Fast Reciprocal Nearest Neighbors Clustering

Roberto J. Lopez-SastteDaniel Ofioro-Rubio, Pedro Gil-Jiménez, Saturnino Malado-Bascon
University of Alcala, GRAM - Department of Signal Theorg @&ommunications, 28805 Alcala de Henares, Spain

Abstract

This paper presents a novel approach for accelerating tpalgmoReciprocal Nearest Neighbors (RNN) clustering atgor,
i.e. the fast-RNN. We speed up the nearest neighbor chains oatistr via a novel dynamic slicing strategy for the projenti
search paradigm. We detail affieient implementation of the clustering algorithm alonghnat novel data structure, and present
extensive experimental results that illustrate the eraglberformance of fast-RNN in low- and high-dimensionacgs. A G-+
implementation has been made publicly available.

Keywords: reciprocal nearest neighbors, clustering, visual wowtsalldescriptors

1. Introduction X5 0 < o}
2
: : - \ re
Many image processing and computer vision tasks can be d23 o d34 - £ X34
posed as one of Nearest Neighbors (NN) search. Indeed, the
vector quantization techniques, which are used in lowrdie- X1

image compression techniquesd.[1, 2]), are directly related
to searching NN. Moreover, Bag-of-Words approaches for 0bFlgure 1: The RNN algorithm is run on this set of vectors. Tiedhain starts
ject recognition [3], need to quantize local visual dedoni§, with x;, and containgxy, x2, X3, xa}. Note thatth > da3 > daa. Xs is not added
such as SIFT [4], so as to build the so called visual vocabuto the NN chain because the distanizg > dzs. The last pair of vectors and
lary. In other words, there is a pressing need for developlngfl are RNN. Ifdz4 < t, vectorsxs andxa, are agglomerated in the new cluster
fast clust | ith that K Il with both | d %3 However, ifdzs > t, then the whole chain is discarded, and each of its
ast clustering algorithms that work well wi Oth IoW- and gjements is considered to be a separate cluster.
high-dimensional data. Within the object recognition eyt
K-means is the most widely used clustering algorithm, even
though more fiicient alternatives have been proposed (5]). as little re-computation as possible: this is achieved biging
There are also agglomerative techniqueg([6]) that over- a NN chain, which consists of an arbitrary vector, followad b
come theK-means limitations. In [6], the Reciprocal Nearestits NN, which is again followed by its NN among the remain-
Neighbors (RNN) clustering algorithm [7] is used for locatd ing points and so on. Hence, a NN chain of lengitan be
scriptors quantization. In this letter, we present an awesétd defined as the sequence of vectprs X, = NN(Xy), ..., X_1 =
version of this clustering algorithm: the fast-RNN. In sifiec NN(x;),x; = NN(x,_1)}, where NNK;) is the NN ofx;. Note
terms, we propose a novel method to accelerate the RNN clughat the distances between adjacent vectors in the NN chain a
tering algorithm via a dynamic slicing strategy for the p@j monotonically decreasing, and that the last pair of nodes ar
tion search paradigm. The use of thii@ent dynamic space RNN.
partitioning, combined with a novel data structure, im@®the The RNN algorithm starts with an arbitrary vector (see Fig-
performance with both low- and high-dimensional data. ure 1 for atoy example). A NN chain is then built. When a RNN
pair is found,i.e. no more vectors can be added to the current
chain, the corresponding clusters are merged if their aiityl
is above a fixed cutfbthreshold, otherwise the algorithm dis-
2.1. Reciprocal Nearest Neighbors: An Overview cards the whole chain. This way of merging clusters can be ap-
plied whenever the distance matiixsatisfies the reducibility
property,D(Ci, Cj) < min{D(C;, Ci), D(C;, Co)} < D(Civj Ci),
is the NN tox;, and vice versa. As soon as a RNN pair is whereD(C;, Cj) is the distance between clustésandC;, and
. L . Ciuj is the cluster after merginG; andC;. This property guar-
found, it can be agglomerated. In [8], it is described & e
L . antees that when RNN are merged, the NN relations for the
cient implementation that ensures that RNN can be found with
remaining chain members are unaltered, therefore they ean b
used for the next iteration. When the current chain is empty o
*Corresponding author: Tek34 91 885 67 20. Fax34 91 885 66 99 has been discarded, a new arbitrary pointis selected, aeda n
Email addressrobertoj.lopez@uah.es (Roberto J. Lopez-Sastre) NN chain is started.

