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Abstract—Most recent category-level object and activity recog-
nition systems work with visual words, i.e. vector-quantized
local descriptors. These visual vocabularies are usually built
by using a local feature, such as SIFT, and a single clustering
algorithm, such as K-means. However, very different clusterings
algorithms are at our disposal, each of them discovering different
structures in the data. In this paper, we explore how to combine
these heterogeneous codebooks and introduce a novel approach
for their integration via consensus clustering. Considering each
visual vocabulary as one modal, we propose the Visual Word
Aggregation (VWA) methodology, to learn a common codebook,
where: the stability of the visual vocabulary construction process
is increased, the size of the codebook is determined in an un-
supervised integration, and more discriminative representations
are obtained. With the aim of obtaining contextual visual words,
we also incorporate the spatial neighboring relation between the
local descriptors into the VWA process: the Contextual-VWA
(C-VWA) approach. We integrate over-segmentation algorithms
and spatial grids into the aggregation process to obtain a visual
vocabulary that narrows the semantic gap between visual words
and visual concepts. We show how the proposed codebooks
perform in recognizing objects and scenes on very challenging
datasets. Compared with unimodal visual codebook construction
approaches, our multi-modal approach always achieves superior
performances.

Index Terms—consensus clustering, clustering aggregation,
visual words, object recognition, scene recognition

I. INTRODUCTION

THE Bag-of-Words (BoW) [1], [2] is a popular strategy
for representing images within the context of image

categorization (e.g. [3], [4], [5]) and activity recognition (e.g.
[6], [7]). The essential idea behind this type of representation is
to characterize an image by the histogram of its visual words,
i.e. vector-quantized local features (see Figure 1). Popular
candidates for these local features are local descriptors [8],
such as SIFT [9] or SURF [10], that can be extracted at specific
interest points (e.g. [1]), densely sampled over the image (e.g.
[11]), or via a hybrid scheme called dense interest points [12].

The local descriptors have to be quantized, and there are
very different clustering methods that can be used. K-means
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Fig. 1. BoW approach overview. It starts with the extraction of local
features followed by a robust description of the features, e.g. using SIFT [9].
The following step consists in vector quantizing the high dimensional space
of local image descriptors so as to obtain a visual vocabulary. A BoW
representation is then built as a histogram of visual word occurrences.

or variants thereof, such as approximate K-means [13], and
mean-shift based approaches (e.g. [11]) are currently the most
common.

Subsequently, each local feature in an image is mapped
to a cluster so as to represent any image as a histogram
over the clusters. This BoW representation has been shown to
characterize the images and objects within them in a robust yet
descriptive manner, in spite of the fact that it ignores the spatial
configuration between visual words. Moreover, this approach
has inspired a lot of research efforts (obtaining impressive
results, e.g. [5], [14]), being the basic recipe for most of the
methods submitted to the PASCAL VOC Challenge [15].

These visual vocabularies are usually constructed by using
a single clustering algorithm (normally K-means). Because
different clustering algorithms (or even the same clustering
but with a random initialization) discover different structures
in data, it is true that one particular quantization approach
shall obtain a better solution than the others. If we were
able to integrate different clustering algorithms, we could
build a generally more robust and more discriminative visual
codebook. How to combine clustering solutions is becoming
a challenging problem nowadays. The consensus clustering
solution has been recently proposed [16], [17]. It is defined as
the optimization problem where, given a set of m clusterings,
the objective is to find the clustering that minimizes the total
number of disagreements with the m input clusterings. In
other words, consensus clustering can be considered as a
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Fig. 2. VWA approach overview. The final codebook is obtained as the output
of the consensus clustering approach, where we combine m heterogeneous
visual codebooks {C1, . . . , Cm} obtained from the local features. A BoW is
finally built as a histogram of visual word occurrences of the final codebook.

metaclustering method to improve stability and robustness of
clustering by combining the results of many clusterers.

In this paper, we propose a novel approach to combine
heterogeneous visual codebooks via consensus clustering. We
introduce a multi-modal approach (considering each visual
vocabulary as one modal), the Visual Word Aggregation
(VWA), which: increases the stability of the visual vocabulary
construction process, automatically determines the codebook
size, and obtains more discriminative solutions.

Although such ideas appear to be quite exciting, there is still
a main challenge that need to be overcome. Since the clus-
tering is unsupervised, such a representation does not group
semantically meaningful object parts (e.g. wheels or eyes).
That is, visual words tend to be much more ambiguous than
texts. In practice, if the data set is sufficiently coherent (e.g.
images of only one particular class), only a reduced number
of visual words actually represent semantic object parts [18].
Moreover, when an unsupervised quantization is applied to
a more diverse data set, synonyms and polysemies are the
norm rather than the exception [18]. Typically, the spatial
context of the local features is lost during the visual vocabulary
construction, i.e. the clustering algorithms ignore the semantic
relationship between local features that normally co-occur.
There are some exceptions that model the spatial and semantic
cues of the local patches (e.g. [3], [19], [20]), but ours is the
first that proposes to use a consensus clustering methodology.
So, with the aim of obtaining contextual visual words, we
also incorporate the spatial neighboring relation between the
local descriptors into the VWA process: the Contextual-VWA
(C-VWA) approach. In short, our approach consists of the
following steps. We first quantize the local descriptors follow-
ing traditional clustering algorithms. Additionally, we integrate
codebooks obtained with over-segmentation algorithms and
spatial grids into the aggregation process to group neighboring
local patches. By considering each local group as a new
cluster, we are able to incorporate these quantizations to the
input of the consensus clustering approach as new clustering
solutions that encode contextual information.

