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a b s t r a c t

The main goal of a traffic sign recognition system is the detection and recognition of

every traffic sign present in the scene. Frequently, the image processing system is

divided into three parts, namely, segmentation, detection and recognition. In this work,

we will focus on the detection block, dividing it into two sub-blocks that perform shape

classification and localization of the sign, respectively. The classification of the shape is

performed by means of the signature of the connected components. Object rotations are

tackled with the use of the FFT, and the normalization of the object eccentricity

improves the performance in the presence of projection distortions. The effect of

occlusions are lowered removing the concave parts of the shape. Finally, we propose a

novel algorithm, which computes a 2D homography, to re-orientate the sign for further

steps, like sign recognition. Experimental results, evaluated using a huge set of

randomly generated synthetic images are also given, showing a great robustness of the

algorithm to object scaling, rotation, projective deformation, partial occlusions and

noise.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In traffic road scenarios, intelligent video systems have
manyfold applications. However, traffic sign detection and
recognition systems have been given increasing impor-
tance in recent years. Some examples can be found in
[1–11]. Applications of these kinds of systems include:
�
 Autonomous intelligent vehicle: Since the final pur-
pose of traffic signs is traffic regulation, an autono-
mous intelligent vehicle should include support for
traffic sign detection and recognition. A future intelli-
gent vehicle will take advantage of traffic sign
recognition systems, along with other functionalities,
such as the detection of road lines or obstacles.

�
 Driving assistance: Although an autonomous intelli-

gent vehicle is far from being a feasible solution at this
ll rights reserved.

+34 918856699.
time, traffic sign recognition systems can help drivers
with some basic tasks, such as limiting the speed of the
vehicle, or warning the driver that a dangerous
situation has been detected.

�
 Sign maintenance: Until image processing systems

became popular, road maintenance, including sign
maintenance, has been performed manually for many
years, with an operator watching a videotape and
writing down the presence and condition of each
traffic sign. With this method being a tedious and
expensive procedure, road maintenance companies are
now replacing human operators with image processing
systems, which can be run more efficiently over a
computer at lesser cost.
Although many schemes have been proposed in the
literature for the purpose of traffic sign detection and
recognition, the more common ones comprise a video
camera mounted normally at the front of the vehicle,
although some systems may include another video
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camera at the rear of the vehicle recording the signs from
behind, and a video processing system, normally imple-
mented over a PC for maintenance applications, or over
specialized hardware in driving assistance applications.

Focusing on the video processing system, the most
common approach found in the literature divides the
process into three general blocks, normally identified as
segmentation, detection and recognition.
�
 Segmentation: The segmentation block generates a
number of binary masks to separate the objects of
interest from the background. Since the number of
colours used in the construction of traffic signs is
limited, comprising basically red, blue, black, white
and yellow, common implementations use colour
information as the main feature to perform the
segmentation. After this step, computation of the
connected components generates a list of candidate
blobs, where some of them are traffic signs, and the
rest are supposed to be discarded by the subsequent
blocks.

�
 Detection: The next step is the detection of the sign,

and this can be done in several ways. A common
implementation is the identification of the shape of the
blob, and its classification into a small number of
reference shapes. Normally, the equilateral triangle, the
octagon, the rectangle and the circle are the most
common.

�
 Recognition: By merging colour and shape information,

the system is now able to determine the meaning of
the sign. The last step is the recognition of the sign,
performing a search over a database that includes all
possible signs. However, the information concerning
colour and shape allows the recognition block to focus
the search on a smaller range of possible signs.

Section 2 presents previous research in the field of traffic
sign recognition, focusing specially on the detection block.
Section 3 presents the detection problem and describes a
new algorithm that allows the classification of the sign
according to its shape. Section 4 describes sign localiza-
tion, which includes the accurate determination of the
position of the sign and the computation of a 2D
homography to restore the image of the sign, placing it
into a reference position, facing any possible geometric
deformation. Section 5 introduces a computer application,
which generates random figures to construct several sets
of synthetic images that will be used to evaluate the
performance of the algorithm described in this paper. The
results obtained with these sets are provided in Section 5
and the conclusions about the performance of the
algorithm are discussed in Section 6.

2. State of the art

Although a general traffic sign recognition system is
composed of several blocks, in this review we will focus
solely on works concerning the detection block in traffic
sign recognition, specially on those that use shape
detection as its main tool.
For instance, [12] focuses in circular sign detection
determining the parameters of a circle (center and radius)
choosing three different points along the contour of the
blob. For the rest of the points, the mean error is
computed, and if lower than a given threshold, the object
is considered to be a circle. In this method, projection
distortions or occlusions are not taken into account.

In [13], an angle-dependent edge filter detects only
circular edges while filtering other types of edges. This
algorithm deals with projection distortions, but it leaves
some problems unresolved like: difficulties in obtaining
centered versions of the blob due to problems with
occlusions, cropping, contrast, shadows, or the depen-
dency of the edge detection method on the position of the
central point.

Genetic algorithms (GA) are frequently used in the task
of shape classification. The works [9,14] are some
examples of the use of GA search for circular sign
detection but none of them are useful with occluded or
distorted signs.

In [15], rectangles are detected through horizontal and
vertical projections of the edges of the objects and finding
the maximum in the histogram of these projections. The
nearest sign is detected and recognized but distortions are
not treated, although some degree of occlusion is allowed.
This method cannot be easily modified for circles or
triangles.