2. Fast Reciprocal Nearest Neighbors Clustering

The RNN algorithm was introduced in [7]. It is based on
the construction of RNN pairs of vectoxs andx;, so thatx;

Preprint submitted to Signal Processing August 4, 2011

The key point is how to recompute the similarity between aSince we have to deal with dynamic sets, we propose a novel
new centroid (after merging a RNN pair) and the rest. Leibe algorithm for NN search which consists in a nefligent dy-
al. [6] show that this can be dondfieiently if the cluster sim- namic space partitioning strategy using slices, combiniédav
ilarity can be expressed in terms of centroids, which hotds f novel data structure to accelerate the NN chain constmuctio
a group average criteria based on correlation or Euclidéan d Building NN chainsvia slicing. When building NN chains,
tances. The similarities can be computed in constant time, a the objective is to find the point, in the set of poifsthat is
only the mean and variance of each cluster need to be storedosest to a query poinf e R? and within a distance. Instead
Moreover, both parameters can be computed incrementaty. L of building a hypercube with sidecZ9], we propose finding
Hx, py ando2, (75 be the means and variances of clus@rsind all the points that lie within a slice of thé-dimensional space
C, respectively. The similarity between clust€sandC, can of width 2¢ centred at pointj = (0,02, ...,qq¢)". That s, the
be computed as similarit@, Cy) = —((o2 + o-)z,) + (ux — wy)?). i-slice is defined as the region confined by two parallel planes

We adopt the RNN clustering algorithm introduced in [6], perpendicular to thigh coordinate axis, separated a distance 2
which hasO(N2d) time andO(N) space complexity, whend and centred afj. For anith coordinate, the higher its variance,
is the number of data points of dimensionality Algorithm the more suitable for being used.
(1) describes the implementation of the RNN clustering in [6 The NN search is done with just the points insideitistice.
The approach in [6] presents a high complexity with high-We are interested in building NN chains. Suppose there i a se
dimensional data. This is to be expected since the algorithrof N pointsS = {x1, X», . .., Xn} Wherex; € RY. We assume that
relies heavily on the search for NN. In Section 2.2, we presena metricd(x;, x;) is defined between points 81 Any NN chain
an dficient technique for speeding up the NN chain construcstarts with a random poing. Our first task is to determine the
tion in order to further improve the run-time of the clustgyi nearest neighbor of; in S, i.e. x; = NN(x;). To that end, we
algorithm. build the first slice of width 2 centered ak;. All the points
inside this slice are included on a candidate list. We perfor
the search for the NN of; considering only the points in the
candidate list. Oncg; is identified, we search for its NN.e.
Xk = NN(xj), via slicing again, and so on.

As the distances between adjacent elements in a NN chain
are decreasing, we can assign the value of the last distance b
tween NN in the NN chain te. If there are no points within

Algorithm 1 RNN clustering
C = 0; last « 0; lastsinj0] « 0; //C contains a list of
clusters
L[last] « v e V; //Start chairL with a random vectov
R « V\v; //All remaining points are kept iR
whileR # 0 do

(s, sim) « getNearestNeighbgk[lasf, R);
if sim> lastsinflast] then
//No RNN. Addsto L
last « last + 1; L[lasf]
lastsinjlast] « sim
else {//A RNN pair was foungl
if lastsinflast] > thresthen
s « agglomeratéL[lasf], L[last— 1]); R < RU {s};
last < last— 2;

«— s R <« R\{s;

the slice for thak, we can stop building the NN chain. If we
proceed in this way, the longer the NN chain, the thinner the
slices, therefore the faster the NN search.