Via our new heterogeneous visual codebook integration

approaches, we can always achieve a superior image classi-
fication performance than the performance of traditional BoW
approaches that just use a single clustering algorithm.

The rest of this paper is organized as follows. Section
II contains a review of the related work. In Section III,
we briefly review the consensus clustering theory. Section
IV gives a detailed description of the novel approaches we
propose to adapt the clustering aggregation techniques to the
visual vocabulary construction process. Experiments in image
categorization and scene recognition are described in Section
V, and Section VI concludes the paper.

II. RELATED WORK

Traditionally, following a BoW approach consists of ex-
tracting local descriptors and applying a K-means clustering
for the vocabulary construction. That is, single-feature and
single-clustering based approaches. These vector-quantized
local features have been referred to as ‘object parts’ [21],
‘visual words’ [2] or ‘codebooks’ [22].

This visual codebook construction step is critical within a
BoW scheme. It has significant impact on recognition accu-
racy, training and test efficiency, and system complexity. In
the literature, many codebook generation methods have been
proposed, mainly including clustering-based methods [2], [1],
mean-shift [11], latent space models [18], [23], information
theoretic approaches [24], randomized trees [25], and the
recently developed sparse coding methodology [26].

Within the context of vector quantization based approaches,
we identify two main problems. On the one hand, the visual
codebooks are obtained in an unsupervised way, which ignores
the semantic and spatial context between local features during
the grouping. On the other hand, there exist the limitations of
the clustering algorithms themselves. In general, data cluster-
ing usually has associated the stability problem: it is not possi-
ble to use cross validation for tuning the clustering parameters
because of the absence of ground truth; the dependence on the
initialization is a common problem for most of the iterative
methods; the objectives pursued by each clustering algorithm
are different and different structures in data may be discovered.

Different attempts have been made to overcome the first
problem. First, there are several works based on frequent
itemset mining [27], [28], [19]. Typically, finding representa-
tive visual words boils down to finding frequent co-occurring
groups of descriptors in a transaction database obtained from
the training images. In [29] Leibe et al. presented how to
learn semantic object parts for object categorization. They use
what they call co-location and co-activation to learn a visual
vocabulary that generalizes beyond the appearance of single
objects, and often obtains semantic object parts. In [30], Wang
et al. propose a novel regularized K-means clustering for
discovering the spatial co-occurrence of local features, and the
feature co-occurrence patterns of different features types. Such
co-occurrence patterns can be used to handle the ambiguities
of visual primitives.

There are also supervised approaches that use image anno-
tation to guide the semantic visual vocabulary construction
(e.g. [25], [31], [32]). Specifically, Moosmann et al. [25]
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utilize extremely randomized clustering forest to organize the
vocabulary. The discriminative power of the vocabulary is
increased by incorporating image class labels to guide the tree
construction. In image classification tasks, this representation
provides more accurate results than the conventional K-means
based BoW. In [31] mutual information is used between the
features and class labels to create the semantic vocabulary
from an initial and relatively larger vocabulary quantized by
the K-means algorithm. Yang et al. [32] unify the vocabulary
construction with classifier training. Other interesting works
use: diffusion maps to learn a semantic visual vocabulary from
abundant quantized mid-level features using K-means [33];
semantic-aware distance metric learning to efficiently cluster
the local patches [20]; a method for capturing the spatial
contextual information between visual words by counting the
occurrence of meaningful visual word pairs [3]; or the well
known spatial pyramid matching kernel [34] which considers
the spatial layout relation of local features by partitioning an
image into increasingly fine grids and computing the BoW
inside each grid cell.

The second problem, i.e. the limitations of the clustering
algorithms themselves, has not been fully studied in the
context of visual word generation. K-means has become de
facto standard. However, it has well known limitations: its
output depends on the initialization as the procedure only
undertakes the search of a local optimum, the number of
clusters must be specified by hand, and it is computationally
expensive for big values of K. Other approaches propose to
use efficient hierarchical clustering schemes [35] or mean-shift
based algorithms [11].

Recently, the use of sparse coding instead of traditional
vector quantization algorithms has been proposed too. These
approaches are naturally derived by relaxing the restrictive
cardinality of vector quantization, i.e. vectors with membership
in multiple clusters. Then, any image characterized by a set
of descriptors, can be represented by computing a single
feature vector based on some statistics of the codes of the
descriptors. In [26] a spatial pyramid image representation
[34] based on sparse codes of local features is proposed.
Furthermore, in [36], Wang et al. present a novel coding
scheme called Locality-constrained Linear Coding (LLC) in
place of the traditional vector quantization coding, which
can work with linear classifiers, performing better than the
traditional nonlinear approaches [34]. Compared with the
sparse coding strategies [26], the objective function used by
LLC has an analytical solution. In contrast to clustering based
approaches (like ours), in the sparse coding schemes it is
computationally challenging to learn a set of highly over-
complete dictionary bases and to encode the test data with the
learned bases, although some efficient techniques have been
recently proposed (e.g. [37]). In Section V-B3, we offer a direct
comparison of our models with some of the described sparse
coding approaches, as well as with state-of-the-art methods.

