
Fast Reciprocal Nearest Neighbors Clustering

Roberto J. López-Sastre∗, Daniel Oñoro-Rubio, Pedro Gil-Jiménez, Saturnino Maldonado-Bascón

University of Alcalá, GRAM - Department of Signal Theory and Communications, 28805 Alcalá de Henares, Spain

Abstract

This paper presents a novel approach for accelerating the popular Reciprocal Nearest Neighbors (RNN) clustering algorithm,
i.e. the fast-RNN. We speed up the nearest neighbor chains construction via a novel dynamic slicing strategy for the projection
search paradigm. We detail an efficient implementation of the clustering algorithm along with a novel data structure, and present
extensive experimental results that illustrate the excellent performance of fast-RNN in low- and high-dimensional spaces. A C++
implementation has been made publicly available.

Keywords: reciprocal nearest neighbors, clustering, visual words, local descriptors

1. Introduction

Many image processing and computer vision tasks can be
posed as one of Nearest Neighbors (NN) search. Indeed, the
vector quantization techniques, which are used in low-bit-rate
image compression techniques (e.g.[1, 2]), are directly related
to searching NN. Moreover, Bag-of-Words approaches for ob-
ject recognition [3], need to quantize local visual descriptors,
such as SIFT [4], so as to build the so called visual vocabu-
lary. In other words, there is a pressing need for developing
fast clustering algorithms that work well with both low- and
high-dimensional data. Within the object recognition context,
K-means is the most widely used clustering algorithm, even
though more efficient alternatives have been proposed (e.g.[5]).
There are also agglomerative techniques (e.g. [6]) that over-
come theK-means limitations. In [6], the Reciprocal Nearest
Neighbors (RNN) clustering algorithm [7] is used for local de-
scriptors quantization. In this letter, we present an accelerated
version of this clustering algorithm: the fast-RNN. In specific
terms, we propose a novel method to accelerate the RNN clus-
tering algorithm via a dynamic slicing strategy for the projec-
tion search paradigm. The use of this efficient dynamic space
partitioning, combined with a novel data structure, improves the
performance with both low- and high-dimensional data.

2. Fast Reciprocal Nearest Neighbors Clustering

2.1. Reciprocal Nearest Neighbors: An Overview

The RNN algorithm was introduced in [7]. It is based on
the construction of RNN pairs of vectorsxi andx j , so thatxi

is the NN tox j , and vice versa. As soon as a RNN pair is
found, it can be agglomerated. In [8], it is described an effi-
cient implementation that ensures that RNN can be found with

∗Corresponding author: Tel:+34 91 885 67 20. Fax:+34 91 885 66 99
Email address:robertoj.lopez@uah.es (Roberto J. López-Sastre)

Figure 1: The RNN algorithm is run on this set of vectors. The NN chain starts
with x1, and contains{x1, x2, x3, x4}. Note thatd12 > d23 > d34. x5 is not added
to the NN chain because the distanced45 > d34. The last pair of vectors,x3 and
x4, are RNN. Ifd34 ≤ t, vectorsx3 andx4, are agglomerated in the new cluster
x34. However, ifd34 > t, then the whole chain is discarded, and each of its
elements is considered to be a separate cluster.

as little re-computation as possible: this is achieved by building
a NN chain, which consists of an arbitrary vector, followed by
its NN, which is again followed by its NN among the remain-
ing points and so on. Hence, a NN chain of lengthl can be
defined as the sequence of vectors{x1, x2 = NN(x1), . . . , xl−1 =

NN(xl), xl = NN(xl−1)}, where NN(xi) is the NN ofxi . Note
that the distances between adjacent vectors in the NN chain are
monotonically decreasing, and that the last pair of nodes are
RNN.

The RNN algorithm starts with an arbitrary vector (see Fig-
ure 1 for a toy example). A NN chain is then built. When a RNN
pair is found,i.e. no more vectors can be added to the current
chain, the corresponding clusters are merged if their similarity
is above a fixed cut-off thresholdt, otherwise the algorithm dis-
cards the whole chain. This way of merging clusters can be ap-
plied whenever the distance matrixD satisfies the reducibility
property,D(Ci ,C j) ≤ min{D(Ci ,Ck),D(C j ,Ck)} ≤ D(Ci∪ j ,Ck),
whereD(Ci ,C j) is the distance between clustersCi andC j , and
Ci∪ j is the cluster after mergingCi andC j . This property guar-
antees that when RNN are merged, the NN relations for the
remaining chain members are unaltered, therefore they can be
used for the next iteration. When the current chain is empty or
has been discarded, a new arbitrary point is selected, and a new
NN chain is started.