The previously presented methods focus only in one
shape, but common applications for traffic sign recognition
need the identification of every possible sign, regardless of
the shape. For this reason, works that allow the detection of
any kind of shape will be desirable. In [16], the system is
able to detect triangles and circles through the use of
predefined templates in different scales. This method does
not consider tilted or skewed signs and the images size is
limited. In [5], the distance to border (DtB) is defined,
allowing the system to determine the shape by means of
support vector machines. In [10], templates of different
shapes are stored, and each normalized ð36� 36Þ blob is
compared with rotated versions to make the system
invariant to rotations but distortions are not considered
and the rotations are limited in number.

In [17], the axial symmetry of the traffic signs is
exploited. Thus, a symmetry framework shape distin-
guishing method is proposed to allow the detection of
several kinds of shapes. The idea is to measure propor-
tionality between several horizontal segments taken from
candidate blobs from top to bottom. Each shape is
characterized using this method and saved in a model
database used for comparison. Projection distortion or
occlusions are not treated. In [2], an algorithm that
analyzes the number, location and kind of corners of the
object is used. This allows the identification of triangles,
circles and rectangles. Its corners can be identified by the
angle they form. The algorithm searches for corners with
angles near 601 and 901 present in triangles and
rectangles. Circles are treated like rectangles but finding
the angles in tangent lines of the shape instead. No
deformation or occlusion is treated specifically.

The work described in this paper comes from a pre-
vious research implementing the whole sign recognition
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system, which can be found in [18]. The main contribution
of this work is basically the improvement of the detection
block, where the new method developed here has proven
to be more successful than the DtBs method, defined in
our previous work. Our first approach to shape classifica-
tion through the signature was developed in [19].
Although essentially the same, improvements basically
consist in computation time reduction, the addition of
geometric false alarm detection and the novel shape
localization method that has brought better results for the
recognition block.

3. Shape classification

In our system, the detection process uses the binary
masks returned by the segmentation step to determine
the shape and locate the position of any possible traffic
sign. The shapes considered here are those normally used
in the construction of traffic signs, namely, the equilateral
triangle, the circle, the rectangle and the octagon.
However, since the shape of an octagon can be approxi-
mated, with a small error, to the shape of a circle, we will
consider the octagon as a circle throughout this paper.
Furthermore, since for some kinds of circular signs its
content forces the segmentation algorithm to split the
sign into two semicircles, the semicircle is also another
shape to be considered. As we will deduce later, the shape
considered is not exactly a semicircle, but a semiellipse.
Fig. 1 gives us an example of the semicircle problem.

The proposed algorithm performs the classification,
comparing the signature of each blob returned by the
segmentation step, with the signatures of the reference
shapes. In this case, we define the signature as the
distance from the mass center to the boundary of
the object as a function of the angle [20]. In Fig. 2, the
reference shapes mentioned above are illustrated along
with their corresponding signatures. Although the signa-
ture of the object can be computed directly from the blob
itself, some considerations should be taken into account
to face unavoidable geometric distortions that can worsen
the shape classification success probability. The geometric
distortions considered in this paper are:
�
 Projection distortions: Camera projection when the sign
is not parallel to the image plane can lead to geometric
projection distortions. Under such circumstances, for
Fig. 1. Semicircle exa
instance, a circle is imaged as an ellipse, an equilateral
triangle as an scalene one, or a rectangle as a general
quadrilateral.

�
 Scaling: The size of the projection of the sign in the

image plane depends on the distance from the camera
to the sign. As the camera approaches the sign, the blob
corresponding to the object get bigger, and so, the
computation of the signature for the same sign at
different distances would yield signatures with differ-
ent amplitudes.

�
 Rotations: Differences in tilt angles between the image

plane and the sign are reflected as object rotations.
These rotations become circular shifts in the signature.

�
 Occlusions: Partial occlusions of the sign alters the

shape of the blob. This is more likely to happen within
cities than on non-urban roads.

�
 Camera noise: Camera noise can be seen as a

segmentation problem in such a way that the mask
returned by the segmentation block is not a shape with
perfect edges, but a version with its edges altered by
noise.

In order to improve the shape classification performance,
the proposed algorithm does not compute the signature
directly from the blob itself, but a modified version which
tries to overcome, as far as possible, the geometric
distortions considered above. In the following subsections,
it is described the solution adopted to deal with each one
of the previous problems.

3.1. Projection distortions

A projective distortion happens whenever a plane, for
instance, the traffic sign, is imaged by a general camera.
Although scaling and rotations can also be considered as
projection distortions, these ones are more specific
transformations, and will be analyzed in subsequent
subsections. Although at this point it is not possible, nor
absolutely necessary, to undo every distortion undergone
by the sign, it is, however, desirable to perform a
geometric transformation of the blob in order to improve
the shape classification process.