Our approach significantly differs from the previous revised
works. In this paper, we start proposing the VWA approach
in order to overcome the second problem. We explore how
the consensus clustering algorithms [17] can be efficiently
used for building visual vocabularies from large-scale data

sets of high dimensional local descriptors. A preliminary
version of this approach was described in [38]. Although
multiple vocabularies are also used in [39], the work of Aly
et al. [39] differs considerably from our approach. First, the
dictionaries are generated independently, and no consensus
clustering techniques are applied for building the final code-
book. Second, the final histogram for characterizing an image
is the concatenation of the individual histograms obtained from
each codebook. As an alternative approach, they propose to
build a unified dictionary from the concatenation of the visual
words from all the independent dictionaries.

Moreover, in order to overcome the first problem, we also
present the novel C-VWA approach, where we incorporate into
the vocabulary construction process the spatial neighboring
relation between the local descriptors. This information is
captured using over-segmentation algorithms and spatial grids,
and is integrated in a heterogeneous consensus clustering
pipeline to obtain a more discriminative visual vocabulary that
narrows the semantic gap between visual words and visual
concepts.

III. BACKGROUND: CONSENSUS CLUSTERING

The problem of consensus clustering has been considered
under a variety of names: clustering aggregation, clustering
combination and cluster ensembles. Many approaches have
been proposed, e.g. the information theoretic method [17], the
graph cut method [40] and the Bayesian method [41].

Consensus clustering is defined as the optimization problem
where, given a set of m clusterings, {C1, C2, . . . , Cm}, the
objective is to find the clustering C∗ that minimizes the total
number of disagreements with the m clusterings. So, consen-
sus clustering can be considered as a metaclustering method
to improve stability and robustness of clustering by combining
the results of many clusterings. Moreover, it can determine the
appropriate number of clusters while detecting outliers. A toy
example to illustrate how the clustering aggregation works is
depicted in Figure 3.

Consider a set of n objects V = {v1, . . . ,vn}. A clus-
tering Ci of V is a partition of V into ki disjoint sets
{S1, S2, . . . , Ski

}, i.e.
⋃ki

i Si = V and Si ∩ Sj = ∅ for all
i 6= j. The clusters of Ci are the ki sets {S1, S2, . . . , Ski

}.
For each vj ∈ V , j = 1, . . . , n, we use Ci(vj) to denote
the label of the cluster to which the object vj belongs to, i.e.
C(vj) = l if and only if vj ∈ Sl.

For this paper, we follow the approach of Gionis et al.
[16], which is based on correlation clustering techniques [42].
We are given a set of m clusterings {C1, C2, . . . , Cm}. Our
objective is to obtain a single clustering C∗ that agrees as
much as possible with the m input clusterings. It is possible
to define a distance d(vi,vj) between two vectors vi and vj

as the fraction of the m clusterings that place vi and vj in
different clusters. Our objective is to find a clustering C∗ that
minimizes the function

d(C∗) =
∑

C∗(vi)=C∗(vj)

d(vi,vj)+
∑

C∗(vi)6=C∗(vj)

(1−d(vi,vj)) .

(1)
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Fig. 3. Toy example. (a)-(c) are 3 different clusterings {C1, C2, C3} over a
data set of 2D points. (d) depicts the result of the clustering aggregation
algorithm, the clustering C∗. Note that the solution C∗ improves the
clustering robustness and finds the 3 clusters in the data set. We have used
different colors to identify different clusters.

For a candidate solution C∗, if C∗ places vi and vj in
the same cluster, it will disagree with m × d(vi,vj) of the
original clusterings, whilst if C∗ places vi and vj in different
clusters, it will disagree with the remaining m×(1−d(vi,vj))
clusterings.

Several approaches are proposed in [16] to solve this
optimization problem. For the particular problem of building
visual codebooks, i.e. high dimensional vector quantization
in large scale sets, we have adapted the the Balls and the
Agglomerative (Agg) approaches [16]. Both algorithms take as
input a complete graph with all the distances between vectors.
The Balls algorithm tries to find groups of nodes that are
within a ball of fixed radius and far from other nodes. Once
such a set is found, the algorithm considers it a new cluster
and proceeds with the rest. The Agg is a bottom-up algorithm
which starts with every node in a cluster. It merges two vertices
if the average distance between them is less than a fixed value.
In Section IV we describe the novel strategies designed so as
to efficiently build visual codebooks from large-scale data set
of high dimensional local descriptors.

IV. HETEROGENEOUS VISUAL CODEBOOK INTEGRATION
VIA CONSENSUS CLUSTERING

A. The Visual Word Aggregation

Our aim is to design a novel approach for combining
heterogeneous visual codebooks via consensus clustering: the
Visual Word Aggregation (VWA). This new strategy has a
threefold objective: to increase the stability of the visual
vocabulary construction process, to automatically determine
the codebook size, and to obtain more discriminative solutions.

