the memory is limited we should

hink about possible solutions during the design process and test
ome feature extraction algorithms that allow the information
tored in the memory to be small.
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ig. 1. (a) Themomodulated signal of the amyl substance. (b–i) Different reali
thanol, (d) methanol, (e) propanol, (f) isoamyl, (g) veratryl, (h) cologne and (i

. Support vector machines for multi-class problems

.1. Support vector machines for two-class problems

SVM theory comes from the statistical learning theory and
s based on the structural risk minimization (SRM) rather that
n the empirical risk minimization (ERM) as is done in the
eural networks theory. Let us suppose we have a set of l train-
ng patterns {xi, yi} where i = 1, 2, . . ., l. yi ∈ {+1, −1} and
i ∈ R

d . In our case, vectors xi are the sensor responses during
ne cycle or vectors composed by the features extracted from
hose responses, whereas yi are the labels associated to each
attern indicating one of the classes. Thus, a two-class problem
asically consists of finding the optimal hyperplane that sepa-

ates the samples labelled −1 from those labelled +1, with a
iven margin between one set and the other. Such a hyperplane
s found when the margin is maximal. Instead of solving this
ptimization problem, in Ref. [12] we can find that is easier to

i
s
p
a

s with changes in the environment for the following substances: (b) amyl, (c)
r.

olve the dual problem:

min
α

LD = 1

2

∑
i,j

αiαjyiyjK(xi, xj) −
∑

i

αi

subject to :

0 ≤ αi ≤ C∑
i

αiyi = 0

(1)

eing α the Lagrange multipliers of the primal optimization
roblem of obtaining maximum margin, C is a regularization
arameter and K(si,x) is a kernel function that computes the

nner product in a higher dimension space. This kernel function
hould satisfy Mercer’s Theorem to ensure that the optimization
roblem exposed is convex [12]. In this work, we have used
radial function basis (RBF) kernel for the binary classifiers,
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efined as:

(x, y) = e−γ‖x−y‖2
(2)

Note, that from the set of training vectors only for a reduced
roup, the associated coefficients αi are different to zero. These
raining vectors with a non-null coefficient value are called sup-
ort vectors. The output of a binary classifier is then calculated
s:

x =
Ns∑
i=1

αiyiK(si, x) + b (3)

here Ns is the number of support vectors found as a result of the
ptimization problem, si the support vectors and b is a threshold
arameter updated in the training phase. The classification rule
epends on the sign of fx. It must be noted that this output is
n uncalibrated value and the outputs of two different classifiers
hould not be compared.

.2. Multi-class strategies for SVM

Most of the classification problems in the sensors signal
nalysis are multi-category problems, as the alcohol substances
lassification problem exposed here. It seems very interesting to
xtend the good performance of the binary SVM to multi-class
roblems.

Weston and Watkins [27] proposed a formulation of the opti-
ization problem considering all classes at once. Although

his strategy is very elegant from a mathematical viewpoint, its
mplementation does not yield so good results as in the binary
ase.

Other popular strategies in the pattern recognition field are
o consider the problem as a collection of binary classifica-
ion problems. In the one-against-all strategy k classifiers are
onstructed. The kth classifier constructs a hyperplane between
he class k and the rest of the classes. In the one-against-one
trategy (k(k − 1)/2) hyperplanes are defined, where each hyper-
lane separates each class from the other. Although this second
trategy sometimes improves the results obtained with the one-
gainst-all strategy, it should be noted that the number of SVM
ncreases very much, even in the case where the number of cat-
gories is small.

In our case, the PARC had to be implemented in the
utonomous real-time system described, with eight different
lasses to discriminate. It should be noted that every support
ector machine requires a quantity of memory calculated as
he number of support vectors multiplied by the dimension of
he problem. So, the one-against-one strategy consumes more

emory. This fact makes the one-against-all strategy the most
dequate one for our case.