This procedure for updating is adequate when working
with low-dimensional vectors. However, in a high-dimemsib
space the norm used to define the distance is concentrafed [10
Let Dimay, and Dmin, be the maximum and the minimum dis-
tance to the origin of a data point of dimensionatityrespec-
tively. Then,

else{//Discard the current chajin

CCulL;laste -1;L=0; —_— Dmax, = Dining (1)
end if Dmind
end if) o]]
if last < O then This means that the minimum and maximum distances from a
last «— last+ 1; L[lasf] « ve R R« R\v query point to points in the dataset become increasinglyeclo
end if as dimensionality increases. As a result, if we updatéh the
end while last distance in the NN chain, we will not trim the number of
vectors we have for comparison. Hence for high-dimensional
spaces a further study on how to determing needed.
It is important to note that an exhaustive search within the
2.2. fast-RNN

slice does not always find the NN @&f in S. When perform-

In the RNN clustering, the set of vectors to quantize is coning the linear search with the points inside the slice, wetmus
tinuously changing: vectors are aggregatedaneixtracted in therefore check whether the distance to the N&, d(x;, x;),
each iteration. This makes it unfeasible to apply those NNsatisfies this conditiod(x;, Xj) < €. If not, we can not guaran-
search algorithms that are designed to work with non-dynamitee thatx; = NN(x;) (Figure 2(a) illustrates this problem with
set of vectors€.g.[9, 1]). Moreover, the experiments in [9] an example).
only deal with datasets with dimensionality up to 35. In such a case, when the NN is not found within the slice,

In order to further accelerate the RNN clustering, we preserbigger slices must be generated uatib djas (With diast being
an dficient technique to speed up the NN chain constructionthe distance between the last two elements in the NN chain) or

2

ast diast 2
y o 10
® o
O
%o
o o
O
o (6]
O € €
€ € z 5. x
(a) Incorrect NN search result. (b) Double slicing. 12100000
Figure 2: (a) Slicing a 2-dimensional spaggis closer tox; thanx, but it lies 0% 02 014.] 06 08 1
outside the slice. (b) Slicing a 2-dimensional space. Welitwio slices:S, of Probability of Success

width 2¢, andSq,,, of width 2di.s;, Wheredjas is the distance between the last

two elements in the NN chain.

Figure 4:e vs. Probability of success. These results are obtained asset of
SIFT descriptors extracted from random images of the dagal2ARO ([13]).
We fix the number of descriptorsto different values from 1000 to $0

5:(,/ .J,:/ can defingZ; as the distance betweep and any point in the

slice. P is the probability that any point in the set of points is
within distancees from q;, i.e. P. = P{—e < Z; < €|q;}. Regard-
less of the distribution of pointd\s is binomially distributed,

(a) SIFT (b) SURF
P(Ns = kigi} = P&(1 - Po)™ k() (2)
We focus on the scenario where the set of points is normally
distributed,
1 —(z— @)?
f210.(2) = , 3
(c) PCA-SIFT 212 \2ro p(202 ®)
andP. can then be written as
Eigure 3: Normal probability plots for a random coqrdinateamandom selec-
tion of (a) SIFT, (b) SURF and (c) PCA-SIFT descriptors. P, = f fZ.|q| (Z)dZ— (erf(— Qi) erf(e +))) (4)
V2 oV2

until we find a NN. To avoid this iterative process, we proposerlhe probabilityp that the slice contains at least one point is
building only two slices, see Figure 2(b). The first sli€e, is

built using an adequate that guarantees a significant trim in p = P{Ns > 0lgi} = 1 - P{Ns = Olqg;}
the number of points. The second sli&,_,, has a width of =1-(1-P)"
2djast If the NN is not found inS,, we search irBq,,. Note —q e+qi)\\")
that by doing this double search, the clusterings obtaiyetid =1- (1 -5 (erf() + erf()))
V2 oV2