Preprint submitted to Signal Processing August 4, 2011

The key point is how to recompute the similarity between a
new centroid (after merging a RNN pair) and the rest. Leibeet
al. [6] show that this can be done efficiently if the cluster sim-
ilarity can be expressed in terms of centroids, which holds for
a group average criteria based on correlation or Euclidean dis-
tances. The similarities can be computed in constant time, and
only the mean and variance of each cluster need to be stored.
Moreover, both parameters can be computed incrementally. Let
µx, µy andσ2

x, σ
2
y be the means and variances of clustersCx and

Cy respectively. The similarity between clustersCx andCy can
be computed as similarity(Cx,Cy) = −((σ2

x + σ
2
y) + (µx − µy)2).

We adopt the RNN clustering algorithm introduced in [6],
which hasO(N2d) time andO(N) space complexity, whereN
is the number of data points of dimensionalityd. Algorithm
(1) describes the implementation of the RNN clustering in [6].
The approach in [6] presents a high complexity with high-
dimensional data. This is to be expected since the algorithm
relies heavily on the search for NN. In Section 2.2, we present
an efficient technique for speeding up the NN chain construc-
tion in order to further improve the run-time of the clustering
algorithm.

Algorithm 1 RNN clustering
C = ∅; last ← 0; lastsim[0] ← 0; //C contains a list of
clusters
L[last] ← v ∈ V; //Start chainL with a random vectorv
R← V\v; //All remaining points are kept inR
while R, ∅ do

(s, sim)← getNearestNeighbor(L[last],R);
if sim> lastsim[last] then
//No RNN. Adds to L
last ← last + 1; L[last] ← s; R ← R\{s};
lastsim[last] ← sim;

else {//A RNN pair was found}
if lastsim[last] > thresthen

s← agglomerate(L[last], L[last− 1]); R← R∪ {s};
last← last− 2;

else {//Discard the current chain}
C← C ∪ L; last← −1; L = ∅;

end if
end if
if last< 0 then

last← last+ 1; L[last] ← v ∈ R; R← R\v
end if

end while

2.2. fast-RNN

In the RNN clustering, the set of vectors to quantize is con-
tinuously changing: vectors are aggregated and/or extracted in
each iteration. This makes it unfeasible to apply those NN
search algorithms that are designed to work with non-dynamic
set of vectors (e.g. [9, 1]). Moreover, the experiments in [9]
only deal with datasets with dimensionality up to 35.

In order to further accelerate the RNN clustering, we present
an efficient technique to speed up the NN chain construction.

Since we have to deal with dynamic sets, we propose a novel
algorithm for NN search which consists in a new efficient dy-
namic space partitioning strategy using slices, combined with a
novel data structure to accelerate the NN chain construction.

Building NN chains via slicing. When building NN chains,
the objective is to find the point, in the set of pointsS, that is
closest to a query pointq ∈ Rd and within a distanceǫ. Instead
of building a hypercube with side 2ǫ [9], we propose finding
all the points that lie within a slice of thed-dimensional space
of width 2ǫ centred at pointq = (q1, q2, . . . , qd)T. That is, the
i-slice is defined as the region confined by two parallel planes,
perpendicular to theith coordinate axis, separated a distance 2ǫ

and centred atqi . For anith coordinate, the higher its variance,
the more suitable for being used.

The NN search is done with just the points inside thei-slice.
We are interested in building NN chains. Suppose there is a set
of N pointsS = {x1, x2, . . . , xN} wherexi ∈ Rd. We assume that
a metricd(xi, x j) is defined between points inS. Any NN chain
starts with a random pointxi . Our first task is to determine the
nearest neighbor ofxi in S, i.e. x j = NN(xi). To that end, we
build the first slice of width 2ǫ centered atxi . All the points
inside this slice are included on a candidate list. We perform
the search for the NN ofxi considering only the points in the
candidate list. Oncex j is identified, we search for its NN,i.e.
xk = NN(x j), via slicing again, and so on.