Before we go into the details of our approach, some
frequently used notations will be introduced. In a BoW frame-
work, a number of local descriptors vij , j = 1 . . .mi are
extracted in each image Ii, i = 1 . . . n. Being V the set of

all the local descriptors extracted, a visual vocabulary W is
obtained via vector quantizing the local descriptors in V ,

W = VQ(V,p) , (2)

where p is a vector containing the specific parameters for the
vector quantization algorithm VQ, and W = {w1, . . . ,wK}
is the visual vocabulary obtained of size K. That is, each wk

is the centroid of one of the K clusters discovered in the data.
Once W has been obtained, a BoW approach describes each
image Ii by a frequency distribution over the visual words
in W . For each word wk in the vocabulary W , the BoW
estimates the distribution of visual words in the image Ii by

h(wk|Ii) =
1

mi

mi∑
j=1

{
1 if wk = argmin

w∈W
(D(w,vij))

0 otherwise ,
(3)

where D(w,vij) is the distance between a codeword w and
local feature vij . Finally, the image Ii is represented by the
histogram of word frequencies,

H(Ii,W ) = [h(w1|Ii), . . . , h(wK |Ii)] . (4)

In the VWA approach, we propose to build a visual vocabu-
lary W ∗ via consensus clustering, combining m heterogeneous
visual codebooks {W1, . . . ,Wm}. We abbreviate the optimiza-
tion problem of consensus clustering described in Section III,
as follows. Given a set of of m codebooks {W1, . . . ,Wm}, the
consensus clustering approach CC finds the visual codebook
W ∗ that minimizes the total number of disagreements with
the m clusterings,

W ∗ = CC(W1, . . . ,Wm) . (5)

Note that the output of the consensus clustering algorithm,
i.e. W ∗, specifies the centroids that define the clustering of
the data. Figure 2 shows the major steps of our proposal. In
a first step, images are represented by using local features
(e.g. SIFT [9]). Then, the vector quantization processes start.
We define m as the number of clustering algorithms that are
executed. The VWA can reconcile clustering information about
the same data set coming from different clustering algorithms
and/or from different runs of the same algorithm. We will
explore all these combinations in the experiments section.
Once the clustering aggregation has finished, each image Ii
can be represented using a BoW approach with the novel
codebook W ∗, i.e. computing the histogram of the new visual
words H(Ii,W

∗).
However, a direct application of consensus clustering algo-

rithms is not feasible. When working with visual codebooks,
typically, we have to deal with large sets of high dimensional
vectors. For instance, if SIFT descriptors are used, each visual
vocabulary has to organize the local descriptors in a 128
dimensional space. Furthermore, hundreds of descriptors are
extracted from each image, and normally the size of the
codebooks used is high too. In this scenario, a standard
clustering aggregation algorithm becomes inapplicable: the
quadratic complexity is inherit in the correlation clustering
problem since a complete graph (with the distance matrix) is
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the input to the problem. Some sampling strategies have been
introduced to overcome this problem [16]. In a preprocessing
step, the algorithm samples a set of nodes uniformly at random
from the data set. The sampled set is the input for the
clustering aggregation algorithm. In the post-processing step,
the algorithm goes through the nodes not in the set and decides
whether to place it on one of the existing clusters or to create
a singleton. Nonetheless, we observed experimentally that the
time complexity of this approach is high within our context,
i.e. when both the number of clusters and the dimensionality
of vectors are high.

In order to reduce the run-time of the visual vocabulary
construction, we design a double sampling strategy. Let V
be the set of local descriptors extracted from all the images,
defined as V = {v11, . . . ,v1m1

, . . . ,vn1, . . . ,vnmn
}. Let p

be the size of the set V . We start with a uniform and random
sampling R ⊂ V of size r = βp, where β ∈ [0, 1] is the
sampling factor. The set R is sampled again, with a factor β
to obtain the subset S ⊂ R. Only the set S is given as input to
the clustering aggregation algorithm which builds a clustering
W ∗ = {w1, . . . ,wK}. Note that with this double sampling
scheme, the post-processing step of [16] only needs to evaluate
the elements in R and not in S, which significantly reduces
the run-time of the original approach. Finally, we inspect the
vectors in V and not in R and assign them to the nearest
centroid. Using this double sampling strategy we can handle
large data sets letting VWA converge into a final codebook.

Such a sampling strategy does not jeopardize the object
recognition performance of the vocabulary obtained. The vi-
sual codebooks are obtained from local descriptors in high
dimensional spaces. If these high dimensional descriptors
have been densely extracted, then there do not exist separate
clusters in the data [43]. Furthermore, the norms used in
any vector quantization algorithm, e.g. the euclidean norm,
tend to concentrate with high dimensional vectors [44]. As a
consequence, all pairwise distances in a high-dimensional data
set seem to be equal or at least very similar. So, a uniform
sampling of the data, will be able to describe the distribution
in the feature space. Furthermore, we have experimentally
observed that a reduction in the number of vectors (like the
proposed with this double sampling strategy) used for building
the vocabulary, does not significantly affect the quality of the
final codebook obtained. Obviously, we have observed that
the sampling factor influences the results obtained. We found
that an adequate sampling factor should be greater than 0.5. A
thorough evaluation of the influence of this sampling factor on
the performance with quantitative results is detailed in Section
V-A.

Our experiments reveal that the VWA increases the stability
of the visual vocabulary construction process and the perfor-
mance in image categorization. Furthermore, it can combine
the properties from different clustering algorithms, which is
something desirable in such high dimensional spaces where
the local descriptors reside.

B. Incorporating contextual information
Contextual information plays a fundamental role to rec-

ognize visual categories from their appearance (e.g. [34],

Fig. 4. Using regular grids to add spatial information to the vocabulary
construction process. Note that a grid of size r×c defines a codebook of size
r × c.