fast-RNN and the RNN algorithms are identical.
Determining € when dlicing high-dimensional data. The Using Equation (5)¢ is plotted againsp in Figure 4. For
number of points in a slice directly depends on the valug of this purpose we obtained a set of?1BIFT vectors extracted
so the diciency of the proposed algorithm critically dependsfrom random images from the database ICARO [13]. We set
on e too. How to choose? We focus our study on the spe- the number of descriptons at different values from 1000 to
cific case in which the set of vectors along each dimension i30°. Note that the value of required for building non-empty
normally distributed. This assumption can be made if we usglices is very low for probabilities of success ned,@.g.an
SIFT [4], SURF [11] or PCA-SIFT [12] descriptors. The nor- ¢ = 0.012 guarantees a probability of success 8fWhenn =
mal probability plots in Figure 3 look fairly straight, atalét 1000. In practices is fixed to larger values, but always keeping
when the large and small values are ignored. the number of points within the slice small, as we will see in
Our aim is to analytically compute the width of the thinnestthe experiments.
slice (Zmin), given that we want to guarantee that the slice is Data Structure. Our implementation of the fast-RNN algo-
not empty with a probability. Let Ng be the number of points rithm uses an féective dynamic data structure and 1D binary
within a slice of width 2n,r. In order to determine the average searches tofeiciently find points inside the region defined by
number of points that lie in the slice, we complENs]. We two parallel planes. First, we assume that the set of poiets w

5 ‘/ﬁh COO““““K s. with dimensionality, which is a desirable property.
/ With the modified approach for accelerating the NN chain
X; — 3 [| M : . :
Xo — m B o construction, and thefiécient data structured detailed, we are
2 X3 — 2 B O able to speed up the RNN clustering. Algorithm 2 summarizes
5 Xg @ 8 o the resulting procedure.
SX5 H @ mo
S
8 %] o % Algorithm 2 fast-RNN
(M, SCA MasK « initializeDatasS tructuréV);
Xp — o [] @ C = 0; last « 0; lastsinj0] « 0; //C contains a list of
M SCA Mask clusters

L[last] « v e V; //Start chairL with a random vectov
R « V\v; //All remaining points are kept iR

Figure 5: Data structures of fast-RNN. A sli€g is built using theS CA Note .
whileR # 0 do

that only 2 binary searches are needed.

are dealing with is dynamic. For this reason, the data siract
needs to be updated whenever the set changes.
Consideringd the dimensionality of data, only coordinajte
(0 < j < d)isstored as a 1D array. This is called the Sorted Co-
ordinate Array § CA. In other words, we construct only one
slice, which is perpendicular to thi¢h coordinate axis. Let us
assume that our objective is to find the NN, in aSef n points,
of a given point;, with coordinates; = (X, ..., X, - ., i)'
In order to construct the candidate lisffieiently, we must
search for those points that lie between two parallel plpees
pendicular to theith coordinate axis, centered ®f and sep-
arated by a distancec?i.e. our aim is to identify the points
with jth coordinates in th& CAwithin the limits x;, — € and
X, + €. TheS CAis sorted in order to build the candidate list of
points with just two binary searches (each binary searchahas
complexity ofO(logn) in the worst case).

(Se. S, < createSlice@R ¢, L, lastsim M, SCA Mask);
(s sim) < getNearestNeighborInS lic@glast], R, S, Sq,.,);
if sim> lastsinjlast] then
last « last + 1; L[lasf]
lastsinjlast] « sim
(M, SCA MasK « eraseElemeifs, M, S CA Mask);
else {//A RNN pair was foungl
if lastsinflast] > thresthen
s « agglomeratél_[last], L[last— 1]); R — RU {s};
last « last—2;
(M,SCA MasK —
insertElemer(s, M, S CA MaskK);
else {//Discard the current chajn
C«Cul;last—-1;L=0;
end if
end if
if last< Othen
last «— last+ 1;L[lasf] <« ve R R« R\v