.3. Probabilistic SVM for multi-class classification
Let us suppose we address our multi-category classification
roblem by constructing a set of binary classifiers under the
remise one-against-all. In that case, every classifier discrimi-
ates one alcohol substance from the rest. Once we have trained

a
t
p
d

ig. 2. Ethanol classification histograms for p(fx/y = −1) as a dashed line and
(fx/y = 1) as a continuous line.

he eight classifiers, an input is given to the classifiers to test
hich class this input belongs to. However, the ethanol clas-

ifier and the methanol one, for example, could both give a
ositive output. In such a case, what classifier should be taken
nto account? The optimal choice from a statistical viewpoint
s to select the classifier whose output has maximal a posteri-
ri probability. However, if the binary classifiers are based on
VM, as mentioned before, the output fx for a given input x is
n uncalibrated value, and so it is not possible to compare the
utputs of the binary classifiers. Consequently, under a multi-
lass problem based on binary SVM classifiers, we need to add
stage that transforms the output fx to a posteriori probability
(y = 1/fx).

To make this calculus of the a posteriori probability possi-
le, we begin by estimating the probability density functions
pdf) of p(fx/y = 1) and p(fx/y = −1) from the training set. In the
ulti-class problem described in this paper we select the binary

lassifier that separates ethanol from the rest of substances. This
lassifier is based on a SVM trained with a RBF kernel. In Fig. 2
he pdf p(fx/y = 1) is shown as a continuous line whereas the pdf
(fx/y = −1) is represented as a dashed line. Hastie and Tibsharini
28] proposed to approximate these two pdf to both Gaussian dis-
ributions, but as we can see in Fig. 2 this assumption is not very
ccurate for our alcohol classification problem.

Once these pdf have been estimated the Bayes rule is applied
o obtain the a posteriori probability, giving for the ethanol clas-
ifier the graph shown in Fig. 3:

(
y = 1

fx

)
= p(fx/y = 1)P(y = 1)∑

i=1,−1p(fx/y = i)P(y = i)
(4)

Platt [17] proposed to use a parametric model to adjust this
posteriori probability by means of a sigmoidal function. In
he previous figure we can appreciated that, given the set of
oints, a sigmoid function is a reasonable election. So, instead of
irectly estimating the a posteriori probability we will estimate



F.J. Acevedo et al. / Sensors and Actuators B 122 (2007) 227–235 231

t

P

m
t

w
i
a
t
a
a

t
o
s
d
t
a
e
v
a
I
c
o
t

F
a

o
S
n

4

4

p
b
t
t
O
s
(

a
s
e
a
a
T
s
s
o
r
g
c
i

o

Fig. 3. P(y = 1/fx) for the ethanol SVM classifier.

he parameters A and B of a sigmoid:(
y = 1

fx

)
= 1

1 + exp(Afx + B)
(5)

These parameters can be found using any regularization
ethod. In our case, we followed Platt’s criteria to minimize

he following function based on the likelihood ratio:

min F (A, B) = −
l∑

i=1

ti log

(
1

1 + exp(Afxi + B)

)

+ (1 − ti) log

(
1 − 1

1 + exp(Afxi + B)

)

ti =

⎧⎪⎪⎨
⎪⎪⎩

N+ + 1

N+ + 2
, if yi = 1

1

N− + 2
, if yi = −1

(6)

here l is the number of training patterns, N+ the number of pos-
tive training patterns and N− is the negative training points. The
dvantage of using this criterion to adjust the sigmoid parame-
ers is that the Hessian H(A,B) =�2F(A,B) is positive definitive
nd so the problem can be solved using Newton methods without
ny risks of finding local minima.

Once this theory has been exposed it is possible to understand
he mistake which results from directly comparing the outputs
f several binary classifiers. Let us suppose that we have two
igmoid functions obtained as exposed in Fig. 4. The sigmoid
rawn as a continuous line is associated to the binary classifier
hat detects the presence of methanol, whereas the one drawn
s a dashed line is associated to the propanol classifier. For this
xample, let us suppose that, given an input pattern x, a negative
alue is obtained for the rest of the classifiers, while values of 0.5
nd 0.45 are obtained for the propanol and methanol classifiers.

f the greatest output is selected, we would pick the propanol
ategory. However, in this situation the a posteriori probability
f the methanol category is greater, being this selection the one
hat we should choose. This example also shows that if the values

u
b
i
t

ig. 4. Sigmoides for two classifiers and the problem of selecting the one with
greater fx value.

f parameters A and B are quite similar, the direct output of the
VM criterion would work fine, although this criterion makes
o sense from a probability point of view.