[3]). Via consensus clustering, we propose the Contextual-
VWA (C-VWA) to incorporate the spatial coherency among
the local descriptors into the visual vocabulary construction.
In the VWA, described in Section IV-A, we used as inputs
for the consensus clustering process a set of codebooks that
organize the local descriptors in a high dimensional space,
i.e. in the descriptor space. Because the norms used by the
vector quantization algorithms tend to concentrate in high
dimensional spaces [44], any clustering algorithm which just
uses this similarity measure will be limited. Our purpose is
then to incorporate the contextual information in the image
to guide the quantization algorithm to find a more semantic
and discriminative solution. For doing so, we proceed to group
neighboring local features in the image space. By considering
each local group as a new cluster, we are able to incorporate
these quantizations into the input of the consensus clustering
approach as clusterings that encode the contextual information.

Two approaches have been designed: using spatial grids and
over-segmentation algorithms.

1) Via Spatial Grids: This first approach starts with a
dense sampling of image patches. We proceed with the local
descriptors as it was described in Section IV-A, i.e. obtaining
a set of visual codebooks {W c

1 , . . . ,W
c
m} using traditional

clustering algorithms. See Figure 4 upper box. The next step
consists in quantizing the same local features but in the image
domain. We project a grid over all the images in the database
(all the images in the database have been previously scaled
to the same size). Each cell of the grid can be considered a
spatial cluster. So, a grid of r × c cells defines a clustering
of size r × c, i.e. the size of the codebook is r × c, where
the local features are quantized. Furthermore, it is possible
to use grids of either random or fixed cell sizes. Within
this context, we assign to each feature the label of the cell
where it falls. If g different grids are used, we obtain a
set of g different spatial clusterings {W s

1 , . . . ,W
s
g }. We use

the consensus clustering process to obtain the final codebook
W ∗ = CC(W c

1 , . . . ,W
c
m,W

s
1 , . . . ,W

s
g ). Figure 4 depicts the

whole process.
2) Via Over-segmentation: Unfortunately, the spatial grids

do not often capture image regions of homogeneous appear-
ances, so the local features are not in clusters with semantic
coherency. In order to address this issue, we perform an
over-segmentation of an image by partitioning it into mul-
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(a) original image (b) over-segmented image

Fig. 5. Image over-segmented using [45]. Note that over-segmented regions
can group local features which belong to semantic object parts.

Fig. 6. Using over-segmentation for adding spatial information to the
vocabulary construction process.

tiple homogeneous regions. Our approach searches for over-
segmented regions that can group local features which belong
to semantic object parts. For the experiments, we use the
segmentation algorithm described in [45]. Figure 5 shows
one example of the over-segmentation process. Note that our
method is not tied to a specific segmentation algorithm. We let
the segmentation discover semantically meaningful segments.
The local features are quantized by these segments, i.e. two
features in the same segment receive the same label, and the
corresponding clusterings are incorporated as inputs in the
clustering aggregation algorithm.

As in the approach of Section IV-B1, the first step is to
compute the set of visual codebooks {W c

1 , . . . ,W
c
m} using

traditional clustering algorithms. The second step implies to
over-segment the images to establish regions of neighboring
appearances. Each segmented region can be considered a
spatial cluster, and a different label is assigned to each of
them. We assign to each local descriptor the label of the
segment where it falls. If s different over-segmentations are
processed (using different parameters), we obtain a set of
s different spatial clusterings {W o

1 , . . . ,W
o
s }. Then, we use

the consensus clustering process to obtain the final codebook
W ∗ = CC(W c

1 , . . . ,W
c
m,W

o
1 , . . . ,W

o
s ). Figure 6 depicts the

whole process.

A mixture approach is also viable. With the formulation
introduced, we can combine into the same consensus clustering
approach both the spatial grid codebooks and the visual vocab-
ularies obtained with the over-segmentation. The final code-
book obtained with such a mixture approach is then obtained
as W ∗ = CC(W c

1 , . . . ,W
c
m,W

s
1 , . . . ,W

s
g ,W

o
1 , . . . ,W

o
s ).

V. RESULTS

A. Experimental Setup

Our aim is to evaluate the performance of the proposed
approaches within two contexts: visual categorization and
scene recognition. For the former, we use the PASCAL VOC
Challenge 2007 database [46]. We emphasize that this chal-
lenge is widely acknowledged as a difficult testbed for both
object detection and image categorization. The dataset contains
9, 963 annotated images, with the number of annotated objects
being 24, 640. In the experiments we select the trainval and
test sets for training and testing the classifier respectively. For
further details we refer to [46], [15].

We also evaluate our approaches on the scene recognition
problem. We use the New York University Depth video data
set (NYU-Depth) [47]. It is a new and challenging indoor
video scene dataset, which is comprised of video sequences
from a variety of indoor scenes as recorded by both the RGB
and Depth cameras from the Microsoft Kinect. For the scene
classification benchmark, the dataset offers 20, 000 images
(10, 000 for training and testing) distributed across 5 different
scene-level classes: bathroom, bedroom, kitchen, living room
and office. In our experiments, we simply use the RGB images
provided in the NYU-Depth.

For image representation, in both datasets, we use SIFT [9]
descriptors of 16×16 pixel patches computed over a grid with
spacing of 8 pixels. When using the PASCAL VOC 2007, we
force the images to be not bigger than 375× 500.

We perform the clustering algorithms of a random subset
of features from the training set to form the visual codebooks.
With these descriptors we obtain all the different codebooks
that will be subsequently combined via consensus clustering.
As described in Section IV, there are very different clustering
methods than can be used. K-means is a popular algorithm
for its simplicity. Unfortunately, centroids tend towards denser
regions, with the result that they tend to be tightly clustered
near dense regions and sparsely spread in sparse ones. Mean
shift based approaches (e.g. the J&T, proposed by Jurie and
Triggs [11]) can be used to overcome some of the limitations
of K-means. So, for the experiments, we use both K-means
and the J&T.