As the distances between adjacent elements in a NN chain
are decreasing, we can assign the value of the last distance be-
tween NN in the NN chain toǫ. If there are no points within
the slice for thatǫ, we can stop building the NN chain. If we
proceed in this way, the longer the NN chain, the thinner the
slices, therefore the faster the NN search.

This procedure for updatingǫ is adequate when working
with low-dimensional vectors. However, in a high-dimensional
space the norm used to define the distance is concentrated [10].
Let Dmaxd and Dmind be the maximum and the minimum dis-
tance to the origin of a data point of dimensionalityd, respec-
tively. Then,

limd→∞
Dmaxd − Dmind

Dmind

→ 0 . (1)

This means that the minimum and maximum distances from a
query point to points in the dataset become increasingly closer
as dimensionality increases. As a result, if we updateǫ with the
last distance in the NN chain, we will not trim the number of
vectors we have for comparison. Hence for high-dimensional
spaces a further study on how to determineǫ is needed.

It is important to note that an exhaustive search within the
slice does not always find the NN ofxi in S. When perform-
ing the linear search with the points inside the slice, we must
therefore check whether the distance to the NN,i.e. d(xi , x j),
satisfies this conditiond(xi, x j) ≤ ǫ. If not, we can not guaran-
tee thatx j = NN(xi) (Figure 2(a) illustrates this problem with
an example).

In such a case, when the NN is not found within the slice,
bigger slices must be generated untilǫ > dlast (with dlast being
the distance between the last two elements in the NN chain) or

2

(a) Incorrect NN search result. (b) Double slicing.

Figure 2: (a) Slicing a 2-dimensional space.x j is closer toxi thanxk, but it lies
outside the slice. (b) Slicing a 2-dimensional space. We build two slices:Sǫ of
width 2ǫ, andSdlast of width 2dlast, wheredlast is the distance between the last
two elements in the NN chain.

0 0.05 0.1 0.15 0.2 0.25
0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

Data

P
ro

ba
bi

lit
y

(a) SIFT

−0.3 −0.2 −0.1 0 0.1 0.2
0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

Data

P
ro

ba
bi

lit
y

(b) SURF

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997

Data

P
ro

ba
bi

lit
y

(c) PCA-SIFT

Figure 3: Normal probability plots for a random coordinate of a random selec-
tion of (a) SIFT, (b) SURF and (c) PCA-SIFT descriptors.

until we find a NN. To avoid this iterative process, we propose
building only two slices, see Figure 2(b). The first slice,Sǫ , is
built using an adequateǫ that guarantees a significant trim in
the number of points. The second slice,Sdlast, has a width of
2dlast. If the NN is not found inSǫ , we search inSdlast. Note
that by doing this double search, the clusterings obtained by the
fast-RNN and the RNN algorithms are identical.

Determining ǫ when slicing high-dimensional data. The
number of points in a slice directly depends on the value ofǫ,
so the efficiency of the proposed algorithm critically depends
on ǫ too. How to chooseǫ? We focus our study on the spe-
cific case in which the set of vectors along each dimension is
normally distributed. This assumption can be made if we use
SIFT [4], SURF [11] or PCA-SIFT [12] descriptors. The nor-
mal probability plots in Figure 3 look fairly straight, at least
when the large and small values are ignored.

Our aim is to analytically compute the width of the thinnest
slice (2ǫmin), given that we want to guarantee that the slice is
not empty with a probabilityp. Let Ns be the number of points
within a slice of width 2ǫmin. In order to determine the average
number of points that lie in the slice, we computeE[Ns]. We

0 0.2 0.4 0.6 0.8 1
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Probability of Success

ǫ

n=1000

n=100000

Figure 4:ǫ vs. Probability of success. These results are obtained using a set of
SIFT descriptors extracted from random images of the database ICARO ([13]).
We fix the number of descriptorsn to different values from 1000 to 105.

can defineZi as the distance betweenqi and any point in the
slice. Pc is the probability that any point in the set of points is
within distanceǫ from qi , i.e. Pc = P{−ǫ ≤ Zi ≤ ǫ|qi}. Regard-
less of the distribution of points,Ns is binomially distributed,