. Results and discussion

.1. Sigmoid estimation

As the classification problem is a multi-class one, the sigmoid
arameters described in the previous section must be estimated
efore benchmarking the SVM. The simplest procedure to do
his is to train every binary classifier with a training set of samples
o obtain the alpha multipliers and thus, the decision function.
nce the hyperplane has been calculated, we can use the training

et itself to minimize the likelihood function described in Eq.
6).

However, the result would be biased by the training set and
ffected by the fact that a lot of training samples would become
upport vectors and so, when testing them the classification
rror would be null. In this work we have followed a jack-knife
pproximation, that is, for the same binary set problem we sep-
rated a group of samples and used them only for test purposes.
he SVM is constructed with the rest of the samples and the
eparated set provides us with some values to be able to train the
igmoid. To obtain more values to train the sigmoid, we now take
ut other different set of samples for test purposes and we then
epeat the process. It is well known that the jack-knife approach
ives an unbiased estimator but introduces a great computational
omplexity when the number of samples taken as test samples
s small, being the extreme case the leave-one-out approach.

For the example under study, the training set was composed
f 849 samples. The values of the A parameters were estimated

sing a RBF kernel with the gamma parameter equal to 0.8 and
y dividing the training set five times. These values are reflected
n Table 1, whereas the B values are not reflected because all of
hem were zero.
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Table 1
Sigmoid parameters estimation

Substance A value

Ethanol −2.8
Metanol −4.2
Propanol −5.4
Liquor −4.2
Veratryl −11.6
Isoamyl −7.9
A
C
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The second method tested is the linear discriminant analysis
(LDA). This method is also widely used and employs data trans-
formation to maximize the relation between inter-dispersion and
intra-dispersion. In Fig. 6 we can appreciate the accuracy against
myl −5.8
ologne −78.6

.2. Comparing Multi-Class SVM to other PARC methods

Once sigmoid parameters have been estimated and the binary
lassifiers are trained, we can use Multi-Class SVM as PARC
ystem in our multi-category problem. To test the behaviour of
he proposed classifier, we compared it to other PARC systems
idely used in the field of the electronic nose. As the problem
nder study is not easily separable, we compared the system
ith neural networks and fuzzy ARTMAP. To compare them,

he accuracy parameter is used, defined as:

= 1

K

K∑
i=1

P

(
Di

Hi

)

here K is the number of classes, in our case eight and P(Di/Hi)
eans the probability of correct classification for the class i.
able 2 shows the accuracy of each PARC obtained with an inde-
endent set of test samples composed of 105 samples obtained
rom substances without having diluted them.

SVM were constructed using a RBF kernel and the sigmoid
alues indicated in Table 1. The Neural Network employed was
multi-layer perceptron (MLP) with 20 neurons in the hidden

ayer and 10,000 epochs for the training phase. The number of
eurons in the hidden layer was selected by trying with differ-
nt numbers and picking the best result. Fuzzy Artmap has a
ood behaviour compared to the simplicity of the algorithm and
equires fewer operations than the others in the testing phase.

owever, in this case, it is possible to appreciate the improve-
ent of the results when using SVM with a RBF kernel. Table 3

hows the confusion matrix using a SVM with an RBF kernel.

able 2
ccuracy obtained with different PARC systems without preprocessing

lcohol type Learning machine

SVM RBF Neural network Fuzzy ArtMap

thanol 0.975 0.85 0.95
etanol 0.975 0.33 0.46

ropanol 0.975 0 1
iquor 0.975 1 0.66
eratryl 0.975 1 1

soamyl 0.975 0.5 0.7
myl 0.866 1 1
ologne 0.800 0 0

ean accuracy 0.9395 0.58542 0.72292
Fig. 5. Accuracy against gamma and number of PCA features.

.3. Feature extraction benchmarking

Feature extraction is a very interesting previous stage that
ransforms the input patterns, in order to reduce the problem’s
imensionality. This stage is of major importance because work-
ng with a smaller dimension means a drastic reduction in the
umber of operations and this could be critical in a real-time
ystem. For this propose, four methods were tested coupling
hem to SVM. A sweep of the γ parameter of the RBF kernel
as done to view the influence of this parameter on the accuracy
btained.