The main drawback of a projective transformation
for our purpose of shape classification from the signature
of the blob is the deformation of the object, or more
formally, the variation of the aspect ratio, or the
mple.
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eccentricity, of the object, than will lead, quite probably, to
a classification error. In order to improve the performance
of the classifier, a normalization of the aspect ratio of the
object is performed for each blob analyzed. To normalize
it, first of all, we compute the orientation of the object
according to [21]

y ¼
1

2
arctan

2 � m11

m20 � m02

� �
, (1)

where m11, m20 and m02 are the central moments of the
object. Once the orientation is obtained, a new coordi-
nates system is created, with u being the coordinate in the
orientation direction, and v the coordinate orthogonal to
coordinate u, as shown in Fig. 3(a). From now on, we
denote muv as a moment in the uv space, and so on. The
transformation matrix in this case is

u

v

� �
¼

cos y sin y
� sin y cos y

� �
�

x

y

 !
. (2)

In this new coordinates system (Fig. 3(b)), the second-
order moments muv

20 and muv
02 can be computed from the

moments in the xy coordinates system according to these
expressions:

muv
20 ¼ muv

20 �m00 � ðmuv
10Þ

2, (3)

muv
02 ¼ muv

02 �m00 � ðmuv
01Þ

2, (4)



ARTICLE IN PRESS

x
u

y

v

x
u

y

v

u

v’

θ θ

Fig. 3. Coordinates systems.
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where

muv
20 ¼ mxy

20 � cos2yþmxy
02 � sin2y

þ 2 �mxy
11 � cos y � sin y, (5)

muv
02 ¼ mxy

20 � sin2yþmxy
02 � cos2y

� 2 �mxy
11 � cos y � sin y (6)

and

muv
10 ¼ mxy

10 � cos yþ mxy
01 � sin y, (7)

muv
01 ¼ �m

xy
10 � sin yþ mxy

01 � cos y. (8)

We can define the eccentricity of the object as the
relationship between the above computed moments muv

20

and muv
02 as

k ¼

ffiffiffiffiffiffiffiffi
muv

02

muv
20

s
. (9)

This expression will always give a value of k smaller than
1, since this is imposed by the orientation angle examined
before. The normalization can be achieved stretching the
object in the v-axis, as presented in Fig. 3(c). This
stretching can be performed using the following matrix
transformation:

u0

v0

� �
¼

cos y sin y
�k sin y k cos y

� �
�

x

y

 !
. (10)

The computed signature now belongs to an object with an
eccentricity, as defined above, equal to 1 and therefore,
the same value needs to be imposed on the reference
shapes. It can easily be shown that this relationship is 1
for the first three reference shapes, that is, the ratio
between the second-order moment in the x direction and
the second-order moment in the y direction, as shown in
Fig. 2, is always 1 for a circle, a square and an equilateral
triangle. However, this is not true for a semicircle, so the
shape needs to be scaled to construct a semiellipse where
the relationship between its second-order moments is
equal to 1. This semiellipse is shown in Fig. 2(d).

It is important to note here that this correction is
intended only to improve the classification of the current
object using the signature of the reference objects. The
reorientation and normalization of the sign is not a
function of this part of the detection step, since this is
performed after the shape of the sign has been deter-
mined, and it is different for the triangle, square, circle
and semicircle. This process is fully described in Section 4.

3.2. Object scaling

Object scaling is achieved through amplification or
attenuation of the signature. To make the algorithm
invariant to scaling, energy normalization must be
performed before we can compare the current signature
with the ones we use as references. Obviously, the
signatures of the reference shapes previously computed
and saved have also need to be energy normalized.

3.3. Object rotations

Object rotations become circular shifts in the object
signature. To allow the system to correctly classify the
shape under object rotations, instead of comparing
directly the signature itself, the comparison is performed
over the absolute value of the discrete Fourier transform
(DFT), taking advantage of its invariance to shifts. There-
fore, the absolute values of the DFT of the normalized
signature for the reference shapes are previously com-
puted and stored, and the absolute value of the DFT is
computed for each object for further classification.

3.4. Occlusions

Occlusions is one of the biggest challenges in traffic
sign recognition system, specially on urban environments,
where objects like poles, buildings, cars, or even other
signs, can occlude a traffic sign. If the occlusion is quite
significant, for instance, the sign is split into two halves,
the sign is likely to be missed, unless a special algorithm is
designed to deal with this kind of problems. When the
occlusion is not big enough, however, some modifications
on the original approach can improve the performance of
the system. In the case of slight occlusions, we can
distinguish between two different kinds of them, specially
for the cases of triangles and rectangles: those in which
one corner of the shape is removed (see Fig. 4(a)), and
those in which the occlusion affects only at the straight
part (see Fig. 4(b)).

While the first kind of occlusions are more difficult to
deal with, the second are very easy to overcome. In our
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work, we take advantage of the fact that the shapes
considered are all convex, and so, we can cancel a number
of occlusions by eliminating all concave parts of the shape
tracing tangent lines to the contour of the object at these
points. For instance, in Fig. 4(b) we can see how the
occlusion is removed, and the result is the same as if there
had been no occlusion.

Although this process does not imply any underlying
error when the shapes considered are all convex, as it is
the case for triangles, rectangles, ellipses and semiellipses,
other systems designed for the detection of concave
shapes, like crosses or stars, would not take advantage
of this process, and a different approach should be
designed.

For the cases where one corner (or more) of the shape
has disappeared as a consequence of an occlusion,
the previous scheme does not solve the problem, since
the resulting shape is still convex. In this case, as long
as the occlusion is not big enough, the comparison
with the reference shapes will yield the proper classifica-
tion. If the occlusion is quite large, the results are
unpredictable.