P{Ns = k|qi} = Pk
c(1− Pc)n−k

(

n
k

)

. (2)

We focus on the scenario where the set of points is normally
distributed,

fZi |qi (z) =
1
√

2πσ
exp

(

−(z− qi)2

2σ2

)

, (3)

andPc can then be written as

Pc =

∫ ǫ

−ǫ
fZi |qi (z)dz=

1
2

(

erf

(

ǫ − qi

σ
√

2

)

+ erf

(

ǫ + qi

σ
√

2

))

. (4)

The probabilityp that the slice contains at least one point is

p = P{Ns > 0|qi} = 1− P{Ns = 0|qi}
= 1− (1− Pc)n

= 1−
(

1− 1
2

(

erf

(

ǫ − qi

σ
√

2

)

+ erf

(

ǫ + qi

σ
√

2

)))n (5)

Using Equation (5),ǫ is plotted againstp in Figure 4. For
this purpose we obtained a set of 105 SIFT vectors extracted
from random images from the database ICARO [13]. We set
the number of descriptorsn at different values from 1000 to
105. Note that the value ofǫ required for building non-empty
slices is very low for probabilities of success near 0.9, e.g.an
ǫ = 0.012 guarantees a probability of success of 0.9 whenn =
1000. In practice,ǫ is fixed to larger values, but always keeping
the number of points within the slice small, as we will see in
the experiments.

Data Structure. Our implementation of the fast-RNN algo-
rithm uses an effective dynamic data structure and 1D binary
searches to efficiently find points inside the region defined by
two parallel planes. First, we assume that the set of points we

3

Figure 5: Data structures of fast-RNN. A sliceSǫ is built using theSCA. Note
that only 2 binary searches are needed.

are dealing with is dynamic. For this reason, the data structure
needs to be updated whenever the set changes.

Consideringd the dimensionality of data, only coordinatej
(0 < j < d) is stored as a 1D array. This is called the Sorted Co-
ordinate Array (SCA). In other words, we construct only one
slice, which is perpendicular to thejth coordinate axis. Let us
assume that our objective is to find the NN, in a setS of npoints,
of a given pointxi, with coordinatesxi = (xi1, . . . , xi j , . . . , xid)

T.
In order to construct the candidate list efficiently, we must
search for those points that lie between two parallel planesper-
pendicular to thejth coordinate axis, centered atxi j and sep-
arated by a distance 2ǫ; i.e. our aim is to identify the points
with jth coordinates in theSCAwithin the limits xi j − ǫ and
xi j + ǫ. TheSCAis sorted in order to build the candidate list of
points with just two binary searches (each binary search hasa
complexity ofO(logn) in the worst case).

Figure 5 shows the data structure introduced. In our C++

implementation, the set of pointsS is built as alist of vec-
tors, where efficient insertions and deletions of elements can
take place anywhere in thelist. In order to map a coordinate in
the SCAto its corresponding point in the set of pointsS, we
maintain an arrayM of iterators, where each element points to
its corresponding vector in thelist S. We maintain a 1D ar-
ray Maskof boolean elements to deal with the insertions and
deletions of points. Every element acts as a mask, indicating
whether its position has been deleted (false) or not (true). When
deleting an element, we first mark its mask tofalse, and then we
delete the element from the listS. When a new vector has to be
inserted, we first insert it in the listS, then with a binary search
we determine the corresponding position of itsjth coordinate
in theSCA, and finally, we updateSCAandMask.

Note thatSCAdoes not grow when we insert elements in
S. Each insertion is associated with an agglomeration of two
vectors that have been extracted beforehand. When an element
is inserted, there are at least two elements in theSCAmarked
as deleted, and the algorithm simply updateSCAby moving
the elements within the array.

The data structure described is easy and fast to build and
maintain. The time complexity for its building is on average
O(n logn), with n being the number of vectors. When elements
are deleted or inserted, the data structure is updated at a low
cost. Furthermore, the size of the data structure does not grow

with dimensionality, which is a desirable property.
With the modified approach for accelerating the NN chain

construction, and the efficient data structured detailed, we are
able to speed up the RNN clustering. Algorithm 2 summarizes
the resulting procedure.