The first feature extraction method proposed is the principal
omponent analysis (PCA). Fig. 5 shows the accuracy against
he number of features extracted and the gamma parameter of
he RBF kernel. We realise that this method reaches a high grade
f accuracy when the number of features extracted is between
0 and 20, decreasing when more features are considered.
Fig. 6. Accuracy against gamma and number of LDA features.
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Table 3
Confusion matrix for the RBF SVM case

Ethanol Methanol Propanol Liquor Veratryl Isoamyl Amyl Cologne

Ethanol 15 0 0 0 0 0 0 0
Methanol 0 15 0 0 0 0 0 0
Propanol 0 0 15 0 0 0 0 0
Liquor 0 0 0 10 0 0 0 0
Veratryl 0 0 0 0 15 0 0 0
I 0 0 10 0 0
A 0 2 0 13 0
C 1 0 1 0 8
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soamyl 0 0 0
myl 0 0 0
ologne 0 0 0

amma. Both methods, PCA and LDA, use linear transforma-
ions based on the statistics of the training set and give satis-
actory results when coupled to a SVM with the appropriated
amma value. However, as we have said before, we are working
ith an autonomous system and both methods require storing

he transformation matrix in the memory, but as the problem
imensionality is reduced, we come upon advantages when stor-
ng support vectors in the memory.

In the other two feature extraction methods the transformation
s fixed. These methods are the discrete cosine transform and the
iscrete wavelet transform, and are very popular in the field of
ata compression. In this work, the criterion followed to indicate
hat coefficients were most important was the mean energy of

he transformed coefficients of the training set. Results are shown
n Figs. 7 and 8 and we can see that more features are necessary to
each the high level of accuracy obtained with the PCA and LDA
ethods. However, the main advantage is that it is not necessary

o store any transformation matrix in the memory, only the filters
hat are fixed (Table 3).

.4. Results for different concentrations

It has been shown the good behaviour of the proposed method

ompared to other PARC system when the substances are not
iluted. However, it is interesting to test the system when the
ubstances are diluted. Thus, it is possible to check the impor-
ance of the concentration and to calculate the detection limit.

Fig. 7. Accuracy against gamma and number of DCT coefficients.
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Fig. 8. Accuracy against gamma and number of DWT coefficients.

or this proposal, the substances were diluted in water, except
or the amyl case, at three different concentrations. For each
ubstance and for each concentration 50 samples were taken as
t has been described in the experimental setup. It is important
o note that the training coefficients have not change, because
t was decided not to re-train with the new substances since we
ant to know the detection for not seen substances. In Table 4

t is shown the percentage of success for each concentration.
It can be appreciated that the method has a good behaviour

hen high concentrations are used. However, when the sub-
tances are diluted in with a 75% of water the fingerprints

btained are quite similar between them and the system is not
ble to classify them with high percentage of success. Anyway,
his lack of accuracy is higher when we tested these substances
ith other PARC methods. If the application we are interested.

able 4
ercentage of success for each substance at different concentrations

75% 50% 25%

thanol 0.94 0.82 0.66
ethanol 0.96 0.8 0.62

ropanol 0.96 0.84 0.42
iquor 0.84 0.72 0.5
eratryl 0.88 0.72 0.6

soamyl 0.92 0.86 0.76
myl 0.82 0.62 0.46
ologne 0.74 0.62 0.4
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. Conclusions

The main contribution of the paper is the use of support vec-
or machines for multi-class problems based on binary classifiers
nd how to deal with the output in order to allow a voting scheme.
t should be mentioned that in many cases good results can
e achieved by directly taking the SVM outputs and propos-
ng a voting scheme. As mentioned before, this can be done
hen the sigmoid training for all the classes indicates that the

isk associated with doing this task directly is low. However,
rom a mathematical viewpoint, the a posteriori probability stage
hould be added in all cases.

On the other hand, we have tested some popular feature
xtraction methods coupling them to support vector machines.
esults indicate that for the application under study, the dimen-

ion of the problem can be reduced with higher accuracy levels.
Future work will be to test other kernels and to formulate

coherent feature extraction system with the support vector
achines theory. The system has to be improved to work at

ow concentrations, being interesting to test new sensor tech-
ologies.
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