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A new method of reducing the computational load in decision functions provided by a

support vector classification machine is studied. The method exploits the geometrical

relations when the kernels used are based on distances to obtain bounds of the

remaining decision function and avoids to continue calculating kernel operations when

there is no chance to change the decision. The method proposed achieves savings in

operations of 25–90% whilst keeping the same accuracy. Although the method is

explained for support vector machines, it can be applied to any kernel binary classifier

that provides a similar evaluation function.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Classifiers based on kernel machines have been
successfully applied in a variety of fields including
engineering, information retrieval and bioinformatics [1].
These kind of classifiers use the so called kernel trick, that
computes a inner product in a Hilbert space without and
explicit transformation of the data. Kernel functions
provide an easy way to export linear classification
algorithms to non-linear ones [2]. Among these learning
machines, the most popular one is the support vector
machine (SVM) [3] but also it is quite extended the use of
least-squares support vector machines [4] and the
relevance vector machine (RVM) [5].

There are several approximations to speed-up the
training phase (i.e. [6,7] or [8]). However, in real-time
classification systems (RTCS), while the training of the
model can be done off-line, what is really important is the
computational load of the test or decision function. SVMs
and RVMs have the nice property of sparseness [9],
ll rights reserved.

-Rodrı́guez).
providing decision functions with a few number of base
functions, what is specially useful for RTCS. Nevertheless,
each kernel evaluation requires a number of operations
that grow exponentially with the dimension of the
patterns to be classified. Thus, in image classification
problems, where the number of features is usually high, it
is still necessary to reduce the computational load of the
decision function even when the learning machine
provides sparse decision functions. This need is even
more clear in multiclass problems, where a one against all
strategy is usually done and the set of binary classifiers
requires a sensible increase in kernel evaluations than in
the two-class case.

Several works (i.e. [10,11]) try to minimize the number
of support vectors using a reduced set of them but once
the evaluation function is defined these approaches do not
try to save more kernel evaluations to test new samples.
The proposal of this work is to reduce the number of
kernel evaluations once that the evaluation function has
been calculated. The method requires the kernel function
used to be monotonously increasing with the distance
between vectors. First, in the case of Gaussian kernel, a
new method of reducing the number of operations in the
test phase is proposed whilst keeping the same accuracy.
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Then a modification of the Gaussian kernel is studied,
providing tighter bounds than in the first case. Although
the paper is focused on SVM, the proposed methods can
be applied to any kernel classifier that provides a similar
evaluation function.
2. Proposed method with Gaussian kernel

From the training phase, SVM classifiers give a
decision function where new samples are classified
according to

f ðxÞ ¼ sgn
XNsv

i¼1

aiyiKðx; sviÞ þ b

 !
(1)

where svi are samples from the training set named
support vectors, yi 2 f1;�1g is the binary-class associated
with every support vector, Nsv is the number of support
vectors, a ¼ fa1;a2; . . . ;aNsvg are the Lagrange coefficients
obtained in the training phase such as 0oaioC, and C is a
regularization constant fixed a priori . The b parameter is
the bias of the decision function and is also obtained in
the training phase [12]. Finally, the function Kðx; sviÞ is the
kernel function that calculates the inner product in a
higher space without an explicit transformation. The most
extended kernel is the Gaussian one, defined by

Kðx; sviÞ ¼ exp �
kx� svik

2

2s2

� �
(2)

Assuming a particular support vector sv1 and a list
containing all the support vectors arranged in order of
increasing distance from sv1

L ¼ fsv1; sv2; . . . svNsvg

dðsvq; sv1Þpdðsvqþ1; sv1Þ; q ¼ 2; . . . ;Nsv� 1 (3)

for a new pattern to be classified x, the distance from
the first support vector is named dðx; sv1Þ. Using
Cauchy–Schwarz inequality the following condition is
always fulfilled:

dðsv1; svqÞpdðsv1; xÞ þ dðx; svqÞ (4)

Thus, it is possible to obtain a lower bound on dðx; svqÞ by
means of

dðx; svqÞXdðsv1; svqÞ � dðsv1; xÞ (5)

Moreover, since dðsvq; sv1Þpdðsvqþ1; sv1Þ, Eq. (5) is in fact
a lower bound for all the support vectors arranged after q:

dlow
n ðx; svnÞXdðsv1; svqÞ � dðsv1; xÞ 8nXq (6)