For the circular case, depending on the degree of
occlusion, the shape can become a semicircle, causing a
misclassification. Being that an error in this step, for the
task of traffic sign recognition this is not a problem, since,
as we have seen before, a semicircle always derives from a
circle, and so, whenever a semicircle has been detected,
the next step is the computation of its generating circle, as
we will see later.
3.5. FFT analysis

According to all the details explained above, the actual
vector entering the shape classifier is not the signature
itself, but the absolute value of the DFT of the normalized
signature of an object, derived from the original one.
Computation time can be reduced if we fit the number of
samples to a power of 2, so that the FFT may be computed
instead of the DFT. In this work, the number of samples
chosen was 64 ð26

Þ, which is a tradeoff between precision
and computational cost. In Fig. 2 it is shown, for each
reference shape, the absolute value of the first half of its
corresponding 64-samples FFT. In order to make these
figures clearer, and taking into account that the sample in
0 is much higher than the rest of the samples, and quite
similar for all the shapes (around

ffiffiffiffiffiffi
64
p

¼ 8 for the
signatures considered), we have removed this sample
from these figures.

Although many kind of classifiers could be used here to
perform the shape classification at this point, a simple
nearest neighbor (NN) algorithm using the square
Euclidean distance as the error measure proves to be
enough for our purpose. Furthermore, as we can see in
Fig. 2, only about one-quarter of the samples of the FFT are
significant, while the rest of the samples are very low, and
their value for a real object will be more affected by noise
than by the actual shape. The same can be said about the
sample in 0, which is quite similar for the four shapes and
then, it does not provide any information. So, the final
algorithm performs the classification computing the
square Euclidean distance only for samples 1–8 of the
64-sampled FFT.

4. Shape localization

Normally, a sign has to be located in a reference
position for proper recognition subsequent to detection.
This means the system has to face any possible rotation,
translation, scaling, or projective deformation before the
object enters the next block. Therefore, normalization for
every object must be performed to place the object in a
proper reference position. In our system, we can take
advantage of the fact that the shape of the object is
already known so that a normalization algorithm can be
designed independently for each shape. We will describe
the algorithms for the normalization of the different
shapes later in this section.

Independent of the shape of the object, the image
of the sign can be considered as a 2D homography,
mapping points from the plane containing the sign
to another plane, i.e., the image plane [22]. Given this
fact, the normalization problem is reduced to the
computation of a 2D homography, that is, a 3� 3 non-
singular matrix H. However, this computation is highly
dependent of the shape. For instance, for triangles
and rectangles, this matrix can be computed estimating
the coordinates of the vertices of the shape, and
then establishing correspondences between these points
and the position of the vertices of a reference shape. For
circles and semicircles, this computation must be done
estimating the parameters of the corresponding ellipse.
For that reason, since the computation of the homography
is quite different for each shape, in the following
subsections, the specific algorithm for each shape is
developed.

4.1. Triangle normalization and reorientation

A 2D homography can be represented by a 3� 3
non-singular matrix with eight degrees of freedom
(DOF), accounting for the nine elements of a 3� 3 non-
singular matrix less one for scale. A common way of
computing this homography is through the direct linear
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P. Gil Jiménez et al. / Signal Processing 88 (2008) 2943–2955 2949
transformation (DLT) algorithm [22]. The DLT algorithm
needs a set of point correspondences, and the minimum
number of such correspondences depends on the kind of
homography being performed.

In the 2D general case, eight DOF have to be computed.
Since each point-to-point correspondence accounts
for two constraints, a minimum of four point correspon-
dences is needed. However, some assumptions
can be imposed in the imaging process, reducing the
number of DOF in the system. Although the general case
of a camera imaging a plane is a projectivity, which
accounts for the eight DOF mentioned above, a typical
recording system employed in traffic sign recognition can
be approximated to an affinity. Thus, by reducing the
number of DOF to only six, the number of point
correspondences is lowered to three. In theory, affine
simplification occurs when a plane is imaged by a camera
that is at infinity. Therefore, affine transformation can be
supposed whenever the camera is at infinity, or at least at
a great distance from the plane with respect to the size of
the sign, which is normally the case for the traffic sign
recognition problem discussed here. The matrix H then
becomes

HA ¼

h11 h12 h13

h21 h22 h23

0 0 1

2
64

3
75. (11)

For the triangle, these point correspondences can be
extracted directly from the three corners of the triangle,
and so, the problem is reduced to the identification of
these three points in the original image. As we can see in
Fig. 2(b), the corners of the triangle could be found using
the previously computed signature, since the corners
correspond to the peaks of the signature.

Although this method would be a good strategy in the
theoretical case, when applied to real images, the results
become very inaccurate because we rely on the informa-
tion of only one pixel, which can be corrupted with noise.
Furthermore, if an occlusion makes one of the vertices
disappear, the estimated coordinates of the hidden vertex
will be located at a very different position. We also need to
consider that the system does not yield sub-pixel preci-
sion, since the output of that algorithm would be the
position of the 3 pixels corresponding to the peaks of the
signature.