«— s R « R\{s;

end if
end while

Figure 5 shows the data structure introduced. In owrC
implementation, the set of poin& is built as alist of vec-
tors, where dficient insertions and deletions of elements can
take place anywhere in thist. In order to map a coordinate in
the S CAto its corresponding point in the set of poir8s we
maintain an array of iterators where each element points to
its corresponding vector in thest S. We maintain a 1D ar- In this section we present an experimental comparison be-
ray Maskof boolean elements to deal with the insertions andween the RNN and the fast-RNN clustering algorithms. We
deletions of points. Every element acts as a mask, indgatinhave used two groups of datasets. On the one hantl, 10
whether its position has been deletéalgg) or not true). When SIFT [4], PCA-SIFT [12] and SURF [11] descriptors have
deleting an element, we first mark its maskdtse and thenwe been extracted from random images in the dataset ICARO [13].
delete the element from the IiSt When a new vector has to be While SIFT descriptors have 128 dimensions, we have ex-
inserted, we firstinsert it in the li§, then with a binary search tracted PCA-SIFT vectors of dimensionality 36, and SURF de-
we determine the corresponding position of jiis coordinate scriptor of 128, 64, 36 and 16 dimensions. On the other hand,
in theS CA and finally, we updat& C AandMask we have generated 1 set of, ®00 3D vectors from the normal

Note thatS CAdoes not grow when we insert elements in distribution. With these sets of vectors we can show how the
S. Each insertion is associated with an agglomeration of twdast-RNN performs in both low- and high-dimensional spaces
vectors that have been extracted beforehand. When an élemenWe measure the performance of an algoritAras the num-
is inserted, there are at least two elements inSl@Amarked ber of distance calculationdcy required. We define the
as deleted, and the algorithm simply upd&t€Aby moving speeduS = dcrnn/dCastran. However, fast-RNN may in-
the elements within the array. cur overhead to build and update its data structure. Thexefo

The data structure described is easy and fast to build amde also define the time speed8p= trnn/trast.ran, Wherety
maintain. The time complexity for its building is on averageis the time required by algorithrA. For the experiments, we
O(nlogn), with n being the number of vectors. When elementsrepeat the measurements 10 times.
are deleted or inserted, the data structure is updated at a lo Measuring the speedup. Table 1 shows the results obtained
cost. Furthermore, the size of the data structure does nwet gr as a function oh, the number of vector to quantize. Results

4

3. Experimental Evaluation

Table 1: Fast-RNN vs. RNNs andS; for different datasets.

—@— PCA-SIFT]
e SIFT

—8— SURF

Clustering S S

Dataset t € n=100 n=1000 n=10,000 n=100 n=1000 n=10000
SIFT 09 005 1.46 1.61 1.67 1.61 1.77 1.71
SURF-16 06 005 271 3.98 4.12 2 3.67 3.91
SURF-36 6 005 2.64 2.68 3.03 2.23 2.66 2.96
SURF-64 06 005 1.83 1.99 2.09 1.74 2 2.02
SURF-128 ® 005 1.58 1.71 1.85 1.54 1.72 1.86
PCA-SIFT 06 01 2.34 3.13 4.24 2.20 3.78 4.71

n=100 n=1000 n=50000 n=100 n=1,000 n=50000
NORM-3 04 01 2.96 3.15 4.15 1.95 3.41 5.91 oo 0o 003 o0i 005 o0 007 o0 008

epsilon

Figure 6: Speedup as a function eofor PCA-SIFT, SIFT and SURF descrip-

show that the number of distance calculations always deesea tors

when using the fast-RNN algorithrne. Sis always> 1. Fur-

thermore, observing;, we can conclude that the fast-RNN

approach is always faster than the RNN. It is also true tha@lso have developed a novel data structure that improves the
the speeduis increases witm. When the dataset is small, performance with both low- and high-dimensional data. Re-

e.g. n = 100, the @iciency of the NN search algorithm via sults show that the fast-RNN is faster than the standard RNN.
slicing is comparable to a simple linear search. This is due tIt is worth to mention that the solutions obtained by both

the fact that the fast-RNN requires to create and updatesxan auclustering algorithms are identical. Finally, with the aoh

iliary data structure, therefore the speedup over a linearch

making our research reproducible, we release+a @Gnple-

decreases when the dataset size drops. Furthermore, wiEn Simentation of the fast-RNN clustering, which can be down-
or SURF-128 descriptors are used, the speedup does not dgaded fromhttp://agamenon.tsc.uah.es/Personales/
ceed 2, and this is due to the following factors: the value ofrlopez/data/fastrnn.

e chosen and the high-dimensionality of the vectors. SIFT and

SURF-128 vectors are concentrated (recall Equation (&jicé Acknowledgements

a lower value fore is needed to considerably reduce the num-
ber of distance calculations, as it is shown in the follonseg-

This work was partially supported by projects TIN2010-

tion. Table 1 also shows the excellent performance of the fas20845-C03-03 and CCG10-UAMIC-5965.