On the other hand, using Cauchy–Schwarz inequality the
maximum distance from the input x to each support
vector satisfies

dupp
n ðx; svnÞpdðsv1; svNsvÞ þ dðsv1; xÞ 8npNsv (7)

that is, an upper bound on that distance for every support
vector.
Eq. (1) can be rewritten as

f ðxÞ ¼ f nðxÞ þ fþn ðxÞ � f�n ðxÞ

fþn ðxÞ ¼
XNsvþn

i¼1

anþ
i expð�kx� svnþ

i k
2=2s2Þ

f�n ðxÞ ¼
XNsv�n

i¼1

an�
i expð�kx� svn�

i k
2=2s2Þ (8)

where f nðxÞ is the decision function evaluated as far as the
n support vector of the sorted list, but also including
the bias parameter b, fþn ðxÞ is the contribution of the
remaining positive support vectors, where svnþ is the set
of remaining support vectors whose class is yi ¼ 1, with
anþ

i as multipliers associated with those remaining
positive support vectors, whereas f�n ðxÞ is the contribution
of the remaining negative support vectors. If a bound B of
the remaining set of support vectors can be found, in such
a way that the following condition is fulfilled:

kf nðxÞk4B4kf�n ðxÞ � fþn ðxÞk (9)

there is no chance to change the sign of f nðxÞ and so, the
test of the sample x does not need more kernel evalua-
tions. If support vectors are arranged in a list, as has been
described, and taking into account the bounds described
in Eqs. (6) and (7), it can be said that if the following
conditions are given:

f nðxÞX0

f nðxÞX exp �
dlow2

n

2s2

 ! XNsvn�

i¼1

an�
i � exp �

dupp2

n

2s2

 ! XNsvnþ

i¼1

anþ
i (10)

the sample x is classified as positive class, so it is not
necessary to continue evaluating the remaining Nsv� n

support vector, with a consequent saving in the number of
kernel evaluations. On the other hand, if these other
conditions are given

f nðxÞp0

f nðxÞp� exp �
dlow2

n

2s2

 ! XNsvnþ

i¼1

anþ
i

þ exp �
dupp2

n

2s2

 ! XNsvn�

i¼1

an�
i (11)

the sample x is classified as negative, and as in the
previous case, it is not necessary to calculate the rest of
the kernel functions. Note that the summations in the
second part of Eqs. (10) and (11) can be precalculated and
stored in memory in the training phase. Thus, the
operations needed to check the mentioned conditions
are an addition to obtain the lower bound and two
exponentials. These extra operations represent no cost
compared to a kernel evaluation.

In Table 1 it is shown a real example with the real
remaining contribution and the maximum contribution
calculated from the distance bounds. In this example, once
that all the support vectors have been evaluated the
decision function has a value f ðxÞ ¼ 2:27 and so, it
classifies the sample as positive. It can be appreciated
how in the bias evaluation and in the three first support
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Table 1

Proposed Gaussian method evolution for each support vector (s2 ¼ 0:5 and f ðxÞ ¼ 2:27 positive).

Support vector

number

aiyi dðx; sviÞ dðsv1; sviÞ f nðxÞ dlow
n

dupp
n

Remain.

contrib.

Positive

contrib. bound

Negative

contrib. bound

0 �1.39 (Bias) 3.54 9.82

1 5.23 0.171 0.00 3.54 0.00 0.84 �1.26 �16.67

2 �9.91 0.427 0.28 �3.34 0.00 0.84 5.62 11.25

3 13.41 0.387 0.35 6.59 0.18 0.84 �4.32 �9.21

4 �2.45 0.422 0.37 4.87 0.19 0.84 �2.59 �4.79
5 �7.93 0.66 0.63 1.55 0.46 0.84 0.72 0.39

6 1.31 0.62 0.67 2.15 0.50 0.84 0.121 0.08

7 0.342 0.72 0.89 2.27 0.72 0.84

Bold values in table show when the proposed and traditional algorithm will stop in the example.
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vectors the remaining bounds calculated can change the
sign of the evaluation function. However, once that the
fourth support vector has been evaluated the bound of
the negative contribution is lower than the value of the
evaluation function and so, there is no chance to change
the sign and the sample is classified as positive. The
proposed algorithm will stop at this point avoiding to
calculate the rest of support vectors.