These problems may be overcome if we consider
more than one pixel. Therefore, instead of determining
directly the coordinates of the pixels corresponding
to the vertices, we can estimate the parameters of
the three straight lines that compose the triangle.
This estimation can be performed using a number of
pixels from the contour of the blob. The easiest way of
doing this is using directly the samples of the signature.
Considering that the three peaks of the signature have
already been localized, all the pixels between two peaks
compose one straight line. Using homogeneous coordi-
nates, a point xi ¼ ðxi; yi;1Þ

T belongs to a straight line l ¼
ðla; lb; lcÞ

T if

ðxi; yi;1Þðla; lb; lcÞ
T
¼ 0. (12)
Stacking the equation for all the available points for a
particular line, we get

X � l ¼

x1 y1 1

x2 y2 1

..

. ..
. ..

.

xN yN 1

0
BBBBB@

1
CCCCCAðla lb lcÞ

T
¼ 0, (13)

which implies the computation of the null-space of matrix
X. Since the number of rows of X is, in general, greater
than two, and are affected by noise, (13) defines an over-
determined system.

This system must be solved using some minimization
techniques. Although iterative geometric-distance mini-
mization techniques should be used to get the most
accurate solution, simple algebraic-distance minimization
is accurate enough for our purpose, as we can take
advantage of its lesser computational complexity. Geo-
metric-distance minimization is suitable in the presence
of outliers, or when the data are highly affected by noise.
Note, however, that in our case, neither are there outliers
nor is the noise high. Otherwise, the shape detection
algorithm would have failed and none of this would make
sense.

At this point, we can estimate the degree of confidence
of the computed line. Computing the mean geo-
metric error as the mean of the sum of the distances
from each point of the signature to the estimated line
according to

e ¼
1

N

XN

i¼1

laxi þ lbyi þ lcffiffiffiffiffiffiffiffiffiffiffiffiffi
l2a þ l2b

q
�������

�������, (14)

allows us to evaluate to what degree the list of points
correspond to the line. The threshold can be set for the
mean geometric error of each line, and if one of the errors
exceeds the given threshold, the blob can be considered as
a false alarm. That is, the shape classification algorithm
classified the blob as a triangle but, actually, the blob is
not a triangle because it is not composed of straight lines,
according to our threshold.

Once the three lines of the triangle have been
correctly obtained, the vertices of the triangle can be
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computed using

xij ¼ li � lj ¼

a b c

lia lib lic

lja ljb ljc

�������
������� ¼

libljc � licljb
liclja � lialjc

lialjb � liblja

0
B@

1
CA (15)

for ði; jÞ ¼ fð1;2Þ; ð2;3Þ; ð3;1Þg, and so, the three vertices
have been estimated. Once the three corners have been
located, we can make the points correspondence to the
reference shape, as shown in Fig. 5, where the reference
shape is an equilateral triangle of size 1. One assumption
has to be made at this point. As we can see in Fig. 5, each
corner of the original triangle has to be identified in the
reference triangle, and if no other constraints existed, we
would have three possibilities. Over normal operation
conditions, we can assume that any shape never under-
goes a rotation greater than 60�, and so, the top vertex of
the original triangle would always correspond to the top
vertex of the reference triangle. However, if in a specific
application this assumption cannot be imposed, the
problem is easily solved in the recognition step by simply
generating three different normalized images: one of
them being the image yielded by the homography
computed in this section, and the other two being rotated
versions of the former, one at þ120�, and the other at
�120�. With these assumptions, three point correspon-
dences xi2x0i ði ¼ 1;2;3Þ are obtained. Writing xi ¼

ðxi; yi;1Þ
T and x0i ¼ ðx

0
i; y
0
i;1Þ

T, the DLT algorithm for an
affine transformation gives us the following linear system
for each point-to-point correspondence [22]:

0 0 0 �x0 �y0 �1

x0 y0 1 0 0 0

" #
�

h1

h2

 !
¼
�y

x

� �
, (16)

where h1
¼ ðh11;h12;h13Þ

T and h2
¼ ðh21;h22;h23Þ

T are the
first two rows of the affine matrix HA forming a 6-vector.
The last equation can be written compactly as

Xh ¼ y. (17)

Stacking the six equations obtained from the three
correspondences, we get a linear system of six unknowns
and six equations, which can be solved for h using
standard techniques for solving linear equations.

4.2. Rectangle normalization and reorientation

Few modifications need to be made to the preceding
algorithm to compute the reorientation matrix for a
rectangle. In the case of a rectangle, four points are
x1

x’1

x’2
x’3

x’4

x3

x4

x2

x

y
y0 = 1

Fig. 6. Rectangle correspondences.
available to compute the projection matrix. Although
these four point-to-point correspondences would allow us
to compute the projective homography with its eight DOF,
the affine transformation assumption is also valid here
with little error, allowing the system to compute the
homography faster. Thus, we have an over-determined
linear system that can be solved by minimizing the mean
square error, using the normal equations:

ðXTXÞh ¼ XTy. (18)

The four corners of the rectangle are found in the same
way as in a triangle, using the signature previously
computed, and the four correspondences are established
as shown in Fig. 6. Again, the same problem appears here,
in the sense that, for a given point, four different
correspondences may be chosen, and again, a similar
supposition is discussed here. In the case of a rectangle,
we can assume that, over normal operation conditions,
the shape will not undergo a rotation greater than 45�.
Therefore, we can assert that the bottom right corner of
the reference rectangle corresponds to the first peak in the
signature, that is, the first corner we would find if we had
started from the x-axis, advancing counter-clockwise. The
same solution as in the triangle case can be used here
when a specific application does not ensure that the
objects will not undergo a rotation greater than 45�. In
this case, four different normalized images must be
obtained, the other three being the rotated versions
computed at 90�, 180�, and 270�.
4.3. Circle normalization