As it was detailed in Section IV, we have integrated our
novel double sampling methodology with the Balls (with
α = 0.25) and the Agg consensus clustering algorithms
detailed in [16]. Typical values of the sampling factor β for
our experiments are β = 0.25, β = 0.33 or β = 0.5.

Support Vector Machines (SVMs) are used for classification.
We experiment with the Histogram Intersection Kernel (HIK)
which has shown good results in visual categorization. The
HIK applied to two-feature vectors x and x′ of dimension d
is defined as k(x,x′) =

∑d
i=1 min(x(i),x′(i)). Specifically,

we use libSVM [48]. A 10-fold cross-validation on the training
sets to tune SVM parameters is conducted.

For image classification, we follow the evaluation procedure
proposed by the PASCAL VOC Challenge [46] using the Mean
Average Precision (MAP), which is computed by taking the
mean of the average precisions for the 20 classes for each
method. For the scene recognition problem, we follow the
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TABLE I
CODEBOOKS FOR VISUAL CATEGORIZATION

Codebook description

C1 K-means (K = 200)
C2 3 K-means (K = 200) and Balls (α = 0.25) + Sampling (β = 0.5)
C3 3 K-means (K = 200) and Agg + Sampling (β = 0.33)
C4 J&T (r = 0.83, N = 3000)
C5 3 J&T (r = 0.83, N = 3000) and Balls (α = 0.25) + Sampling

(β = 0.25)
C6 J&T (r = 0.92, N = 3000)
C7 2 K-means (K = 200) + J&T (r = 0.92, N = 3000) and Balls

(α = 0.25) + Sampling (β = 0.5)
C8 J&T (r = 0.8, N = 3000) + K-means (K = 2000) and Balls

(α = 0.25) + Sampling (β = 0.5)
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C1 (0.28)

C6 (0.26)

Fig. 7. Evaluation of codebooks on image categorization with the PASCAL
VOC 2007 Challenge. Average precision per class for each method is shown.
The legend indicates the MAP obtained by the corresponding method.

experimental setup described in [47]: the Mean Diagonal of
Confusion Matrix (MDCM).

B. Results on image categorization

1) Aggregated Codebooks Performance: Before adding
contextual information to our framework, we only combine
visual codebooks, coming from different clustering algorithms,
following the VWA approach.

We evaluate the MAP in image categorization for the
codebook combinations described in Table I. Note that code-
books C1, C4 and C6 have been obtained without using the
VWA approach, i.e. using a single clustering and a traditional
BoW approach. Results per object category are shown in
Figure 7. The aggregation of one K-means and one J&T, i.e.
codebook C8, obtains the best MAP (0.38). Furthermore, all
the codebooks generated via VWA using the Balls algorithm
and our sampling approach (i.e. vocabularies C2, C5, C7 and
C8), obtain better results than when a traditional BoW is
used (C1, C4 and C6). Comparing C2 and C3 we also have
observed that the Balls algorithm performs better than the
Agg. Moreover, for the Balls algorithm, we have found that
α ≤ 0.25 leads to better results in image categorization.

We observed experimentally that the sampling factor β
directly affects to the classification performance: the best
results are obtained for β ≥ 0.5. In our VWA approach, for a

TABLE II
QUANTITATIVE ANALYSIS OF THE SAMPLING FACTOR β . MAP RESULTS.

Codebook β = 0.25 β = 0.33 β = 0.5

3 K-means and Balls (α = 0.4) 0.29 0.29 0.31

combination of three K-means codebooks, and using the Balls
algorithm, we decreased the sampling factor β from 0.5 to
0.25. The different MAP obtained are detailed in Table II. It is
interesting to observe how the performance slightly decreases
as soon as β becomes more restrictive, i.e. β < 0.5. Our results
show that β = 0.5 represents a good compromise between
recognition performance, runtime and memory footprint.

Results confirm that the VWA technique can be used to
obtain better vocabularies. Our approach also reveals that
better results are obtained when combining the properties of
different clustering types via consensus clustering. The best
result obtained, i.e. C8 (MAP of 0.38), is a combination of
K-means and J&T clustering. As expected, the characteris-
tics of each kind of clustering algorithm complement each
other during the clustering aggregation step. Some values of
the algorithm parameters have been tested, and for the C8
combination, we find that the best performance is obtained
for K = 2000 for K-means, and r = 0.83, N = 3000 for
J&T. If we decide just to use a single clustering algorithm
(e.g. K-means), the proposed pipeline automatically finds a
more discriminative vocabulary by simply combining different
executions of the same one (see how the MAP increase from
C1 to C2 when we just insert K-means codebooks in the VWA
pipeline). In conclusion: the clustering algorithm matters when
dealing with BoW systems for visual categorization.

2) Contextual Information Integration: First, we evaluate
the approach based on regular grids for incorporating contex-
tual information. We superimpose a spatial grid over all the
images and consider each cell as a cluster, i.e. a particular
grid of r × c cells defines a clustering of size r × c. For the
experiments, grids of different dimensions, from 32 × 32 to
256× 256, have been used.