The proposed algorithm can be divided into two parts.
In the first stage, after training the kernel classifier, the
following steps are executed:
(1)
 Find K centroids over the set of support vectors.
These centroids can be calculated using the k-means
algorithm.
(2)
 Select the K support vectors closer to those centroids
found in the previous step. For each of the selected
support vectors create a list with support vector
indexes ranked in ascending order of distance from
the selected vector.
(3)
 Besides having the index of the support vector, each
element of the list Ki must store the distance from the
first vector of the list, the summation of the remaining
positive anþ

i and the summation of the remaining an�
i .
In the test phase, the following steps are executed:
(1)
 Select a list Lh in such a way that

h ¼ min
h

dðx; svh
1Þ (12)

where dðx; svh
1Þ is the distance from the first support

vector of the list h.

(2)
 Evaluate f 0ðxÞ ¼ b and set n ¼ 1.

(3)
 For each support vector in the list, the function f nðxÞ is

upgraded and the fulfilment of one of the conditions
described in Eqs. (10) and (11) is verified. If such
conditions are not given the value of n is increased
and the step is repeated until the conditions are
fulfilled or all the support vectors are evaluated.
The number of centroids K is a free parameter set by
default to the number of classes. The optimum number
depends on the problem under study, especially in those
classes that are distributed in several clusters. Increasing
this number ensures that the test sample evaluated is
located near a centroid but on the other hand it increases
the number of distances to be calculated and the memory
requested to storage all the lists. In the extreme case,
where the number of centroids is equal to the number of
support vectors all the distances must be calculated and
so there is no saving in operations.

3. Proposed method with exponential kernel

The bounds found in Eqs. (6) and (7) allow us to
calculate the maximum and minimum contribution of the
remaining functions f�n ðxÞ and fþn ðxÞ. However, Eqs. (10)
and (11) take into account the same upper and lower
distance bounds for all the remaining support vectors. The
proposal of this part of the work is to find tighter bounds
for the maximum and minimum contribution of the
remaining functions.

Instead of the Gaussian kernel described in (2), the
exponential kernel is considered

Kðx; sviÞ ¼ exp �
kx� svik

2s2

� �
¼ expð�gdðx; sviÞÞ (13)

On the other hand, each support vector has the following
bounds on its distance to the pattern under study x:

dðx; sviÞpdðsv1; sviÞ þ dðx; sv1Þ

dðx; sviÞXdðsv1; sviÞ � dðx; sv1Þ (14)

And so, the contribution of each support vector is
bounded by

ai expð�gdðsvi; xÞÞXai expð�gdðsv1; sviÞÞ expð�gdðsv1; xÞÞ

ai expð�gdðsvi; xÞÞpai expð�gdðsv1; sviÞÞ expðþgdðsv1; xÞÞ(15)

Thus, the stopping conditions with the exponential kernel
can be rewritten as

f nðxÞX0

f nðxÞX expðþgdðx; sv1ÞÞ
XNsvn�

i¼1

an�
i expð�gdðsvi; sv1ÞÞ

� expð�gdðx; sv1ÞÞ
XNsvnþ

i¼1

anþ
i expð�gdðsvi; sv1ÞÞ (16)

and

f nðxÞp0
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f nðxÞp� expðþgdðx; sv1ÞÞ
XNsvnþ

i¼1

anþ
i expð�gdðsvi; sv1ÞÞ

þ expð�gdðx; sv1ÞÞ
XNsvn�

i¼1

an�
i expð�gdðsvi; sv1ÞÞ (17)

The steps to execute the algorithm with this second kernel
are the same than those described with the Gaussian
kernel but the stopping conditions are the one described
in Eqs. (17) and (16). Again, the summations included in
the stopping conditions can be precalculated during the
training phase and the distance to the first support vector
is calculated to select the list. Note that, with the common
Gaussian kernel, an additional exponential term appears
due to the square of the distance and so, it would not be
possible to precalculate the aforementioned summations.
In Fig. 1 it is shown the comparison between the new
bounds and the ones described in the previous section. It
can be appreciated the normalized difference between the
bounds and the real remaining value for a real case and
how these new bounds are quite near to the zero line.