A considerable drawback appears in the computation
of the projection matrix for a circle, since a circle does not
have corners, and thus, no reference points are available.
For this reason, there are no point correspondences, and
the homography must be computed in a different way.
Taking into account that an affine transformation can map
a circle into an ellipse, we would only need to estimate the
parameters of the ellipse currently analyzed to perform
the computation of the corresponding homography. It is
important to stress that an ellipse can be defined with five
parameters, that is, its center, which accounts for two
DOF, the minor and major radius and its orientation, while
the affine homography has six DOF. The last DOF
corresponds to the circle orientation, which cannot be
computed due to the lack of reference points, and so, the
homography can be estimated only up to a circle rotation
around its center.
r = 0.5

y

x

Fig. 7. Circle correspondences.
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Although many algorithms have been described in the
literature for fitting points to ellipses [23], they focus on
the computation of the parameters of the ellipse. Our
approach, however, computes directly the homography
required for the re-orientation of the shape without any
other computation. This transformation maps the original
ellipse into the reference shape, in this case a circle of
diameter 1, and its center (0.5, 0.5), as shown in Fig. 7.

Taking into account only blob contour pixels, or
equivalently, the samples of the signature, we can
consider the ellipse as a conic [22] that can be described
by a symmetric matrix of the form

C ¼

a b=2 d=2

b=2 c e=2

d=2 e=2 f

2
64

3
75, (19)

with five DOF accounting for the six elements of a
symmetric matrix less one for scaling. Therefore, a
minimum of five points is required to define an ellipse.
Any point lying on the ellipse must fulfill:

xTi Cxi ¼ 0, (20)

or equivalently:

ðx2
i ; xiyi; y

2
i ; xi; yi;1Þc ¼ 0, (21)

where c ¼ ða;b; c; d; e; f ÞT is the conic C represented as a
6-vector. Stacking the equation for all the available points
of the signature of the blob, we get the following system:

x2
1 x1y1 y2

1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1

..

. ..
. ..

. ..
. ..

. ..
.

x2
N xNyN y2

N xN yN 1

0
BBBBB@

1
CCCCCAc ¼ 0. (22)

If the number of points N is greater than 5, (22) implies
the computation of the null-space of an over-determined
system, which can be solved easily using algebraic-
distance minimization techniques. Once the conic C has
been computed, the following step is the computation of a
2D homography, which transforms the ellipse into an
auxiliary circle of radius 0.5 centered at the coordinates’
origin, according to [22]

C0 ¼ H�TCH�1, (23)

where C0 ¼ diagð4;4;�1Þ is the auxiliary circle repre-
sented as a 3� 3 diagonal matrix with diagonal entries
4, 4 and �1. Taking the inverse transformation, and
decomposing H into a product of matrices:

C ¼ HTR H
T
P HDC

0HDHPHR, (24)

where HR is an orthogonal matrix. Furthermore,
C ¼ HTR CDHR, where CD is a diagonal matrix, can be seen
as the singular value decomposition (SVD) of C, which can
be solved using standard SVD algorithms. Matrix HP is a
permutation matrix to ensure that CD ¼ HTP CEHP, being CE

a diagonal matrix with entries e11 and e22 positive, and
entry e33 negative. Finally, HD is a diagonal matrix with
entries:

d11 ¼
ffiffiffiffiffiffiffi
e11
p

=2; d22 ¼
ffiffiffiffiffiffiffi
e22
p

=2; d33 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�e33
p

. (25)
Matrix H ¼ HDHPHR is then the 2D homography matrix that
transforms the original ellipse C into the circle C0 of radius
0.5 centered at the origin of coordinates. We can measure
the mean geometric error as the mean of the sum of the
distances from each point of the signature to the
estimated ellipse according to

e ¼
1

N

XN

i¼1

jdðHpi;0Þ � 0:5j, (26)

where dðx1;x2Þ is the Euclidean distance between points
x1 and x2, p0i ¼ Hpi are the original points of the signature
mapped to the reference plane, 0 are the coordinates of
the circle center (0, 0), and 0.5 is the radius of the circle.
The mean geometric error, then, can be set at a threshold
to discard false alarms. Finally, since the reference figure is
a circle of radius 0.5 centered at (0.5, 0.5), we need a
translation matrix to shift the previous circle into the
reference one:

Ht ¼
I t

0T 1

� �
, (27)

where I is a 2� 2 identity matrix and t ¼ ð0:5;0:5ÞT is the
translation vector.

4.4. Semicircle normalization

If we consider the semicircle case as a segmentation
problem in which, the segmentation step returns two
semicircles instead of a whole circle, the easiest way to
overcome this problem in the detection step is by
estimating the circle from which the semicircles origi-
nated. This process has another advantage, namely, if due
to some problems in the segmentation or detection step,
only one semicircle was detected, while the other was lost,
the valid semicircle is still enough to estimate the whole
circle, and therefore, recognize the sign. If both semicircles
were detected, the traffic sign could be detected twice,
increasing the robustness of the system. Therefore, the
semicircle problem is reduced to the computation of the
homography that transforms the complete circle into a
reference one, exactly the same problem described in the
previous section.