By simply combining a single J&T clustering, whose MAP
is 0.26, with contextual codebooks obtained via different
regular grids, the performance in object categorization always
increases (see Table III). Similar results are obtained when
following the C-VWA with spatial grids and the rest of
analyzed clusterings. Table IV shows the most significant
results. The MAP is generally optimized when using a grid
of 256×256, i.e. the denser the grid, the higher the precision.
From now on, we select this grid size when combining it with
C1, C2, C6, C7 and C8.

Next, we evaluate the performance of our C-VWA approach
when we introduce the contextual information via the over-
segmentation approach detailed in Section IV-B2. For this
experiment, the input images are initially segmented into
semantically meaningful regions employing [45]. We have
tried with different segmentation parameter combinations (σ
and k, see [45] for further details). Table V shows the results
obtained when the C-VWA combines C1, i.e. a single K-
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TABLE III
C-VWA USING SPATIAL GRIDS IN COMBINATION WITH C6. MAP

RESULTS.

r × c c=32 c=64 c=128 c=256

r=32 0.33 0.34 0.34 0.34

r=64 0.34 0.35 0.35 0.35

r=128 0.35 0.35 0.36 0.34

r=256 0.35 0.35 0.35 0.36

TABLE IV
C-VWA USING SPATIAL GRIDS IN COMBINATION VARIOUS CLUSTERINGS.

MAP RESULTS

without grid grid=32× 32 grid=64× 64 grid=128× 128 grid=256× 256

C1 0.28 0.33 0.35 0.35 0.36

C6 0.26 0.33 0.35 0.36 0.36

C2 0.36 0.36 0.37 0.37 0.37

C7 0.34 0.37 0.37 0.37 0.37

C8 0.38 0.37 0.38 0.38 0.38

means, with a clustering obtained via the over-segmentation
process. We can observe that the C-VWA methodology always
improves the MAP of the C1 alone (0.28 – see Figure 7).
The segmentation parameters that obtain the best results are
k = 300 and σ = 0.5.

So far we have experimented with non-mixture contextual
approaches, i.e. combining a clustering with either a spa-
tial grid or an over-segmentation process. However, in this
experiment, we explore the performance of those mixtures
approaches where the contextual information is jointly incor-
porated by a spatial grid and an over-segmentation. We run all
these new experiments using the Balls consensus clustering
algorithm with α = 0.25 and a sampling factor β = 0.25.
We use spatial grids of 256× 256, and the over-segmentation
parameters are k = 300 and σ = 0.5. We evaluate the MAP
in image categorization with the combinations that obtained
the highest MAPs: C1, C2, C6, C7 and C8.

Figure 8 compares the result of the original codebook,
defined as the reference, with the results with the C-VWA
approach. Any C-VWA combination always outperforms the
results obtained by the reference codebook. This improvement
is greater when we start from a single clustering (e.g. C1 or
C6). The best results are obtained when the C-VWA is used
with C8.

TABLE V
C-VWA USING OVER-SEGMENTATION IN COMBINATION WITH CODEBOOK

C1. MAP RESULTS.

k = 300 k = 500 k = 1000 k = 1500 k = 2000 k = 2500

σ = 0 0.37 0.38 0.36 0.37 0.36 0.37

σ = 0.3 0.36 0.36 0.37 0.37 0.36 0.37

σ = 0.5 0.38 0.36 0.37 0.36 0.36 0.37

σ = 0.8 0.38 0.36 0.36 0.36 0.36 0.36

σ = 1 0.37 0.36 0.36 0.36 0.36 0.36
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Fig. 8. Evolution of the results by adding contextual information to the
reference vocabularies C6, C2, C7, C8 and C1.
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Fig. 9. Evolution of the results by adding contextual information to the
reference vocabulary C1. Average precisions per class are shown. The legend
indicates the MAP obtained by the corresponding method.

It is also interesting to observe how the C-VWA is able to
dramatically increase the MAP obtained by a simple single
clustering such as C1. We show in Figure 9 how the AP per
class evolves for the different combinations starting with the
simple C1 as the reference. Furthermore, the MAP obtained by
the C-VWA of C1+grid+seg (0.39) is only equal to the MAP
obtained by the C-VWA of the more complex combination of
clusterings C8 (see Figure 8).

Some qualitative results in visual categorization are shown
in Figure 10. Figures 10(a) and 10(b) show some ranked
images for 3 different classes when just C1 is used. These
can be compared with the same ranking when we make use of
contextual information, i.e. with the combination C1+grid+seg
, illustrated by Figures 10(c) and 10(d).

In light of the results obtained, we can confirm that the
addition of contextual information to the process of vo-
cabulary construction, for visual categorization, is always a
good practice that contributes to the stability of the final
codebook, while increases the performance, and mitigates
the dependence on the clustering parameters. Moreover, it
is important to mention that with the proposed approaches
we are able to avoid expensive cross-validation through the
optimization of vocabulary parameters. In a traditional BoW
approach, whether a particular clustering is better than another
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(a) highest ranked positive images (b) lowest ranked positive images

(c) highest ranked positive images (d) lowest ranked positive images

Fig. 10. Ranked images for the classes aeroplane, bicycle and boat of the
PASCAL VOC 2007. (a,b) show the results for the codebook C1. (c,d) show
the results for the C1+grid+seg combination.

or not must be evaluated within the context of the entire
system, i.e. by evaluating its effect on the accuracy of the
resulting classifier on a validation set. The main problem
with this approach is clear: to validate just the clustering
parameters it is necessary to go through the system’s entire
pipeline. The combinatorics involved result in an explosion
of the number of iterations needed. Instead, with the VWA
and C-VWA approaches we are able to start with a simple
initialization of clustering parameters, e.g. C1, and let the
process to automatically: determine the final clustering, and
increase the performance in visual categorization.