Algorithm 2 fast-RNN
(M,SCA,Mask)← initializeDataS tructure(V);
C = ∅; last ← 0; lastsim[0] ← 0; //C contains a list of
clusters
L[last] ← v ∈ V; //Start chainL with a random vectorv
R← V\v; //All remaining points are kept inR
while R, ∅ do

(Sǫ ,Sdlast)← createS lices(R, ǫ, L, lastsim,M,SCA,Mask);
(s, sim)← getNearestNeighborInS lices(L[last],R,Sǫ,Sdlast);
if sim> lastsim[last] then

last ← last + 1; L[last] ← s; R ← R\{s};
lastsim[last] ← sim;
(M,SCA,Mask)← eraseElement(s,M,SCA,Mask);

else {//A RNN pair was found}
if lastsim[last] > thresthen

s← agglomerate(L[last], L[last− 1]); R← R∪ {s};
last← last− 2;
(M,SCA,Mask) ←
insertElement(s,M,SCA,Mask);

else {//Discard the current chain}
C← C ∪ L; last← −1; L = ∅;

end if
end if
if last< 0 then

last← last+ 1; L[last] ← v ∈ R; R← R\v
end if

end while

3. Experimental Evaluation

In this section we present an experimental comparison be-
tween the RNN and the fast-RNN clustering algorithms. We
have used two groups of datasets. On the one hand, 104

SIFT [4], PCA-SIFT [12] and SURF [11] descriptors have
been extracted from random images in the dataset ICARO [13].
While SIFT descriptors have 128 dimensions, we have ex-
tracted PCA-SIFT vectors of dimensionality 36, and SURF de-
scriptor of 128, 64, 36 and 16 dimensions. On the other hand,
we have generated 1 set of 50, 000 3D vectors from the normal
distribution. With these sets of vectors we can show how the
fast-RNN performs in both low- and high-dimensional spaces.

We measure the performance of an algorithmA as the num-
ber of distance calculationsdcA required. We define the
speedupS = dcRNN/dcfast−RNN. However, fast-RNN may in-
cur overhead to build and update its data structure. Therefore,
we also define the time speedupSt = tRNN/tfast−RNN, wheretA
is the time required by algorithmA. For the experiments, we
repeat the measurements 10 times.

Measuring the speedup. Table 1 shows the results obtained
as a function ofn, the number of vector to quantize. Results

4

Table 1: Fast-RNN vs. RNN.S andSt for different datasets.

Clustering S St

Dataset t ǫ n = 100 n = 1, 000 n = 10, 000 n = 100 n = 1, 000 n = 10, 000

SIFT 0.9 0.05 1.46 1.61 1.67 1.61 1.77 1.71
SURF-16 0.6 0.05 2.71 3.98 4.12 2 3.67 3.91
SURF-36 0.6 0.05 2.64 2.68 3.03 2.23 2.66 2.96
SURF-64 0.6 0.05 1.83 1.99 2.09 1.74 2 2.02
SURF-128 0.6 0.05 1.58 1.71 1.85 1.54 1.72 1.86
PCA-SIFT 0.6 0.1 2.34 3.13 4.24 2.20 3.78 4.71

n = 100 n = 1, 000 n = 50, 000 n = 100 n = 1, 000 n = 50, 000

NORM-3 0.4 0.1 2.96 3.15 4.15 1.95 3.41 5.91

show that the number of distance calculations always decreases
when using the fast-RNN algorithm,i.e. S is always> 1. Fur-
thermore, observingSt, we can conclude that the fast-RNN
approach is always faster than the RNN. It is also true that
the speedupS increases withn. When the dataset is small,
e.g. n = 100, the efficiency of the NN search algorithm via
slicing is comparable to a simple linear search. This is due to
the fact that the fast-RNN requires to create and update an aux-
iliary data structure, therefore the speedup over a linear search
decreases when the dataset size drops. Furthermore, when SIFT
or SURF-128 descriptors are used, the speedup does not ex-
ceed 2, and this is due to the following factors: the value of
ǫ chosen and the high-dimensionality of the vectors. SIFT and
SURF-128 vectors are concentrated (recall Equation (1)), hence
a lower value forǫ is needed to considerably reduce the num-
ber of distance calculations, as it is shown in the followingsec-
tion. Table 1 also shows the excellent performance of the fast-
RNN clustering when quantizing low-dimensional vectors (see
results for the NORM-3 dataset).