4. Results

The proposed methods were tested in different
classification problems with emphasis in those problems
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Fig. 1. Comparison between normalized bounds.

Table 2
Results using the proposed method and the Gaussian kernel.

Dataset Number of features Test sa

UCI Letter 16 4000

Optical letter 64 1797

Arrythmia 279 200

Image segmentation 16 2100

Traffic sign Red circular 709 5913

Blue rectangular 961 1091

Blue circular 709 867

Red triangular 511 4067
with a high number of features. Several problems were
selected from the University of California Irvine (UCI)
repository [13]. In addition, to test the methods in a RTCS,
these were also applied to the traffic sign recognition
problem described in [14], using four different datasets
associated with different traffic sign groups. Results for
the Gaussian kernel case are shown in Table 2 where,
besides the description of the features and number of test
samples, the number of kernel evaluations, using both the
classical method and with the proposed one, is described.
Moreover, the percentage of kernel evaluations saved is
shown, enabling an appreciation of how the proposed
method achieves a high saving in terms of the number of
operations, making the system easier to work in real time.
Accuracy results were tested to verify that results are the
same in all cases.

Results obtained with the exponential kernel method,
in which the stopping conditions are the ones described in
Eqs. (16) and (17), are shown in Table 3. As in the previous
case, it is also represented the percentage of kernel
operations saved, but also compared to the kernel
evaluations that were done with the proposed method
using the Gaussian kernel. It should be said that, with this
second method, savings compared with the classical
method are even greater than the ones described in Table
2 but the number of support vectors to achieve similar
accuracies is sometimes greater with the exponential
kernel. This situation is shown in Figs. 2 and 3 where it
can be appreciated the number of kernel evaluations,
using the classical method and the proposed algorithm,
for a reduced set of test samples when the dataset named
as optical letter is considered. Samples were ordered by
the number of kernel evaluations needed with the
proposed algorithm and it is also shown the mean of the
kernel evaluations. The gap between both methods is
smaller in the case of the Gaussian kernel but the mean
number of kernel evaluations needed, once that the
proposed algorithms have been applied is slightly smaller
in the case of the exponential kernel.

As it was mentioned, the number of centroids selected
in the k-means algorithm is a free parameter that has been
set to the number of classes in previous examples. In Fig. 4
is represented the percentage of saved kernel evaluations
for different number of centroids for the red triangular
mples Kernel evaluations

Classical method Proposed method Saved (%)

96.1 �106 41.56 �106 56.74

1.09 �106 7.32 �105 33.27

105 �103 81.39 �103 22.48

3.043 �106 4.16 �105 86.32

1.28 �106 9.96 �105 22.52

2.95 �106 1.21 �106 58.80

1.11 �106 2.67 �105 76.06

2.58 �106 2.014 �106 22.99
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Table 3
Results using the proposed method and the exponential kernel.

Dataset Kernel evaluations

Classical method Proposed method Saved (%) Saved vs. RBF (%)

UCI Letter 90.65 �106 22.35 �106 75.34 46.22

Optical letter 1.92 �106 7.12 �105 62.91 2.73

Arrythmia 185.2 �103 21.5 �103 88.39 73.58

Image segmentation 2.95 �106 3.56 �105 87.93 14.47

Traffic sign Red circular 2.05 �106 1.02 �106 50.24 �2.41

Blue rectangular 3.52 �106 1.11 �106 68.47 8.26

Blue circular 1.46 �106 1.89 �105 87.05 29.21

Red triangular 2.26 �106 1.90 �106 15.92 5.47
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traffic sign dataset. The conclusion from this figure is also
valid for the rest of datasets evaluated and it indicates that
increasing the number of lists too much gives worse
percentage of saved kernel evaluations. In the example
shown in the graphic it can also be seen that the
percentage increase fast until the number of classes, 23
in this case, is reached.

5. Conclusion

Two methods to reduce computational load in the test
phase have been proposed. The first one can be applied
when the kernel used is the popular Gaussian one, with
savings in kernel evaluations of 25–85%. The exponential
kernel allow to know the remaining values of the positive
and negative support vectors with a small error margin
and so, savings in operations are greater than in the
previous case. Although the use of this second kernel
implies to obtain more support vectors, result shows that
the total amount of operations saved is usually greater
than with the Gaussian kernel.
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