Although the points to estimate the homography can
be extracted from the signature, the problem now lies in
the decision about which points of the signature belong to
the circle part of the semicircle, and which points are part
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Fig. 9. Successful examples of noisy synthetic figures with s equal to:

(a) 6 pixels; (b) 9 pixels.

Fig. 10. Examples of synthetic figures with occlusions, with percentage

of occlusion equal to: (a) 15%; (b) 30%.
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of the straight line. A glance at Fig. 8 shows that the
signature of a semiellipse has three peaks, two of which
correspond to the two cross points of the ellipse with the
straight line, and the other one that corresponds approxi-
mately to the central point between the last two points.

Based on this discussion, we can execute an algorithm
similar to the one designed for the triangular case, and use
it to estimate the three lines joining the points that
correspond to the peaks of the signature. If we compute
the geometric error for each line according to (14), we
should find one of them with the smallest error, whereas
the other two must have greater errors. Once we have
determined which part of the signature corresponds to the
straight line of the semicircle, and which corresponds to
the circular part, we simply have to construct a linear
system, similar to the one described in (22), using only the
samples of the signature corresponding to the circular
part. The rest of the algorithm is then similar to the one
described in the previous section.

Two evaluations can be done to estimate the degree to
which the blob corresponds to a semicircle. In the first
step, once the geometrical error for the three lines have
been computed, and the line which corresponds to the
straight part of the semicircle is determined, we can set a
threshold of geometric error for this line, in the same way
we did for triangles and rectangles. If this error exceeds
the given threshold, we can conclude that this line is not a
straight line, and so, the blob is marked as a false alarm. In
the second step, as we did for the circular case, we can
compute the degree to which the points corresponding to
the circular part of the signature fit the estimated circle,
and again, set a threshold of this error in order to detect
false alarms.
5. Results

So far, the main characteristics concerning the traffic
sign detection problem have been described, and a new
algorithm has been proposed. The algorithm was imple-
mented in C using Visual Cþþ 6.0. This implementation
also includes a segmentation and a recognition block, to
allow the execution of the complete recognition system on
real images. A complete description of these blocks can be
found in [1].

Although the complete system can work with real
images, we have tested the algorithm using synthetic
images with figures generated automatically in order to
make the results independent of the segmentation block,
and even of camera quality or illumination conditions.
This process also has the advantage of being able to store
the shape and exact position of a figure at the same time
that it is generated. This information can be used to
automatically evaluate the performance of the proposed
algorithm. Therefore, a computer application that can
automatically generate triangles, rectangles, ellipses and
semiellipses has been implemented. For the construction
of triangles, the tool generates three random coordinates,
and, after validating some geometric constraints, a
triangle, having as vertices the three random coordinates,
is drawn. For the rectangles, the tool works quite similarly.
However, we have to note that, although any kind of
quadrilaterals can be constructed, only simple convex
ones would make sense for the traffic sign detection
problem. Furthermore, since only affine transformations
have been defined, only parallelograms must be consid-
ered. For ellipses, five random numbers must be gener-
ated, two for the center, one for the major axis, one for the
minor axis and the last for the orientation of the major
axis. For semiellipses, one additional random number is
generated, the one that defines the orientation of the
straight line which divides the ellipse into two halves.

We also want to determine the behavior of the
algorithm in the presence of noise. To simulate this noise,
a second step has been added to the application described
above. Basically, this step generates several random
coordinates near the edges of the synthetic figures, and
draws circular patches of random diameters, which alter
the contour of the shape. To allow the evaluation of the
algorithm in the presence of different levels of noise, the
diameter of the patches is a random variable with typical
deviation s, configurable in such a way that we can
generate several sets of figures with different values of s
each. Obviously, the greater the diameter of the patches,
the more distorted the final figure will be compared to the
original one. Fig. 9 shows some examples of noisy figures
generated with this application.

The effect of partial shape occlusion is another problem
to be analyzed here. To this end, a bigger circular patch of
a configurable diameter can also be drawn on the edge of
the figure to simulate this effect. For triangles and
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rectangles, this patch is drawn just on one of the vertex of
the shape chosen at random, since that is worse than a
similar patch drawn on the straight part of the edge of the
shape. For circular shapes, the patch is drawn around one
random point on the circumference. The same can be
applied to semicircles, except that the application needs to
make sure that point does not belong to the deleted part
of the circle. Some examples of occluded figures are
shown in Fig. 10. The complete set of images used in this
section for the evaluation of the proposed algorithm can
be found in http://agamenon.tsc.uah.es/Investigacion/
gram/papers/Elsevier07.

With this additional tool, we can now evaluate the
performance of the proposed algorithm. Two different
parameters are evaluated in this step. On the one hand,
the classification success probability is measured as the
ratio between the number of correctly classified shapes
and the total number of figures analyzed. On the other
hand, the accuracy in the localization of the position of the
shape is also measured. To this end, the original image,
before the noise or occlusion was added, is compared with
the estimated figure, and the non-coincident pixels, i.e.,
pixels that in the original image belong to the figure while
in the estimated image do not or vice versa, are counted.
We define the percentage of area error as the ratio
between the sum of all non-coincident pixels for all the
figures of the same shape and level of noise or occlusion,
and the sum of the pixels of all the original figures.
Table 1
Numerical results

s ¼ 0 s ¼ 5 s ¼ 10

% Succ. % A. Err. % Succ. % A. Err. % Succ. % A. Err.