3) Comparison with state-of-the-art results: Our best MAP
(39%) in the PASCAL VOC 2007 has been obtained by the C-
VWA of C1+grid+seg. For the sparse coding approach in [37],
the MAP is of 59.6%. The LLC coding method in [26] and
the winner of the PASCAL VOC 2007 challenge [15], report a
MAP of 59.3% and 59.4%, respectively. We realize our results
are inferior to the winning schemes in the PASCAL VOC 2007
challenge for image categorization. However, to make fair
comparison, some noteworthy comments need to be made. The
basic recipe for the winning pipelines, using BoW descriptors,
consists in incorporating multiple features and nonlinear clas-
sifiers [15], and building more complex image representations
that include spatial configuration information [34]. In [37],
although a sparse coding based representation is proposed, a
spatial pyramid structure is also employed to encode the spatial
distribution of the features. Instead, our approach builds on a
simple and small K-means codebook, using a single feature

TABLE VI
CODEBOOKS FOR SCENE RECOGNITION

Codebook description

C1 K-means (K = 200)
C2 3 K-means (K = 200)
C1+grid K-means (K = 200) + grid(256× 256)
C1+seg. K-means (K = 200) + seg(k = 300 , σ = 0.5)
C1+grid+seg. K-means (K = 200) + grid(256×256)+ seg(k = 300 , σ = 0.5)
C2+grid K-means (K = 200) + grid(256× 256)
C2+seg. K-means (K = 200) + seg(k = 300 , σ = 0.5)
C2+grid+seg. K-means (K = 200) + grid(256×256)+ seg(k = 300 , σ = 0.5)

type (SIFT descriptors), without any spatial pyramid structure,
and more important, with a learning approach that is based on
a unique kernel. This way, we are able to actually evaluate
the performance of the visual vocabularies themselves, i.e. to
prove that the vocabulary construction step actually matters.
Our aim in these experiments is not to compete with these
more complex systems described.

Overall, we offer a consistent approach for visual vocabu-
lary construction which systematically outperforms the tradi-
tional pipeline where only one vector quantization approach
is used. Furthermore, any other BoW based approach can be
benefited from incorporating our codebooks.

C. Results on scene recognition
For the scene recognition experiments in the NYU-D

dataset, we follow the experimental setup described in Section
V-A. After the thorough study of the performance of the
different codebook combinations in Section V-B, we propose
to evaluate the scene recognition problem using the codebook
combinations detailed in Table VI. For all the consensus
clustering combinations we use again the Balls algorithm (with
α = 0.25), and a sampling factor β = 0.5. Note that with
this set of codebooks we are going to be able to evaluate the
performance of both the VWA and the C-VWA. Codebook C1
has been obtained without using the VWA approach.

Table VII shows all the results obtained. The baseline
codebook C1 obtains the lowest performance. A combination
via VWA of three different K-means codebooks, i.e. C2, does
not immediately improve the results. It is significant that the
performance always increases when the contextual information
is incorporated. These results demonstrate the convenience of
the C-VWA for constructing visual vocabularies. Our best ac-
curacy (54%) is obtained when we combine K-means with the
contextual information of a proper segmentation. Furthermore,
our results are close to the state-of-the-art reported in [47]
when only RGB images are used (56%). Note that in [47],
instead of a simple BoW pipeline, a SPMK [34] of four levels
is used. We can even improve our results by applying the
SPMK [34] with our codebooks too, but this is out of the scope
of this paper. Figure 11, shows a comparison of the confusion
matrix for the baseline codebook C1, and the combination
C1+seg.

VI. CONCLUSION

In this paper we have introduced the VWA methodology,
which incorporates the consensus clustering techniques to the
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TABLE VII
SCENE CLASSIFICATION RESULTS

Codebook C1 C2 C1+grid C1+seg. C1+grid+seg. C2+grid C2+seg. C2+grid+seg.

MDCM (%) 49 49 52 54 50 50 50 52
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Fig. 11. Confusion matrices of the scene recognition results in the NYU-D
dataset.

visual codebook construction process. Also, a novel sampling
strategy has been designed in order to use the VWA approach
with large sets of vectors in high dimensional spaces. With the
aim of obtaining contextual visual words, we have presented
the C-VWA: an approach where we also incorporate the spatial
neighboring relation between the local descriptors into the
consensus clustering process. We integrate over-segmentation
algorithms and spatial grids into the aggregation algorithm in
order to capture the contextual relations between the visual
words. To the best of our knowledge, this is the first paper
to describe such a consensus clustering based methodology
within this context. We show the results of the proposed
codebooks in visual categorization and scene recognition on
very challenging datasets. Results show that the proposed ap-
proaches always achieve better performances than traditional
BoW approaches.

Most researches simply use a standard clustering algorithm
for building the visual vocabularies. In this work, we have
investigated how the quality of the visual codebook could
be improved, both quantitatively (yielding better classification
accuracies) as well as qualitatively (incorporating semantic and
contextual information into the visual vocabulary construction
process). We have demonstrated that the design choices made
in the vector quantization step really matter and have a
significant impact on the overall performance of an image
categorization system. Exploring other clusterings as well as
other data sets is one interesting avenue of future research.
Finally, with the aim of making our research reproducible, we
release the code1.
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