RNN clustering when quantizing low-dimensional vectoes(s
results for the NORM-3 dataset).

Determining the best e. The speedup of the proposed al-
gorithm depends critically oa, specially for high-dimensional
data €.9.SIFT and SURF-128 descriptors). In the fast-RNN

(1]

algorithm, the computationatticiency is achieved by limiting [2]
the search to a small slice of tdedimensional space. However, [3]
in high-dimensional spaces the distances are concentietées

[4]

concentration is problematic when building the slice oéz
an inadequatecan include almost all the points inside the slice, 5]
thereby not reducing the NN search time. In Figure 6, we show

S for PCA-SIFT, SIFT and SURF descriptors varyiagrom (6]
0.001 to 0.1. For PCA-SIFT descriptoiS,does not depend 7]
on € within the interval [0001,0.1], i.e. the PCA-SIFT coor-
dinates are not concentrated within this interval. Howgfaer

SIFT and SURF-128 descriptors, we obtain tBat- 2 when (8]
€ < 0.02 ande < 0.04, respectively. SIFT and SURF descrip-
tors, of dimensionality 128, require lower valueseah order 9]

to accelerate the NN chain construction within the fast-RNN
clustering. (10]

. [11]
4. Conclusion

(12]
This paper details the implementation of the fast-RNN clus-
tering algorithm. To the best of our knowledge, this is thel™!
first approach for accelerating the RNN clustering algaomith
via the dficient dynamic space partitioning presented. We

5

References

S. Baek, K. Bae, M. Sung, A fast vector quantization eregalgorithm
using multiple projection axes, Signal Processing 75 (189992.

C.-H. Lee, L.-H. Chen, High-speed closest codeword ceatgorithms
for vector quantization, Signal Processing 43 (1995) 323% 3

G. Csurka, C. R. Dance, L. Fan, J. Willamowski, C. Braysul catego-
rization with bags of keypoints, in: ECCV, 2004.

D. G. Lowe, Distinctive image features from scale-ingat keypoints,
IJCV 60 (2) (2004) 91-110.

D. Nister, H. Stewenius, Scalable recognition with aatmglary tree, in:
CVPR, 2006, pp. 2161-2168.

B. Leibe, K. Mikolajczyk, B. Schiele, Hcient clustering and matching
for object class recognition, in: BMVC, 2006.

C. de Rham, La classification hiérarchique ascendaglttnda méthode
des voisins réciproques, Cahiers de I'Analyse des Dangg®) (1980)
135-144.

J. Benzécri, Construction d’une classification aseee hiérarchique par
la recherche en chaine des voisins réciproques, Cahadra\dalyse des
Données 2 (7) (1982) 209-218.

S. A. Nene, S. K. Nayar, A simple algorithm for nearestghdior search
in high dimensions, IEEE TPAMI 19 (9) (1997) 989-1003.

K. S. Beyer, J. Goldstein, R. Ramakrishnan, U. ShafteWls "nearest
neighbor” meaningful?, in: Proceedings of the 7th Intéomatl Confer-
ence on Database Theory, 1999.

H. Bay, T. Tuytelaars, L. Van Gool, Surf: Speeded up silfeatures, in:
ECCYV, Vol. 3951, 2006, pp. 404-417.

Y. Ke, R. Sukthankar, PCA-SIFT: A more distinctive repentation for
local image descriptors, in: CVPR, 2004.

R. J. Lopez-Sastre, C. Redondo-Cabrera, P. Gil-dengS. Maldonado-
Bascon, ICARO: Image Collection of Annotated Real-worldb-O
jects, http://agamenon.tsc.uah.es/Personales/rlopez/data/
icaro (2010).