Triangle 100 1.20 96.80 9.40 53.80 24.00

Circle 100 1.60 99.60 4.60 68.20 17.00

Rectangle 100 0.74 99.80 5.70 75.60 16.00

Semicircle 100 4.80 96.80 24.00 78.40 49.00

% Succ: Percentage of successfully classified shapes. % A. Err: Percentage

of non-coincident pixels with respect to the total area of the original

figure.
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Obviously, this ratio is only applicable to correctly
classified shapes, without taking into account misclassi-
fied ones.

Some results have been obtained testing the algorithm
over sets of 2000 synthetic images, i.e., for each set, 500
triangles, 500 rectangles and so on were used for the
evaluation purpose. Furthermore, 11 sets of figures with
different levels of noise were generated, for s ranging
from 0 to 10 pixels. Besides, another seven sets of figures
were also generated, each one with a different degree of
occlusion, ranging from 10% of the size of the object to
40%.

In Table 1, numerical results for values of s equal to 0
(non-noisy), 5 and 10 pixels are presented. For each level
of noise, the success percentage and the localization
accuracy are shown for the four shapes considered.
Besides, in Fig. 11, we can see the performance of the
algorithm as a function of the noise. In (a), the classifica-
tion success percentage is shown for the four shapes
considered. In (b), the accuracy in the localization of
shapes as a function of noise is shown.

We can see that the success ratio is maintained even
when the noise ratio is increased until around 7 pixels for
s. For higher values of noise, this ratio decreases quickly,
specially for triangles. Regarding to localization accuracy,
we can see that this value is quite acceptable for normal
values of noise, but, even for non-noisy figures, there is
about a 1-pixel error in the accuracy, mainly due to
rounding errors. For semicircles, accuracy is normally
worse than for the other shapes. The reason is that the
comparison is over the whole ellipse that generates the
semiellipse, while the ellipse is estimated with only half of
the points available, since the other half belongs to the
deleted part.

In Fig. 12, the performance of the algorithm in the
presence of partial occlusions is shown. In (a), the
classification success ratio as a function of the shape
occlusion percentage is presented, while (b) shows the
accuracy in shape localization. We can see that, up to 25%
occlusions, both measures keep in a good performance,
with an accuracy above 94% in classification and area error
below 10%. For occlusions around 30% and above the
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noisy patches
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Fig. 12. Results as a function of the occlusion.

Fig. 13. Experimental results for the recognition step.
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performance decreases rapidly because occlusions
of such a high level implies that about one-quarter
or more of the whole shape has disappeared, being
this degradation more notorious for triangles and rectan-
gles, which is inherent to the computer application
designed for the construction of the figures. Since the
application always occludes one of the vertex of the figure,
this will always be more dangerous for the recognition
than occluding any part of a circle. Even for occlusions
above 35% the success probability is so low that we could
not get valid data for the localization accuracy, as we can
see in Fig. 12. For semicircles, we have the intermediate
case.

The algorithm has also been prepared to return, as part
of the results of its execution, the detected shape drawn
over the original figure. The shapes are drawn with colour
lines, as can be seen in Figs. 9 and 10. This utility has
proven very useful in testing the algorithm on real images.
In these examples, we can see the appropriate perfor-
mance of the algorithm even in the presence of high levels
of noise or occlusion, as illustrated in Figs. 9(b) or 10(b).

Finally, we would like to show the performance of the
complete traffic sign recognition system developed by our
group. Fig. 13 shows some images that include traffic
signs. The system returns, as the result of its execution,
the recognized signs drawn in the top-left corner of the
figure, and the detected shape, for all the recognized signs,
drawn over each sign. We can see that most of the signs
had been successfully detected and classified. It can also
be seen that some signs were recognized twice. This is due
to the segmentation process. We use color segmentation
when dealing with real images, so those signs composed
of more than one color can be detected twice, one for each
color.



ARTICLE IN PRESS
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6. Conclusions and future work

In this paper, we have presented a new algorithm for
shape classification and localization of traffic signs. The
main problems concerning this kind of system have been
dealt with. The major advantage of the system is its good
performance over different geometric distortions, like
scaling, rotations and projective deformations. The algo-
rithm has been tested with randomly generated synthetic
images, using a test application implemented specially for
this purpose. The evaluated parameters are the shape
classification success probability, and the accuracy in the
localization of the actual position of the sign.

The signature of the blob was used for the classification
of the shape of the traffic sign. The normalization of the
energy of the signature makes the algorithm invariant to
image scaling, and the use of the absolute value of the FFT
of the normalized signature makes the algorithm invar-
iant to object rotations. Lastly, the computation of the
homography between the object and a reference shape
allows the algorithm to deal with camera projection
distortions.

Future work will concentrate on the reduction of the
misclassification probability, especially in the presence of
high-level noise. In this sense, more complex classifiers,
like support vector machines or neural networks can be
used to improve the performance of the shape classifier.
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