Determining the best ǫ. The speedup of the proposed al-
gorithm depends critically onǫ, specially for high-dimensional
data (e.g.SIFT and SURF-128 descriptors). In the fast-RNN
algorithm, the computational efficiency is achieved by limiting
the search to a small slice of thed-dimensional space. However,
in high-dimensional spaces the distances are concentrated. This
concentration is problematic when building the slice of size 2ǫ:
an inadequateǫ can include almost all the points inside the slice,
thereby not reducing the NN search time. In Figure 6, we show
S for PCA-SIFT, SIFT and SURF descriptors varyingǫ from
0.001 to 0.1. For PCA-SIFT descriptors,S does not depend
on ǫ within the interval [0.001, 0.1], i.e. the PCA-SIFT coor-
dinates are not concentrated within this interval. However, for
SIFT and SURF-128 descriptors, we obtain thatS > 2 when
ǫ < 0.02 andǫ < 0.04, respectively. SIFT and SURF descrip-
tors, of dimensionality 128, require lower values ofǫ in order
to accelerate the NN chain construction within the fast-RNN
clustering.

4. Conclusion

This paper details the implementation of the fast-RNN clus-
tering algorithm. To the best of our knowledge, this is the
first approach for accelerating the RNN clustering algorithm
via the efficient dynamic space partitioning presented. We

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1

1.5

2

2.5

3

3.5

4

epsilon

S
pe

ed
up

PCA−SIFT
SIFT
SURF

Figure 6: Speedup as a function ofǫ for PCA-SIFT, SIFT and SURF descrip-
tors.

also have developed a novel data structure that improves the
performance with both low- and high-dimensional data. Re-
sults show that the fast-RNN is faster than the standard RNN.
It is worth to mention that the solutions obtained by both
clustering algorithms are identical. Finally, with the aimof
making our research reproducible, we release a C++ imple-
mentation of the fast-RNN clustering, which can be down-
loaded fromhttp://agamenon.tsc.uah.es/Personales/

rlopez/data/fastrnn.

Acknowledgements

This work was partially supported by projects TIN2010-
20845-C03-03 and CCG10-UAH/TIC-5965.

References

[1] S. Baek, K. Bae, M. Sung, A fast vector quantization encoding algorithm
using multiple projection axes, Signal Processing 75 (1999) 89–92.

[2] C.-H. Lee, L.-H. Chen, High-speed closest codeword search algorithms
for vector quantization, Signal Processing 43 (1995) 323 – 331.

[3] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, C. Bray, Visual catego-
rization with bags of keypoints, in: ECCV, 2004.

[4] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
IJCV 60 (2) (2004) 91–110.

[5] D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in:
CVPR, 2006, pp. 2161–2168.

[6] B. Leibe, K. Mikolajczyk, B. Schiele, Efficient clustering and matching
for object class recognition, in: BMVC, 2006.

[7] C. de Rham, La classification hiérarchique ascendante selon la méthode
des voisins réciproques, Cahiers de l’Analyse des Données 2 (5) (1980)
135–144.

[8] J. Benzécri, Construction d’une classification ascendante hiérarchique par
la recherche en chaı̂ne des voisins réciproques, Cahiers de l’ Analyse des
Données 2 (7) (1982) 209–218.

[9] S. A. Nene, S. K. Nayar, A simple algorithm for nearest neighbor search
in high dimensions, IEEE TPAMI 19 (9) (1997) 989–1003.

[10] K. S. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is ”nearest
neighbor” meaningful?, in: Proceedings of the 7th International Confer-
ence on Database Theory, 1999.

[11] H. Bay, T. Tuytelaars, L. Van Gool, Surf: Speeded up robust features, in:
ECCV, Vol. 3951, 2006, pp. 404–417.

[12] Y. Ke, R. Sukthankar, PCA-SIFT: A more distinctive representation for
local image descriptors, in: CVPR, 2004.

[13] R. J. López-Sastre, C. Redondo-Cabrera, P. Gil-Jiménez, S. Maldonado-
Bascón, ICARO: Image Collection of Annotated Real-world Ob-
jects, http://agamenon.tsc.uah.es/Personales/rlopez/data/
icaro (2010).

5

